
IOSR Journal of VLSI and Signal Processing (IOSR-JVSP)

Volume 6, Issue 5, Ver. II (Sep. - Oct. 2016), PP 47-53

e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197

www.iosrjournals.org

DOI: 10.9790/4200-0605024753 www.iosrjournals.org 47 | Page

Efficient design and FPGA implementation of JPEG encoder

Krupali M.Lanjewar
1
, R.S.Kawitkar

2

1, 2
(Department of E &Tc S.C.O.E.Vadgaon, Pune, India)

Abstract: In this study JPEG standard is used in digital camera which is used to compress the captured image.

Hence less space is needed to store the image. Such images are easily shared on the web.

Methods/Analysis: Generally, Photos captured from digital camera are big in size, so it takes more time to

upload such photos on web. Some time connection speed creates bottle neck on uploading these photos. Best

way is to save such photos by .jpg extension and share on the web. Sometimes, while copying the original data,

it may not fit in pen drive or memory stick but zip data could easy fit in pen /memory stick. More data one can

put in pen drive due to compression. Hence, in this research work, JPEG encoder scheme is introduced to

compress the captured image data from sensors so as to reduce the storage requirements. This scheme begins

with the input image having width and height multiple of 16 that is, an image 32x32 will produce a strictly

compliant JPEG image file. Here the header is the widely employed JFIF. Image resolution is not limited. It

takes an RGB input. Hence it is then converted to YCbCr color space. After conversion apply a level shift as

specified by the JPEG standard. Then it is applied to DCT block. After the FDCT is computed for a block, each

of the 64 resulting DCT coefficients is quantized and then applied for entropy encoding. Finally we get a

compressed image.

Findings: The proposed JPEG works significantly outperform existing techniques in terms of the parameters

like gate counts, memory and clock. It also shows that this JPEG encoder architecture uses 4992 slices, 8273

LUTs, 77I/Os of Xilinx Vertex – 5 xc2v1000-4bg575 FPGA and works at an operating frequency of 37.129

MHz.

Keywords: Discrete Cosine Transform (DCT), Field Programmable Gate Array (FPGA), Huffman coding,

Joint Photographic Expert Group (JPEG), Quantization.

I. Introduction
The use of digital technology in day-to-day life and specialized applications are increasing

continuously. In particular, the use of digital imagery growing continuously as the technology to create such

media becomes cheaper and easily accessible. For example such technological advances in many fields like

robotics, medicine and defense. Hence, it increases the need for digital imagery. As more applications demands

for higher resolution imagery which depends on it for critical information, storing of data efficiently while

maintaining data integrity is main. To illustrate this, consider a standard smart phone having features like 8

megapixel camera. An image is taken in monochrome with 8 bits of precision for each pixel. This requires 8 MB

of memory before getting compressed. This requires a total of 240 MB of space per second. Thus, it requires

total of 14 GB space per minute. Hence, to store such images in this format is not possible, especially when the

proposed system use color images or higher resolution images.

M. Gangadhar et al.[1] formulated a high speed FPGA based scheme of Embedded Block Coding with

Optimized Truncation (EBCOT) algorithm used in JPEG 2000. This scheme analyzes the context formation

engine used in EBCOT and hence proposes a scheme based on parallel processing of the three coding passes. A

three stage pipelined architecture for the Arithmetic Encoder is used to speed up the encoding. When

implemented on a XC2V1000 device, the design performs at 50 MHz after place and route. This scheme results

that the processing time is reduced by more than 75%.

The scheme [2] involves a complex sub-block discrete cosine transform (DCT), along with other

quantization, zigzag and Entropy coding blocks. In this scheme, Verilog design and hardware implementation of

pipelined 2-D DCT along with zigzag, quantization and variable length coding is described. 2-D DCT is

computed by combining two I-D DCT that connected by a transpose buffer. The scheme uses 4059 slices, 6885

LUT, 58 I/Os of Xilinx Spartan-3 XC3S1500 FPGA and works at an operating frequency of 65.55 MHz. The

delay of processing each 8*8 block in an image is also evaluated to be 1.47micro seconds.

