
IOSR Journal of VLSI and Signal Processing (IOSR-JVSP)

Volume 7, Issue 1, Ver. I (Jan. - Feb. 2017), PP 01-07

e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197

www.iosrjournals.org

DOI: 10.9790/4200-0701010107 www.iosrjournals.org 1 | Page

Optimized linear spatial filters implemented in FPGA

Ivan Kanev, Petya Pavlova
(Department CST, Technical University Sofia - Plovdiv branch, Bulgaria)

Abstract: Linear spatial filters (LSF) are used for filtering of digital images with the purpose of blurring, noise

reduction, detail enhancement etc. The realization of LSF confronts the capital problem of a lot of operations

needed for their computation. In this paper, described is an approach for optimizing of LSF by utilizing parallel

algorithms and their hardware implementation on FPGA. A model and an algorithm based on partial sums and

aimed at calculating the filtered pixels are presented. Defined are criteria for comparing of the different types of

linear filters. A schematic diagram of an FPGA-based DSP operational block is shown. VHDL is utilized for the

hardware design. Conducted are studies focused on comparing the partial sums and the non-partial sums based

methods of filtering. It is ascertained that the methods employing partial sums reduce the number of operations

to the size of the window (3, 5, 7,...) . These FPGA-based LSF are suitable for applications using threshold

detecting, edge detection or image detail enhancement.

Keywords: DSP, FPGA, Linear Spatial Filtering, Partial Sum, VHDL

I. Introduction
The concept of filtering is related to the use of Fourier transform for signal processing in the frequency

domain. The digital filtering of an image uses procedures which are applied directly on the pixels of the image.

In this case, the term spatial filtering is employed to distinguish these processes from filtering in the frequency

domain. In spatial filtering the value of the pixel being filtered is calculated by the cross-correlation or

convolution operators applied on the pixel neighborhood [1]. Smoothing spatial filters are used for blurring and

noise reduction in an image. Blurring is used in the image preprocessing. such as removing of small details in

the image or overcoming small gaps in lines or curves (Fig. 1). Noise reduction is used to improve image

quality. Spatial filtering are classified as linear and nonlinear. If the operations performed on neighbourhood

pixels are linear, filters are classified as linear. Otherwise filters are classified as non-linear [2]. This article

deals only with linear spatial filters (LSF), because they are the basis for important applications in digital

filtering of images such as threshold detection, edge detection etc.

(a) (b) (c)

Fig. 1. Filter images LSF: (a) the image from the Hubble Space Telescope: (b) filtering the input image with a

mask of dimensions 15 * 15; (c) performance thresholds [1].

A major problem in the implementation of LSF is that calculating the pixels being filtered requires

multiple operations summation, multiplication and division. The number of these operations is increased

proportionally to increase of the image size and reaches hundreds of millions. Oh that basis, they are difficult to

apply \when employing general-purpose microprocessors (GPP), or DSP processors [3]. The limitations that are

inherent of GPP and DSP processors can be overcome through implementing LSF on a single chip (System on a

Chip (SoC)) based on Field Programmable Gate Arrays (FPGAs) [4]. FPGA is having the capability of parallel

processing and hence it is a good platform for image processing [5]. Bailey, [6] analyzes various pipeline and

parallel processing schemes of LSF, implemented on FPGA. The development of such schemes can be realized

in two directions: new algorithms to calculate the pixel being filtered; reducing the number of operating units.

Vasilev at al. [7] propose an algorithm to reduce the time to calculate operations with the use of partial sums.

Khan [8], Malik [9] recommend FPGA-based LSF to be constructed with a DSP blocks using multiply

accumulate (MAC). To optimize the number of registers used to store the weight coefficients a ROM- based

finite-state machine (FSM) can be employed [10].

Optimized linear spatial filters implemented in FPGA

DOI: 10.9790/4200-0701010107 www.iosrjournals.org 2 | Page

In this paper, discussed is an approach to optimize the LSF using parallel algorithms based on partial sums,

and their hardware implementation on FPGA.

