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Abstract: In this paper we attempt to evaluate the challenge of compression of speech signals. Compression of 

speech signals have pre-dominantly occupied a considerable position in the present era of multimedia. Speech 

compression is one area of digital signal processing that focuses on reducing the bit rate of the speech signal for 

transmission or storage without significant loss of quality. In recent years a new technique called wavelet 

transform has been proposed for signal analysis. It has been successfully used in image compression 

application. So far, less attention has been paid to the research in the speech compression using wavelet. Here 

we assess the compression of speech signal using different discrete wavelet transform basis functions. There are 

different wavelet basis families like haar wavelet, daubechies wavelet, biorthagonal spline wavelet, coiflet 

wavelet, meyer wavelet, reverse biorthogonal wavelet, Shannon wavelet, symlet wavelet. The auditory masking 

method and psycho acoustic methods are used to compress the speech. At first the speech is divided into number 

of frames and upon each frame wavelet transformation is used to minimize number of bits required to represent 

frame while keeping any distortion inaudible. MATLAB code is implemented to perform the compression. This 

paper performs evaluation of different wavelet  families on the basis of compression scores each contributing 

itself in the compression of speech. 

Key words: wavelet transforms, wavelet families, psychoacoustic method. 

 

I. Introduction: 
      The growth of the computer industry has invariably led to the demand for quality audio data. Compared 

to most digital data types, the data rates associated with uncompressed digital audio are substantial. For 

example, if we want send high-quality uncompressed audio data over a modem, it would take each second‟s 

worth of audio about 30 seconds to transmit. This means that the data would be gradually received, stored away 

and the resulting file played at the correct rate to hear the sound. However, if real-time audio is to be sent over a 

modem link, data compression must be used. In a digital system, the bit rate is the product of the sampling rate 

and the number of bits in each sample. The difference between the information rate of a signal and its bit rate is 

known as redundancy. Compression systems are designed to eliminate this redundancy. So, compression of 

speech is done in order to achieve reduced storage requirements and over all execution time. With respect to 

transmission of data, the data rate is reduced at the source by the compressor (coder) ,it is then passed through 

the communication channel and returned to the original rate by the expander(decoder) at the receiving end. The 

compression algorithms help to reduce the bandwidth requirements and also provide a level of security for the 

data being transmitted. In this paper wavelet analysis is being used to achieve speech compression. 

 

1.1Wavelets: 
              The advent of wavelets has been started with the failure of fourier series in speech analysis. Wavelet 

theory is applicable to several subjects. All wavelet transforms may be considered forms of time frequency 

representation for continuous-time (analog) signals and so are related to harmonic analysis. Almost all 

practically useful discrete wavelet transforms use discrete-time filterbanks. These filter banks are called the 

wavelet and scaling coefficients in wavelets nomenclature. These filterbanks may contain either finite impulse 

response (FIR) or  infinite impulse response(IIR) filters. The wavelets forming a continuous wavelet transform 

(CWT) are subject to the uncertainty principle of Fourier analysis respective sampling theory: Given a signal 

with some event in it, one cannot assign simultaneously an exact time and frequency response scale to that 

event. The product of the uncertainties of time and frequency response scale has a lower bound. Thus, in the 

scaleogram of a continuous wavelet transform of this signal, such an event marks an entire region in the time-
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scale plane, instead of just one point. Also, discrete wavelet bases may be considered in the context of other 

forms of the uncertainty principle. 

 

1.2Discrete Wavelet Transform:  
           It is computationally impossible to analyze a signal using all wavelet coefficients, so one may wonder if 

it is sufficient to pick a discrete subset of the upper halfplane to be able to reconstruct a signal from the 

corresponding wavelet coefficients. One such system is the affine system for some real parameters a > 1, b > 0. 

The corresponding discrete subset of the halfplane consists of all the points (a
m
, na

m
b) with m, n in Z. The 

corresponding baby wavelets are now given as A sufficient 

condition for the reconstruction of any signal x of finite energy by the formula

is that the functions form a thight 

frame of L
2
(R).The function 𝜑𝑚𝑛(𝑡)provides sampling points on the scaletime plane.linear sampling in the time 

(y-axis) direction but logarithmic in the scale (x-axis) direction.The most common situation is that 𝑎0 is chosen 

as: 𝑎0=2
1

𝑣, where v is an integer value,and that v pieces of  𝜑𝑚𝑛(𝑡) are processed as one group,which is called a 

voice.the integer 𝑣 is the number of voices per octave;it defines a well-tempered scale in the sense of music.This 

is analogous to the use of a set narrowband filters in conventional fourier analysis. Wavelet analysis is not 

limited to dyadic scale analysis.By using an appropriate number of voices per octave,wavelet analysis can 

effectively perform the 1 3⁄ - octave,1 6⁄ -octave,1 12⁄ octave analyses that are used in acoustics.The wavelet basis 

function can be implemented as an FIR OR an IIR filter depending on the particular properties needed. 