The scheme [3] presents FPGA based High speed, low complexity and low memory implementation of

JPEG decoder. The pipeline implementation of the system, allow decompressing multiple image blocks

simultaneously. The hardware decoder is designed to operate at 100MHz on Altera Cyclon II or Xilinx Spartan

3E FPGA or equivalent. The decoder is capable of decoding Baseline JPEG color and gray images. Decoder is

Efficient design and FPGA implementation of JPEG encoder

DOI: 10.9790/4200-0605024753 www.iosrjournals.org 48 | Page

also capable of down-scaling the image by 8. The decoder is designed to meet industrial needs. JFIF, DCF and

EXIF standers are implemented in the design.

The scheme [4] presents a linear, highly pipelined direct polynomial fast 2-D DCT algorithm hardware

implementation in which the number of multiplication is reduced to 50% of the conventional row-column

approach. The coding is simulated using Xilinx 9.1 ISE synthesized using Spartan II. The 1-D and 2-D DCT

implementation is done using 18-bit floating point adders, sub tractors and multipliers. The DCT processor

saves hardware using module reusability concept and achieves high performance. The chip of 8x8 DCT and

Quantization processor are fabricated in a 180 nm CMOS technology. Power analysis is analyzed using

CADENCE tool.

The purpose of this research was to reduce the storage requirements and easily data transfer on the web.

II. Proposed Methodology
In this research work proposed a new method for efficient realization of jpeg encoder on Field

Programmable Gate Array (FPGA). This scheme consists of taking an input image in RGB format, Conversion

of RGB to YCbCr, FDCT followed by level shifting, quantization and then entropy encoding. The complete

procedure of proposed JPEG encoder scheme is described in Figure 1. The whole process is modeled into Xilinx

which is further integrated at top level entity using structural program. The top level entity “Compressor” is

binding these blocks. There are four distinct modes of operation under which the various coding processes are

defined:

i) Sequential DCT-based,

ii) Progressive DCT-based,

iii) Lossless, and

iv) Hierarchical

Among these processes, the proposed system has used sequential DCT-based operation.

A summary of the characteristics of the baseline coding processes [5]

 is given as:

1. DCT-based process

2. Source image : 8-bit samples within each component

3. Sequential process

4. Huffman coding : 2AC and 2DC tables

2.1. RGB to YCbCr Conversion

YCbCr (256 levels) can be computed directly from 8-bit RGB as follows:

Y = 0.299 R + 0.587 G + 0.114 (1)

Cb = - 0.1687 R - 0.3313 G + 0.5 B (2)

Cr = 0.5 R - 0.4187 G - 0.0813 B (3)

All image file formats does not store image samples in the order R0, G0, B0, ... Rn, Gn, Bn. The

proposed system must verify the sample order before converting an RGB file to JFIF.The first process is to

convert the input signals (Red, Green and Blue, strobed by Process RGB signal) to the YCbCr color space. After

conversion apply a level shift as specified by the JPEG standard. CoreGen generated with wrapper file is used

here.

2.2 Level shift
Before encoding process computes the forward DCT [5] for a block of source image samples, the samples will

be level shifted to a signed representation by subtracting 2P – 1, where P is the precision parameter specified.

Efficient design and FPGA implementation of JPEG encoder

DOI: 10.9790/4200-0605024753 www.iosrjournals.org 49 | Page

Figure1. Working procedure of proposed JPEG encoder

2.3. Discrete Cosine Transform (DCT)

There are four distinct modes of operation under which the various coding processes are defined:

1. Sequential DCT-based,

2. Progressive DCT-based,

3. Lossless, and

4. Hierarchical

The simplest DCT-based coding process is referred to as the baseline sequential process. It provides a capability

which is sufficient for many applications. There are additional DCT-based processes which extend the baseline

sequential process to a broader range of applications.

Among these processes, we have used sequential DCT-based operation. For the sequential DCT-based mode, 8

x 8 sample blocks are typically input block by block from left to right and block-row by block-row from top to

bottom.

Procedure for encoding an 8 x 8 block data unit

For DCT-based encoders, the data unit consists of an 8 x 8 block of samples. The procedure [5] for encoding 8 x

8 block data is given as follows.

i. Before computing the FDCT, the input data are level shifted to a signed two’s complement representation.

