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 Abstract : Error detection is important whenever there is a non-zero chance of data getting corrupted. A 

Cyclic Redundancy Check (CRC) is the remainder, or residue, of binary division of a potentially long message, 

by a CRC polynomial. This technique is ubiquitously employed in communication and storage applications due 

to its effectiveness at detecting errors and malicious tampering. The hardware implementation of a bit-wise 

CRC is a simple linear feedback shift register. Such a circuit is very simple and can run at very high clock 

speeds, but it requires the stream to be bit-serial. This means that ‘n’ clock cycles will be required to calculate 

the CRC values for an n-bit data stream. This latency is intolerable in many high speed data networking 

applications where data frames need to be processed at high speed and hence implementation of CRC 
generation and checking on a parallel stream of data becomes desirable. This paper presents implementation of 

parallel Cyclic Redundancy Check (CRC) based upon DSP algorithms of pipelining, retiming and unfolding. 

The architectures are first pipelined to reduce the iteration bound by using novel look-ahead techniques and 

then unfolded and retimed to design high speed parallel circuits. This paper presents the comparison between 

the parallel implementation of CRC-9 and its serial implementation. It also shows that parallel implementation 

uses less number of clock cycles than the serial implementation of CRC-9 thereby increasing the speed of the 

architecture. This paper is implemented using Verilog hardware description language, simulated using Xilinx 

ISE  tools and synthesized using Cadence tools.  
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I. Introduction 
Error correction codes provides a mean to detect and correct errors introduced by the transmission 

channel. Two main categories of codes exist: block codes and convolution codes. They both introduce 

redundancy by adding parity symbols to the message data. Cyclic redundancy check (CRC) codes are the subset 

of the cyclic codes that are also a subset of linear block codes. Cyclic Redundancy Check (CRC) is widely used 

to detect errors in data communication and storage devices. CRC is a very powerful and easily implemented 

technique to obtain data reliability. The CRC technique is used to verify the integrity of blocks of data called 

Frames. In this technique, the transmitter appends an extra n bit sequence to every frame called Frame Check 

Sequence (FCS). FCS holds redundant information about the frame that helps the receiver detect errors in the 

frame. When the transmission is received or the stored data is retrieved, the CRC residue is regenerated and 

confirmed against the appended residue. 

For high-speed data transmission, the general serial implementation cannot meet the speed requirement. 

Parallel processing is a very efficient way to increase the throughput rate. Although parallel processing increases 
the number of message bits that can be processed in one clock cycle, it can also lead to a long critical path (CP). 

Thus, the increase of throughput rate that is achieved by parallel processing will be reduced by the decrease of 

circuit speed.  

Another issue is the increase of hardware cost caused by parallel processing, which needs to be 

controlled. The parallel CRC algorithm in [1] processes an m -bit message in (m+k)/L clock cycles, where k is 

the order of the generator polynomial and L is the level of parallelism. However, in [2], m message bits can be 

processed in m/L clock cycles. High speed architectures for parallel long encoders are based on the 

multiplication and division computations on generator polynomial are efficient in terms of speeding up the 

parallel linear feedback shift register (LFSR) structures. 

The proposed design achieves shorter critical path for parallel CRC circuits leading to high processing 

speed than commonly used generator polynomial. The proposed design starts from LFSR, which is generally 

used for serial CRC. An unfolding algorithm [3] is used to realize parallel processing. However, direct 
application of unfolding may lead to a parallel CRC circuit with long iteration bound, which is the lowest 

achievable CP[1]. Two novel look-ahead pipelining methods are developed to reduce the iteration bound of the 

original serial LFSR CRC structures; then, the unfolding algorithm is applied to obtain a parallel CRC structure 

with low iteration bound. The retiming algorithm is then applied to obtain the achievable lowest CP. 
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II. Pipelining, Unfolding And    Retiming 
 The implementation of CRC check generation circuit can be done with the use of linear feedback 

circuit. The CRC architecture for generator polynomial G(y)=1+y+y8+y9 is shown in Fig.1. 

    

x1 x4x2 x3 x5 x6 x7 x8 x9+ + +

y(n)

 
    Figure 1: Serial CRC 

  

2.1 Pipelining: It reduces the effective critical path by introducing pipelining latches along the critical data path 

either to increase the clock frequency or sample speed or to reduce power consumption at the same speed. It is 

done using a look-ahead pipelining algorithm to reduce the iteration bound. Iteration bound is defined as the 

maximum of all the loop bounds. Loop bound is defined as t/w, where „t‟ is the computation time of the loop 
and „w‟ is the no. of delay elements in the loop. The iteration bound for the circuit shown in Fig.1 is 2TXOR. The 

largest iteration bound of a general serial CRC architecture is also 2TXOR. 