The paper is organized as follows. Section II presents a parallel algorithm and a DSP operating unit The

results are analyzed in Section III. Section IV concludes the paper.

II. Parallel Algorithm And DSP Operational Block For Calculating

LSF Using Partial Sums
The filtering of a pixel)(y,xp in an image of size NM results in a new pixel g (x, y) with

coordinates equal to the coordinates of the center of the neighbourhood and whose value is the result of the

filtering operation [1]. The effect of filtering is determined by the mask of weight coefficients)(b,aw . The

cross-correlation operator G(x, y) used to calculate the filtered pixel employing linear spatial filters, and defined

in the window of size S × S, is presented by the following relation:

k

ka
by,axp .

k

kb
b,aw y,xG)()()(, (1)

 where

1210 M,.., , ,x ; 1210 N,.., , ,y . (2)

2

1

S
k ; (3)

S is an odd number, and 3S . (4)

The normalized value of the filtered pixel g (x, y) can be calculated employing two methods:

Method # 1 - dividing G (x, y) by the normalizing factor)(b,aNF

)()()(b,aNF/y,xGy,xg , (5)

where

k

ka

k

kb
b,awb,aNF)()(. (6)

Method # 2 - by multiplying the)(y,xG by the reciprocal value of the normalization factor)(
1

b,aNF

)(
1

)()(b,aNF.y,xGy,xg

 . (7)

Although both methods provide the same results, their implementation in FPGA-based LSF presents

substantial differences. With Method # 1 the normalization is implemented through a divider synthesized with

the FPGA logical elements, and with Method # 2 - through FPGA built-in multipliers. In this regard, method # 2

is preferable because it does not use the logical elements and the normalization is performed more quickly. [11]

1. Algorithm for parallel computation of the filtered pixels by using partial sums

The algorithm for the parallel calculation of)(y,xg using the partial sums are based on the fact that

the filtering of several consecutive windows includes pixels having common local coordinates. This

circumstance can be used as a basis for algorithms in which, parallel to the calculation of the current value of

)(y,xG and)(y,xg , calculated are partial sums PS1 (x, y), PS2 (x, y), .. composed of pixels and weight

coefficients that can be used in subsequent iterations.

Fig 2. Conceptual model of a method for parallel calculation of LSF using partial sums: Step # 1; x, y = 1

Optimized linear spatial filters implemented in FPGA

DOI: 10.9790/4200-0701010107 www.iosrjournals.org 3 | Page

In Fig. 2 shows a conceptual model of a method for parallel calculation of the LSF using the partial

sums. In the proposed model it is assumed that the pixels of the input image p (x, y) arriving in succession at the

input of the filter, by the columns of the window in which the filtering is carried out:

p(x,y) = p(0,0), p(0,1),.., p(3,0), p(3,1) p(3,2),p(4,0), p(4,1), p(4,2),..

The pixels of the input image are multiplied by the weight coefficients of the Gaussian kernels PS

weights, PS1 weights, PS2 weights, and summed up in three accumulators (Σ). In the window of size S = 3 (4),

four parallel processes are realized in three successive steps through which calculated are)(y,xG ,)(y,xg ,

PS1 (x, y), and PS2 (x, y). The final values of the results are stored in the output registers Gq, PS1q and PS2q of

the accumulator. The normalized value of the filtered pixel)(y,xg is rounded by the factor 10,r,r , to

ensure more accuracy to the calculations.

Start of the algorithm

 y=0

Step # 1. This step is performed for all x = 1. Realized are three parallel processes in which calculated

are)(y,xG , the final value of PS1(x, y), the initial value of PS2(x, y) and the current values registers Gq, PS1q,

PS2q are set. To perform the calculations S
2
 operations are required.