For 8-bit input, the level shift is achieved by subtracting 128. Then calculate forward 8 x 8 DCT. Then

quantize the resulting coefficients using table specified in frame header. Thus, AC and DC coefficients are

obtained.

ii. Using DC table specified in scan header, encode DC coefficients for 8 x 8 block.

iii. Similarly, using AC table specified in scan header, encode AC coefficients for 8 x 8 block

2.4. Quantization

Quantization [6] is the process of selectively discarding visual information without a significant loss in

the visual effect. Quantization reduces the number of bits needed to store an integer value by reducing the

precision of the integer. Each discrete cosine transform (DCT) component is divided by a separate quantization

coefficient, and rounded to the nearest integer. The larger the quantization coefficient (i.e., coefficient

weighting), the smaller the resulting answer and associated bits needed to express the DCT component.

Efficient design and FPGA implementation of JPEG encoder

DOI: 10.9790/4200-0605024753 www.iosrjournals.org 50 | Page

Quantization is done to achieve better compression. Quantization reduces the number of bits needed to store

information by reducing the size of the integers representing the information. After the FDCT is computed for a

block, each of the 64 resulting DCT coefficients is quantized by a uniform quantizer.

The uniform quantizer is defined by the following equation. Rounding is to the nearest integer[5]:

(4)

Where,

Sqvu is the quantized DCT coefficient, normalized by the quantizer step size.

2.5 Differential DC encoding

After quantization, and in preparation for entropy encoding, the quantized DC coefficient is treated

separately from the 63 quantized AC coefficients. The value that shall be encoded is the difference (DIFF)

between the quantized DC coefficient of the current block (DCi) and that of the previous block of the same

component (PRED):

 (5)

2.6. Entropy encoding

There are two types of the entropy-coding:

1. Huffman encoding

2. arithmetic encoding

The baseline sequential process uses Huffman coding hence, Huffman encoding is used. Huffman coding [7] is

used to code values statistically according to their probability of occurrence. Short code words are assigned to

highly probable values and long code words to less probable values.

2.7 Zig-zag sequence

After quantization, and in preparation for entropy encoding, the quantized AC coefficients are converted to the

zig-zag sequence. The quantized DC coefficient (coefficient zero in the array) is treated separately. The zigzag

sequence is specified in Figure 2.

0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63

Figure 2 Zig-zag sequences of quantized DCT coefficients

2.8 Conversion of Huffman table specifications to tables of codes and code lengths

Conversion of Huffman table specifications [5] to tables of codes and code lengths uses three procedures.

1. generates a table of Huffman code sizes.

2. generates the Huffman codes

3. generates the Huffman codes in symbol value order.

The entries in the tables are ordered according to increasing Huffman code numeric value and length.

2.8.1 Bit ordering within bytes

The root of a Huffman code is placed toward the MSB (most-significant-bit) of the byte, and successive bits are

placed in the direction MSB to LSB (least-significant-bit) of the byte. In this way, Huffman encoding starts by

looking up the tables and stores the final compressed image. The proposed JPEG encoder is shown in figure 3.

Figure 3 Proposed JPEG encoder

RGB –

YcbCr +

level shift

DCT

Quantizer

Entropy

Encoder

Compressed

Image Data

Efficient design and FPGA implementation of JPEG encoder

DOI: 10.9790/4200-0605024753 www.iosrjournals.org 51 | Page

III. Implementation Results
In order to assess the proposed system Xilinx CORE generator is used. The CORE Generator[8]

System is a design tool that delivers parameterized cores optimized for Xilinx FPGAs. It provides you with a

catalog of ready-made functions ranging in complexity from simple arithmetic operators such as adders,

accumulators, and multipliers, to system-level building blocks such as filters, transforms, FIFOs, and memories.

A core cannot be remotely accessed from within a project. Cores must reside inside the project directory in order

to be accessible to the project. CoreGen is not available for CPLD devices. It is not possible to copy cores from

one project to another. You will need to generate new cores if you import a design from another design

environment. CoreGen cores are often optimized for a particular device family. To avoid errors in

implementation after changing to a new device family, most cores need to be regenerated for the new family.