The critical loop is described by 

    ( ) ( ) ( ) ( )1+nb+ny+na=1+na  -----------       (1) 

   

b(n+2) b(n+1)

.....

.....

a(n+1) a(n) y(n)
D D ++

 
    Figure 2: Pipelining to reduce iteration bound 

 

 The largest iteration bound of a general serial architecture is also 2TXOR. For example, the serial 

architectures of commonly used generator polynomials CRC-16 and CRC-12 have the iteration bound of 2TXOR 

because they have terms y15 +y16 and y11+y12 in their generator polynomials respectively. 

In proposed look-ahead pipelining, 2-level pipelining is given by   

    ( ) ( ) ( ) ( )2+nb+1+ny+1+na=2+na  

    
( ) ( ) ( ) ( ) ( ) ( )1+ny+2+nb+1+nb+ny+na=2+na  -----(2) 

 

    

b(n+2)

D
b(n+1)

a(n+2) a(n)

y(n)
y(n+1)

D D D+ + + +

......
 

     Figure 3: First level pipelining 

 

    

x0 +x1 x6 x7 + + x8D D+ +...
data

 
 

    Figure 4: Two level pipelining 

 Fig.4 shows that the loop bound for the circuit in Fig.2 has been reduced from 2Txor to TXOR at the cost 

of two XOR gates and two flip flops. Also the loop bounds of loop1 and loop2 are TXOR and (5/8) TXOR 

respectively. So, the iteration bound of the two level pipelined CRC architecture is TXOR. 

For improved look ahead pipelining consider the polynomial G(y)= 1+y+y7+y9 

   

x0 x6x1 x7 x8

y(n)
+ + +

 
     Figure 5: LFSR for G(y) 

 

The loop equation can be given as: 

     ( ) ( ) ( ) ( )2+nb+ny+na=2+na     ------- (3) 
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 Four level pipelined structure can be obtained with application of  improved look ahead pipelining 

technique. 

   
( ) ( ) ( ) ( )4+nb+2+ny+2+na=4+na a(n+4) ------- (4) 

   
( ) ( ) ( ) ( ) ( ) ( )4+nb+2+ny+2+nb+ny+na=4+na   ---- (5) 

 

   

b(n+4)
a(n+4) a(n)

......

2D

y(n)

y(n+2)
b(n+2)

+ 4D 2D+ + +......

 
 

    Figure 6: Loop bound of TXOR /2 

 

   
y(n+2)

x0 x1 x4 x5 x6 2D

+x7 x8 2D

+ +++

 
    Figure 7: Four level pipelined 

 

2.2 Retiming:  Retiming is used to change the locations of delay elements in a circuit without affecting the 

input/output characteristics of the circuit. It reduces the critical path of the system by not altering the latency of 

the system. Retiming has many applications in synchronous circuit design. These applications include reducing 

the clock period of the circuit, reducing the number of registers in the circuit, decreasing the power consumption 

of the circuit and logic synthesis. It can be used to increase the clock rate of a circuit by reducing the 

computation time of the critical path. Critical path is the path with the longest computation time among all paths 
that contain zero delays, and its computation time is the lower bound on the clock period of the circuit. The two 

factors affecting the frequency of operation is critical path and iteration bound. Retiming is done by applying the 

algorithm presented in [3] and using Floyd Warshall algorithm.  

 

2.3 Unfolding: It‟s a transformation technique that can be applied to DSP program to create a new program 

describing more than one iteration of the original program. Unfolding a DSP program by an unfolding factor J 

creates a new program that describes J consecutive iterations of the original program. It increases the sampling 

rate by replicating hardware so that several inputs can be processed in parallel and several outputs can be 

produced at the same time. The lower bound on the iteration period of a recursive DSP program is termed as 

iteration bound. An implementation of the DSP program can never achieve an iteration period less than the 

iteration bound, even when infinite processors are made available. In some cases, the DSP program cannot be 
implemented with the iteration bound equal to the iteration bound without the use of unfolding. In general, for a 

given DFG, when unfolding algorithm is applied with unfolding factor J, the iteration bound of the resultant 

DFG is J times that of the original DFG. 

  

III. IMPLEMENTATION 
 CRC-9 architectures are first pipelined to reduce the iteration bound by using novel look-ahead 

pipelining methods and then retimed and unfolding to design high speed parallel circuits. The proposed design 

starts from LFSR, which is generally used for serial CRC-9. 