 1 1 yy ;x , moving the window one position to the right

Process #1:

1

1
)(

1

1
)11()(

a
by,ax p .

b
b,a w y,xG ; (8)

)(y,xG Gq . (9)

Process #2:

0

1
)1(

1

1
)11()(1

a
by ,ax p .

b
b,a w y,x PS ; (10)

)(11 y,x PSqPS . (11)

Process #3:)1(
1

1
)10()(2 by ,xp .

b
b,wy,x PS

 . (12)

Step #2. This step is performed for 1 x ,x . Four parallel processes are implemented to estimate the

current values and)(y,xG , the initial value of PS1(x, y) and the final value of the PS2(x, y). . To perform the

calculations S

 operations are required.

Process #4: rNF.Gqy,xg

1

)(. (13)

1 xx , moving the window one position to the right

Process #1:)1(
1

1
)12(1)(by ,xp .

b
b, wqPSy,xG

 ; (14)

)(y,xG Gq . (15)

Process #2: by ,xp.
b

b,wy,xPS

 1
1

1
121 . (16)

Process #3: by ,xp .
b

b,wy,xPSy,xPS

 1
1

1
12)1(2)(2 ; (17)

)(22 y,x PSqPS . (18)

Step #3. This step is performed for. 1 x ,x . Implemented are four parallel processes through which

current values and G(x, y), the final value PS1(x, y) and the initial value of PS2(x, y) are calculated. To perform

the calculations S

 operations are required.

Process #4: rNF.Gqy,xg

1

)(. (19)

1 xx , moving the window one position to the right

Process #1:)1(
1

1
)12(2)(by ,xp .

b
b, wqPSy,xG

 ; (20)

)(y,xG Gq . (21)

Optimized linear spatial filters implemented in FPGA

DOI: 10.9790/4200-0701010107 www.iosrjournals.org 4 | Page

Process #2: by ,xp.
b

b,w)y,x(PSy,xPS

 1
1

1
12111 . (22)

)(11 y,x PSqPS . (23)

Process #3: by ,xp .
b

b,wy,xPS

 1
1

1
12)(2 . (24)

Operations for managing the cycles:

if 2 Mx then Step #2

еlse if 1 Ny then Step #1

еlse end of the algorithm

The timing of the steps and processes in the execution of the algorithm is shown in Fig. 3.

Fig. 3. Generalized timing model

The effect of applying the algorithm using partial sums can be assessed by comparing the algorithm

without using partial sums. Let us, for a given k with the Wn denote the number of windows required to filter the

input image of size NM , and with S the number of operations in a single window. Then

 kNkMWn . (25)

The number of operations in algorithms without the use of partial sums CO (8) and using my partial sums PO

(8) (14) (20) defined by the following expressions:

1
2

 Wn .SOC ; (26)

 Wn.SkNSOP
2

. (27)

Then the relation

PCR O/OF , (28)

can be used as a criterion for evaluating the maximum value of which reduces the number of operations in the

algorithms using the partial sums as compared to the algorithms without using the partial sums.

 The real effect of reducing the number of operations in the algorithms using the partial sums can be

determined from the relation RT :

PCR T/TT , (29)

where:

CC O.tclkT 1 ; (30)

PP O.tclkT 2 ; (31)

tclk1, (32)

is the period of clk (Fig. 3) in the algorithms without the use of partial sums;

tclk2 , (33)

is the period of clk in algorithms using partial sums.

In contrast to RF , the relation RT takes into account the influence of the period of the clk for which

positive Slack is calculated. This factor is calculated after timing analysis of the hardware realization of filters.

Optimized linear spatial filters implemented in FPGA

DOI: 10.9790/4200-0701010107 www.iosrjournals.org 5 | Page

2. FPGA-based DSP operational block

To realize the algorithm FPGA-based DSP operational block is developed (Fig.4). A combinational

scheme in which parallel processes are combined with the use of pipelines is employed.

Fig. 4. Structural diagram of FPGA-based DSP operational block: k = 1.

DSP operational block consists of four sub blocks:

1. WAVR DSP BLOCK. In this block, calculate a normalized weighted value of the filtered pixel

)(y,xg (13), (19). For the realization of operations in this block is used a four stage pipeline.