 

1.3Basis Wavelet Functions:  
  HAAR WAVELET: In mathematics, the Haar wavelet is a sequence of rescaled "square-shaped" functions 

which together form a wavelet family or basis. Wavelet analysis is similar to Fourier analysis in that it allows a 

target function over an interval to be represented in terms of an orthonormal function basis. The Haar sequence 

is now recognised as the first known wavelet basis and extensively used as a teaching example. The Haar 

wavelet's mother wavelet function can be described as 

Its scaling function can be described as 

 
 

  BIORTHOGONALWAVELET: A biorthogonal wavelet is a wavelet where the associated wavelet 

transform is invertible but not necessarily orthogonal . Designing biorthogonal wavelets allows more degrees of 

freedom than orthogonal wavelets. One additional degree of freedom is the possibility to construct symmetric 

wavelet functions. 

. 

Then the wavelet sequences can be determined as

. 

   DAUBECHIES (dB): The Daubechies wavelets, based on the work of Ingrid Daubechies, are a family of 

orthogonal wavelets defining a discrete wavelet transform and characterized by a maximal number of vanishing 

moments for some given support. With each wavelet type of this class, there is a scaling function (called the 

father wavelet) which generates an orthogonal multi resolution analysis. 

  

 SYMLET WAVELET (SYM):  Symlet Wavelet also known as "least asymmetric" wavelet, defines a family 

of orthogonal wavelets.  Symlet Wavelet is defined for any positive integer n. The scaling function ( ) and 

http://en.wikipedia.org/wiki/Wavelet
http://en.wikipedia.org/wiki/Ingrid_Daubechies
http://en.wikipedia.org/wiki/Orthogonal_wavelet
http://en.wikipedia.org/wiki/Discrete_wavelet_transform
http://en.wikipedia.org/wiki/Moment_%28mathematics%29
http://en.wikipedia.org/wiki/Support_%28mathematics%29
http://reference.wolfram.com/mathematica/ref/SymletWavelet.html
http://reference.wolfram.com/mathematica/ref/SymletWavelet.html
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wavelet function ( ) have compact support length of 2n. The scaling function has n vanishing moments. Symlet 

Wavelet can be used with such functions as discreet wavelet transform and Wavelet Phi, etc. 

 

   COIFLET WAVELET: Coiflet scaling functions also exhibit vanishing moments. In coifN, N is the 

number of vanishing moments for both the wavelet and scaling functions. These filters are also referred to in the 

literature by the number of filter taps, which is 2N. 

 

   MEYERWAVELET: Dmey wavelet is the discrete format of meyerwavelet function. Mayer‟s wavelet as 

shown in equation is fundamentally a solvent method for solving the two-scaleequation. Given a basis „�‟ for 

the approximation space, Meyer employed Fourier techniques to derive the DTFT of the two-scale  education 

coefficients. 

𝐺0(𝑒𝑗𝑤) = √2   𝜀𝑘  ∅(2𝜔 + 4𝑘𝜋) 

  SHANNONWAVELET: In functional analysis Shannon wavelet may be either of real or complex type. 

signal analysis by ideal band pass filters defines a decomposition known as Shannon wavelets(sinc 

wavelets).The haar and sync wavelets are fourier duals of each other. The Shannon transform is given by. 

 

 
 

II. Proposed Algorithms: 
ENCODING: Signal compression is achieved by first truncating small valued coefficients and then efficiently 

encoding them. Another approach to compression is to encode consecutive zero valued coefficients, with two 

bytes. One byte to indicate a sequence of zeros in the wavelet transforms vector and the second byte 

representing the number of consecutive zeros. 

 

PSYCHOACOUSTIC MODEL: 

The human auditory system has a dynamic frequency range from about 20Hz - 20 kHz, and the 

intensity of the sound as perceived by us varies. However, we are not able to perceive sounds equally well at all 

frequencies. In fact, hearing a tone becomes more difficult close to the extreme frequencies (i.e. close to 20 Hz 

and 20 kHz). Further study exhibits the concept of critical bands which is the basis of audio perception. A 

critical band is a bandwidth around a center frequency, within which sounds with different frequencies are 

blurred as perceived by us. Critical bands are important in perceptual coding because they show that the ear 

discriminates between the energy in the band and the energy outside the band. It is this phenomenon that 

promotes masking. 