     G(y)=1+y+y
8
+y

9 

   

x1 x4x2 x3 x5 x6 x7 x8 x9+ + +

y(n)

 
   Figure  8: Serial CRC-9 

 The serial CRC-9 is input is having the 1 bit data and the correct output is obtained after 9 clock cycles. 
CRC-9 architectures are first pipelined to reduce the iteration bound. 

   

y(n)
x1 x2 x3 x4 x5 x6 x7 x8 x9+ + +

Loop1 2
3

 
   Figure 9: LFSR of G(y)=1+y+y

8
+y

9 
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 Loop bound for this 1st = t/w = TXOR (t=1TXOR; w=1) 

                                  2nd =(2/7)TXOR. 

                                   3rd =2 TXOR. 

 Retiming algorithm is then applied to the pipelined architecture and based on the algorithm data flow 

graph for the pipelined circuit of Fig.10 is drawn. Here the critical path obtained is of magnitude 2. 

   

data

6D

7D

D

1 2 3 4 5

data

2D

 
   Figure 10: DFG for pipelined block 
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   Figure 11: Retimed Graph 

  

x1 x2 + + x3 x4 + ++ DD

D

Y(n)

x5

x9 x8 x7 x6 D
 

   Figure 12: LFSR for retimed CRC 

 The following are the steps to be applied for unfolding after application of retiming algorithm. For each 

node U in the original DFG, draw J node U0,U1,….UJ-1. For each edge UV  with W delays in the original 

DFG, draw the J edges UiV(i+w)%J with (floor(i+w)/J) delays for i=0,1…J-1. Where „i‟ is index of the node, 

„w‟ is weight of the edges, „J‟ is unfolding factor. Fig.13 and Fig.14 show the DFG and LFSR representation for 

2-level unfolding. 

 The correct output is obtained after 5 clock cycles. Application of the unfolding algorithm increases the 

speed of the architecture. 
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    Figure 13: Data flow graph for 2-level unfolding 
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    Figure 14: LFSR representation for 2-level unfolding 
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IV. RESULTS 
 This paper shows the comparison between the serial and parallel implementation of CRC circuits using 

pipelining, retiming and unfolding techniques. The generator polynomial  used is given by G(Y)=1+y+y8+y9. 

The input message sequence polynomial is: 1100000011. The design is implemented in verilog hardware 
description language and simulated using Xilinx on Spartan-3 and synthesized using cadence tools. Fig.15 

shows the results obtained for the serial implementation of CRC. The correct output is obtained after 9 clock 

cycles. Table 1 shows the timing report for serial CRC. After application of the pipelining, retiming and then 

unfolding algorithm to the same design, the output is generated after 5 clock cycles which is shown in figure 19. 

Hence it reduces the clock cycles and thus increases the speed of the circuit. Fig.16 to Fig.18 depict the 

respective RTL schematics. 

    
   Figure 15: Serial CRC 

   
   Figure 16: Serial CRC- RTL schematic 

 

 

   Table 1: Timing report for serial CRC     

Timing Summary 

Speed Grade: -5 

Minimum period: 1.962ns (Maximum 

Frequency: 

509.697MHz) 

Minimum input arrival 

time before clock:     

3.567ns 

 Maximum output 
required time after clock:     

4.182ns 

 

   
   Figure 17: RTL schematic of pipelined CRC 

   
    Figure 18: RTL schematic of retimed CRC 

    
   Figure 19: CRC output based on pipelining, retiming and unfolding 
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 The following are the results obtained for CRC implementation using generator polynomial 

G(Y)=1+y+y8+y9 and input message sequence 1100000011. The required number of clock cycles, iteration 

bound and critical path is noted down for different architectures. These results are depicted in Table 2 to 4.  

 

     Table 2: No. of clock cycles 

   

 Architecture 

No. of clock 

cycles 

Original Architecture 9 

2-level pipelined 10 

4-level pipelined 12 

Retiming after 2level 

pipelining 

10 

Unfolding the 2-level 

pipelined 

5 

Retiming the unfolded 

architecture 

6 

    

   Table 3: Iteration Bound 

Architecture Iteration Bound 

Original architecture 2 TXOR 

2-level pipelined TXOR 

4-level pipelined & retiming (7/8)TXOR 

 

   Table 4: Critical Path 

Architecture Critical Path 

2-level pipelined 2 TXOR 

Retiming the 2-level 

pipelined 

TXOR 

 