2. PS1 (2) MAC DSP BLOCK. When k = 1, two identical multiply accumulate (MAC) DSP blocks are

used to calculate the partial sums PS1(x,y) (10), (16), (22) и PS2(x,y) (12), (17), (24). The output registers PS1q

and PS2q are set with the current values of PS1(x,y) and PS2(x,y) in compliance with equations (11), (23) and

(18). For the realization of operations in these blocks a two stage pipeline is used.

3. CONTROL BLOCK. For managing and synchronizing the processes in DSP a finite state machine

synthesized with the built-in FPGA ROM memory (ROM FSM) is used. This FSM generates three groups of

signals:

3.1. Weight coefficients

Table I.Weight coefficients: k=1; NF =16
Weights/Step Step #1 Step #2 Step #3

PSweights 1 2 1 2 4 2 1 2 1 1 2 1 1 2 1

P1weights NA 1 2 1 2 4 2 1 2 1 2 4 2

PS2weights NA 1 2 1 2 4 2 1 2 1

3.2 Control signals. Signals WAVR Control, PS1 Control and PS2 Control is used to manage the registers and

multiplexers in the individual DSP blocks.

3.3. Next Address. These signals are determined next state ROM FSM.

The interface of the DSP operational block is realized with the following input-output ports:

 Start filtering (SF) – input port. When this signal is set in high levels LSF filtering operations start.

 Input pixsel p(x,y) – input port. Pixels of the input image are consecutively set at this port by the columns of

the window in which the filtering is carried out.

Optimized linear spatial filters implemented in FPGA

DOI: 10.9790/4200-0701010107 www.iosrjournals.org 6 | Page

 Reciprocal of normalization factor 1
NF - input port. Constant 1

NF (6) (7) is set at this port before the

activation of SF and remains unchanged until of all the image pixels are filtered.

 g(x,y) – output port. At this port, the current value of the filtered pixel is set (7).

FPGA-based DSP operational block for parallel calculation of LSF using partial sums (Fig.4), can be extended

to other values of k (3) with the instantiation of a new pair PS MAC DSP Block in the project, for each new

value of k .

III. Result And Discussion
For the purposes of this study, VHDL is used for the hardware design. The low cost, low resources

FPGA family Cyclone V of Altera is employed. Table II shows the utilized resources in the FPGA- based

hardware implementation of a LSF

Table II. Resource utilization summary (Altera Cyclone VE 5CEBA4F17C6 Device)
Resource utilization Available Without partial sum With partial sum

Used Utilization Used Utilization

Logic utilization (in ALMs) 18480 14 0.0756 % 36 0.1948 %

Total registers - 41 - 86 -

Total block memory bits 3153920 1792 0.0568 % 1984 0.0629 %

Total (Mult) DSP Blocks 66 2 3 % 4 6 %

Compared are the utilized resources with and without the use of partial sums. The relatively small share

of the used adaptive logic modules (ALMs) is due to: the use of built-in FPGA DSP Multiplier Blocks;

combining in a ROM-based FSM the signals for managing the operational block and weight coefficients.A

static timing analysis between the related registers of the DSP operational block. The minimum values of the

Slack calculated in the different processes, are shown in Table III.

Table III. Registers Path minimum slack summary
Process # Registers Path Clock Delay1 Clock Delay2 Data Delay Slack

1 Gxy_Data to Gq 3.264 2..962 3.807 1.888

2 PS1weight to PS1q 3.262 2.652 4.627 0.81

3 PS2weight to PS2q 3.252 2.664 4.529 0.93

4 Gq to g 3.263 3.211 6.602 10.85

It is ascertained that the parameter Slack reaches critical values between registers PS1 (2) weight to

PS1 (2) q (Fig. 5). The timing of Slack can be improved by increasing the number of steps of the pipelines

through which PS1 (2) MAC DSP blocks are realized.

Fig. 5. Timing analisis registers to registers path: PS1weight to PS1q.

Table IV shows the dependence of OC (26), OP (27), TC (30), TR (31), FR (28), on the size of the

image - M × N.