In this implementation, the following were determined: 

_ Tone maskers 

Tone Masker determining whether a frequency component is a tone requires knowing whether it has been held 

constant for a period of time, as well as whether it is a sharp peak in the frequency spectrum, which indicates 

that it is above the ambient noise of the signal. A frequency f (with FFT index k) is a tone if its power P[k] is:1. 

greater than P[k-1] and P[k+1], i.e., it is a local maxima 2. 7 dB greater than the other frequencies in its 

neighborhood, where the neighborhood is 

dependent on f: 

o If 0.17 Hz < f <5.5 kHz, the neighborhood is [k-2…k+2]. 
o If 5.5 kHz _ f <11 kHz, the neighborhood is [k-3…k+3]. 

o If 11 kHz _ f <20 kHz, the neighborhood is [k-6…k+6]. 

COMPANDING: In telecommunication and signal processing companding (occasionally called compansion) is 

a method of mitigating the detrimental effects of a channel with limited dynamic range. The name is a 

portmanteau of compressing and expanding. The use of companding allows signals with a large dynamic range 

to be transmitted over facilities that have a smaller dynamic range capability. Companding is employed in 

telephony and other audio applications such as professional wireless microphones and analog recording. 

QUANTISATION: 

Quantization, in mathematics and digital signal processing, is the process of mapping a large set of input values 

to a (countable) smaller set – such as rounding values to some unit of precision. A device or algorithmic function 

that performs quantization is called a quantizer. The round-off error introduced by quantization is referred to as 

quantization error. 

 

 

http://reference.wolfram.com/mathematica/ref/SymletWavelet.html
http://reference.wolfram.com/mathematica/ref/SymletWavelet.html
http://reference.wolfram.com/mathematica/ref/WaveletPhi.html
http://en.wikipedia.org/wiki/Telecommunication
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Dynamic_range
http://en.wikipedia.org/wiki/Portmanteau
http://en.wikipedia.org/wiki/Dynamic_range_compression
http://en.wikipedia.org/wiki/Telephony
http://en.wikipedia.org/wiki/Wireless_microphone
http://en.wikipedia.org/wiki/Analog_recording
http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Rounding
http://en.wikipedia.org/wiki/Algorithm_function
http://en.wikipedia.org/wiki/Round-off_error
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III. Implementation: 
The implementation in mat lab takes place with the execution of code, which is made based on the 

proposed algorithms. The steps used are reading a sound file, performing wavelet decomposition, selecting a 

threshold to truncate the coefficients, using suitable encoding scheme to get rid of truncated coefficients, 

decoding the received signal, reconstructing the samples of speech signal and construction of samples. Some of 

the instructions used are  [y, fs, bfs]= wavread („path of the file‟); to read sound file. To perform wavelet 

decomposition  [C L]=wavdec (y, N, ‟wname‟) is used. Where N=number of wavelets and „wname‟ is wavelet 

name. to perform wavelet compression [X, CXC, LXC, PERF0, PERFL2]= wdencmp („gbl‟, C, L, wlet, 

decomplevel, the,sorh, keepapp); is used. To decode the wavelet used command is  Rx= decode1 (y, posnum, 

N);  to reconstruct the signal Y= waverec(C, L, „wavelet‟); is used 

 

IV. Results: 

 

  
Fig1: Output of dB10                                             Fig2: Output of haar 

      
                                     

Fig3: output of bior1.3                                                     Fig4: output of demy: 
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V. Conclusion Remarks: 

In this paper we have made an attempt to analyse various basis functions of discrete wavelet transform. 

some of the wavelet families contributed less for the purpose of compression of speech, while db10 was robust 

in the application. zeros(%),retained energy, signal to noise ration and compression  ratio was considerable in 

case of certain wavelet families. The noticed point upon the performed comparisions between different wavelet 

families is that  ”symlet” is having high snr ratio of order20.8795. 

 
VI. Future Scope: 

The output audio file which is obtained after compression has included certain amount of noise. 

Though the noise is negligible, our future work is concentrated on eliminating the noise using wiener filters 

using techniques of Two-Step Noise Reduction(TSNR), Harmonic Regeneration Noise Reduction(HRNR) and 

for further better performance we can also use “kalman filter”. 
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S.NO 

 

WAVELET 
FAMILY 

 

ZEROS (%) 
 

 

RETAINED 
ENERGY 

 

DISTORTION 

 

SNR 

 

1 

 

db10 

 

50.2140 

 

99.3756 

 

4.395e-004 

 

8.6577 

 

2 

 
haar 

 
35.6274 

 
99.439 

 
4.8547e-004 

 
12.9152 

 

3 

 

symlet 

 

43.1929 

 

99.3735 

 

4.7812e-004 

 

20.8795 

 

4 

 
coiflet 

 
43.5101 

 
99.3709 

 
 

4.7234e-004 

 
9.2899 

 

5 

 
biorthogonal 

 
 

35.304 

 
99.54 

 
4.7234e-004 

 
19.8053 

 

6 

 
Reverse 

biorthogonal 

 
47.3401 

 
99.3030 

 
4.9166e-004 

 
13.4852 

 

7 

 

dmey 

 

49.0894 

 

99.4450 

 

4.5393e-004 

 

10.0332 