There are 7 CoreGen generated files used for storing final image. Out of these, DCT block is explained.

dct2d.vhd : This is CoreGen generated file with wrapper used for 2-D Discrete Cosine Transform (Forward

DCT). Here , Data Width = 8 bits Signed, Coefficients Width = 24 (Enable Symmetry), Precision Control:

Round, Internal Width: 19, Result Width: 19, Performance: Clock Cycles per input=9, Transpose Memory =

Block, Reset: No. (Results: Latency = 95 cycles, Row Latency = 15 cycles, Column Latency = 15 cycles) are

used. It takes as input sixty-four 8 bits signed values and gives output as sixty-four 19 bits signed numbers in the

frequency domain (the LSBs are decimals). It is shown in figure 4.

Figure4. CoreGen generated dcd2d GUI

JPEG encoder with 77 Input and outputs are shown in Figure 5.

Efficient design and FPGA implementation of JPEG encoder

DOI: 10.9790/4200-0605024753 www.iosrjournals.org 52 | Page

Figure 5: Top level RTL for JPEG Encoder

The device utilization for JPEG Encoder is as reflected in synthesise report and it shown in figure 6 which is

part of various levels of RTL.Out of 5120 Slices 4992 are used in this design i.e. 97% utilization. Numbers of

Slice Flip Flops are 3949 out of 10240.Number of 4 input LUTs: 8273 out of 10240.

Figure 6: Detailed RTL level JPEG Encoder

Efficient design and FPGA implementation of JPEG encoder

DOI: 10.9790/4200-0605024753 www.iosrjournals.org 53 | Page

The JPEG encoder architecture was described in VHDL. The design was synthesized into a Xilinx Vertex-5

xc2v1000-4bg575 family FPGA. The complete synthesis results to Vertex-5 FPGA are presented in Table 1,

whose hardware was fit in an xc2v1000-4bg575 device.

Table 1: Device Utilization Using Xilinx Vertex – 5
LOGIC UNIT USED AVAILABLE UTILIZATION

Number of slice 4992 5120 97 %

Number of slice FF’s 3949 10240 38%

Number of 4-input LUT’s 8273 10240 80%

Number of bonded IOB’s 77 328 23%

Number of BRAMs 13 40 32%

Number of MULT18X18s 9 40 22 %

Number of clocks 1 16 6%

According to synthesis result, constraint yields minimum clock period 26.933ns. Maximum clock frequency can

be used is 37.129MHz. Figure 7 shows simulation of DCT block.

Figure 7: Simulation result of DCT block

IV. Conclusion and future scope
In this work implementation of JPEG encoder architecture for JPEG image compression standard is

described. The architectures for the various stages are based on efficient and high performance designs suited

for VLSI implementation. The implementation was tested for functional correctness using VHDL with Xilinx

tool. Study of different image interchange format, image header format and design implementation flow of

CoreGen is carried out. The synthesis is carried out on Vertex 5 platform. The JPEG Encoder implementation on

Vertex 5 infers 12002 gate counts. This design works on a frequency 37.129MHz.JPEG standard is used in

digital camera which is used to compress the captured image. Hence less space is needed to store the image.

Such images are easily shared on the web.

References
[1] M. Gangadhar and D. Bhatia, “FPGA based EBCOT architecture for JPEG 2000,” Proc. - 2003 IEEE Int. Conf. Field-

Programmable Technol. FPT 2003, vol. 29, pp. 228–233, 2003.

[2] S. Sanjeevannanavar and A. N. Nagamani, “Efficient design and FPGA implementation of JPEG encoder using verilog HDL,”
Proc. Int. Conf. Nanosci. Eng. Technol. ICONSET 2011, pp. 584–588, 2011.

[3] J. Ahmad, “FPGA based implementation of baseline JPEG decoder,” no. January, 2009.

[4] “VLSI Implementation of 2-D DCT and Quantization processor for JPEG Image Compression,” no. September, 2016.
[5] International Telecommunication Union, “Terminal equipment and protocols for telematic services,” Study Gr. VIII, ITU, Geneva,

1988.

[6] V. Series, “Product Obsolete / Under Obsolescence,” vol. 615, pp. 1–10, 2003.
[7] L. Pillai, “XAPP616: Huffman Coding,” vol. 616, pp. 1–16, 2003.

[8] D. Bakalis, K. D. Adaos, D. Lymperopoulos, M. Bellos, H. T. Vergos, G. P. Alexiou, and D. Nikolos, “A core generator for

arithmetic cores and testing structures with a network interface,” J. Syst. Archit., vol. 52, no. 1, pp. 1–12, 2006.