Table IV. Dependence of OC, OP , TC , TR , FR from M × N.
 М × N

 640×480 1024×768 1600×1200

OC 2754730 7061770 16103529

OP 922554 2360826 5378634

TC [ms] 13,7736 35,3088 80,5176

TP [ms] 5,5353 14,1650 32,2718

FR 2,9860 2,9912 2.9940

TR 2,4883 2,4927 2,4950

Optimized linear spatial filters implemented in FPGA

DOI: 10.9790/4200-0701010107 www.iosrjournals.org 7 | Page

Studies are carried out for k = 1 (3), tclk1 = 5ns (32) and tclk2 = 6ns (33). Although for the selected

FPGA family positive Slack is reached for tclk2> tclk1, the relation TR reaches up to 83% of FR. As a result of

studies carried out it is ascertained that with the increase of k increases the value of RF , and 12 kFR . The

upward trend of RF is shown in Fig. 6

2,99

4,96

6,92

8,87

10,81

1

3

5

7

9

11

1 2 3 4 5

FR

k
Fig. 6. Dependence of RF on the size of the window k: M × N = 640 × 480

By increasing the size of the window a large number of parallel processes are realized, and this results in

increased RF .

IV. Conclusion
In this paper, discussed is an approach aimed at optimizing the LSF using parallel algorithms based on

partial sums and their hardware implementation in FPGA. Presented is an FPGA-based DSP operational block

to calculate the LSF. Provided is an option for expanding this block through instantiating new MAC DSP

blocks within the module. Compared are the utilized FPGA resources with the use of partial sums, and without

the use of partial sums. It is ascertained that for the hardware implementation of algorithms based on the partial

sums a minimum number of resources is required. A static timing analysis among the registers of the DSP

operational block is realized. The critical values of the parameter Slack are ascertained. Studied is the

reduction of operations in the hardware implementation of the algorithm using partial amounts.

References
[1] Gonzalez R., Woods R., Digital Image Processing, third edition, Prentice Hall, 2012.

[2] Uwe Meyer-Baese, Digital Signal Processing with Field Programmable Gate Arrays (FPGA), 4th Edition, Springer 2014.

[3] Jackson L., Digital Filters and Signal Processing, with MATLAB Exercises, 3rd Edition, Springer 2010.
[4] Salunkhe A., Bombale U., Optimized Implementation of Edge Preserving Color Guided Filter for Video on FPGA, IOSR Journal

of VLSI and Signal Processing , e-ISSN: 2319 – 4200, Volume 5, Issue 6, Ver. I (Nov -Dec. 2015), PP 27-33

[5] Bailey D., Design for Embedded Image Processing on FPGAs, First Edition, John Wiley & Sons (Asia) Pte Ltd., 2011
[6] Dimitrios B. et all, An FPGA-based hardware implementation of configurable pixel-level color image fusion, IEEE Trans. Geosci.

Remote Sens., 50(2), 2012, 362–373.

[7] Vasilev N., Bosakova-Ardenska A., A Parallel Conveyer Algorithm for the Recursive Method of Scanning Mask for Primary
Images Processing, CompSys Tech’2006, Veliko Tarnovo, Bulgaria, ISBN-13: 978-954-9641-46-2, pp IIIA.19-1 – IIIA.19-7, 2006.

[8] Khan S., Digital Design of Signal Processing Systems: A Practical Approach, First Edition. John Wiley & Sons, Ltd. Published

2011.
[9] Malik S. et. all, Implementation of MAC unit using booth multiplier & ripple carry adder, International Journal of Applied

Engineering Research, Vol 7, No 11, 2012

[10] M. Rawski, H. Selvaraj, and T. Luba, An application of functional decomposition in ROM-based FSM implementation in FPGA
devices, Journal of Systems Architecture, vol. 51, p. 424, 2005.

[11] Kanev I., Comparison of Two Methods for Computing FPGA-based Weighted Average Linear Spatial Filters CompSysTech’15,

ACM International Conference Proceeding Series, Vol. 1008, ACM Inc., N.Y. USA, pages 276-283, 2015.