V. CONCLUSION 
 This paper implements pipelining method for high-speed parallel CRC circuits. Pipelining has 
decreased the iteration bound of the architecture effectively. Applying unfolding technique to pipelined 

architecture increased the throughput of the circuit and thereby applying retiming to the architecture reduced the 

critical path delay. So applying pipelining, unfolding and retiming to the CRC has increased the throughput to 

achieve high speed design. This brief has proposed two pipelining methods for high speed parallel CRC 

hardware implementation. Proposed look ahead pipelining has a simpler structure, parallel CRC design can 

efficiently reduce the critical path. Although the proposed design is not efficiently applicable for the LFSR 

architecture of any generator polynomial, it is very efficient for the generator polynomials with many zero 

coefficients between the second and third highest order nonzero coefficients, as shown in the commonly used 

generator polynomials. The serial implementation of CRC-9 uses 9 clock cycles, iteration bound is 2TXOR and 

critical path is 2TXOR. Whereas the parallel implementation of CRC-9 using pipelining, retiming and unfolding 

uses only 5 clock cycles, its iteration bound is TXOR and critical path is TXOR. Thus increasing the speed of the 

architecture. This can be extended to achieve the high speed CRC circuit without increasing the hardware 
resources such that area occupied by the design is minimized. Parallel CRC architecture implemented here is 

having high speed compared to previous algorithms and also hardware cost is controlled. 

 

REFERENCES 
[1] G.  Campobello, G. Patane, and  M. Russo, “Parallel CRC realization,” IEEE Trans. Comput., vol. 52, no. 10, pp. 1312–1319, Oct. 

2003. 

[2] T.B. Pei and C. Zukowski, “High-speed parallel CRC circuits in VLSI,” IEEE Trans. Commun., vol. 40, no. 4, pp. 653–657, Apr. 

1992.  

[3] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation. Hoboken, NJ: Wiley, 1999. 

[4] T. V. Ramabadran and S.S. Gaitonde, “ A tutorial on CRC computations,” IEEE Micro, Vol.8 no.4, pp. 62-75,  Aug.1988. 

[5] X. Zhang and K. K. Parhi, “High-speed architectures for parallel long BCH encoders,” in Proc. ACM Great Lakes Symp. VLSI, 

Boston, MA, Apr. 2004, pp. 1–6. 

[6] K. K. Parhi, “ Eliminating the fanout  bottleneck in parallel long BCH encoders,”  IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 

51, no. 3, pp. 512-516, Mar. 2004. 



VLSI Implementation of Parallel CRC Using Pipelining, Unfolding and Retiming  

www.iosrjournals.org                                                        72 | Page 

[7] W. Peterson and D. Brown, “Cyclic codes for error detection,” Proc. IRE, vol. 49, no. 1, pp. 228–235, 1961. 

[8] G. Albertengo and R. Sisto, “Parallel CRC    generation,” IEEE Micro, vol. 10, no. 5, pp. 63–71, Oct. 1990. 

[9] M. D. Shieh, M.-H. Sheu, C.-H. Chen, and H.- F. Lo, “A systematic approach for parallel CRC computations,” J. Inf. Sci. Eng., 

vol.  17, no. 3, pp. 445–461, May 2001. 

[10] A. Tanenbaum, Computer Networks, 4
th
 ed.      Englewood Cliffs, NJ-Prentice Hall, 2003.  

[11] M. Braun, J. Friedrich, T. Grün, and J. Lembert, “Parallel CRC computation in  FPGAs,” in Proc. 6th Int. Workshop Field-   

Program. Logic, Smart Appl., New Paradigms Compilers (FPL), London, U.K., 1996, pp.       156–165, Springer-Verlag. 

[12] M. Sprachmann, “Automatic generation of  parallel CRC circuits,” IEEE Des. Test  Comput., vol. 18, no. 3, pp. 108–114, May      

2001. 

[13] Martin Grymel and Steve B. Furber, “ A novel programmable parallel CRC circuit,” IEEE Trans. VLSI Systems,. 19, vol. no. 10, 

October  2011. 

[14] S. Lin and D. J. Costello, Error Control  Coding. Englewood Cliffs, NJ: Prentice-Hall, 1983.  

[15] R.Lee, “Cyclic Codes Redundancy,” Digital  Design, July 1977. 

[16] D. Feldmeier, “Fast Software Implementation of Error Detection Codes,” IEEE Trans. Networking, Dec. 1995. 

[17] M.C. Nielson, “Method for High Speed CRC  Computation,” IBM Technical Disclosure Bull., vol. 27,no. 6, pp. 3572-3576, Nov. 

1984. 

[18] T. C. Denk & K. K. Parhi, ”Exhaustive Scheduling and Retiming of Digital Signal Processing Systems”, IEEE Trans. On Circuits 

and Systems-II: Analog and DSP, vol. 45, no.7, pp. 821-838, July 1998.  


