
IOSR Journal of VLSI and Signal Processing (IOSR-JVSP)

Volume 2, Issue 2 (Mar. – Apr. 2013), PP 01-04
e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197

www.iosrjournals.org

www.iosrjournals.org 1 | Page

Design, Implementation and Testing of 16 bit RISC Processor

V. R. Gaikwad
(Department of Electronics Engineering, Walchand College of Engineering, Sangli, India)

 Abstract : Nowadays Embedded Systems have became a part of human life. The most important part of an
embedded system is the embedded processor. The performance of embedded processor determines the

performance of embedded system. An embedded processor is a Reduced Instruction Set Computer (RISC). In

this paper the procedure for designing, implementing and testing a 16 bit RISC processor is presented. This

processor was implemented in XC3S400 Field Programmable Gate Array (FPGA) and tested on XC3S400

FPGA development board. This processor is useful for demonstrating hazards in pipeline and the techniques

used to solve them.

Keywords - Arithmetic and logical unit (ALU), Input output block (IOB), Integrated software environment

(ISE), Look up table (LUT), Very high speed integrated circuit hardware descriptive language (VHDL)

I. INTRODUCTION
A RISC processor uses load-store architecture, fix length instructions and pipelining. In load-store

architecture, load instruction reads data from memory and writes it to a register, data processing instructions

process data available in registers and write result to a register, and store instruction copies data from register to

memory. Pipelining is an implementation technique in which multiple instructions are overlapped in execution

[1]. Pipelining improves performance by increasing instruction throughput. To demonstrate how instructions are

executed in pipelined processor and the problems created by pipelining, a 16 bit RISC processor supporting

eight instructions was designed. The terms byte, half word, word and double are used for 8, 16, 32 and 64 bits

data respectively. In mnemonic for an instruction the alphabets b, h, w and d are used for byte, half word, word

and double respectively.

II. INSTRUCTION SET
The first step in design of a RISC processor is the design of instruction set. An instruction set contains

instructions supported by the processor. Load instruction reads data from memory and writes it to a register. If

the address of memory location is specified in load instruction, the instruction length will exceed the number of

bits used to address memory. An alternative to this is, to write the memory address in a register and specify the

register in the instruction. In addition to this, if an offset is specified in the instruction then an operand at a

known offset from a memory location can be accessed. So, load instruction capable of copying data from the

memory location whose address is sum of base register (Rs) content and offset (Imm) to a destination register
(Rt), was selected. Store instruction capable of copying data from register (Rt) to the memory location whose

address is sum of base register (Rs) and offset (Imm), was selected. Arithmetic and logical instructions process

data present in registers. Both arithmetic and logical operations produce a result after processing two operands.

In two operands arithmetic and logical instructions one of the two source registers is the destination register. If

the destination register is a fixed register then, before performing the next arithmetic or logical operation the

result must be copied to other register. If the destination register isn’t a fixed register then, its content will be

lost after performing arithmetic or logical operation. In three operands arithmetic and logical instructions, the

result is directly written to a register other than or one of the two source registers. So, arithmetic and logical

instructions capable of reading data from two source registers (Rs and Rt) and writing result to destination

register (Rd), was selected. The normal sequence of program execution can be changed by using branch

instruction. An unconditional branch instruction loads program counter (PC) with the value specified in the
instruction. Conditional branch instructions modify PC, if the branch condition is true, by an amount equal to

the offset specified in the instruction. Table 1 lists the instructions supported by this processor.

III. INSTRUCTION FORMAT
The second step is design of instruction format. Each instruction is assigned a unique code, known as

operation code (Opcode). For eight instructions 3 bits opcode field is required. The opcode field can be reduced

to 2 bits by using same opcode for arithmetic and logical instructions and another code, known as function code,

to specify the intended arithmetic or logical operations. For five arithmetic and logical instructions 3 bits

function field is sufficient. Each register, in register file, is assigned a unique address. To address eight registers,

Design, Implementation and Testing of 16 bit RISC Processor

www.iosrjournals.org 2 | Page

3 bits address field is required. The systematic placement of these fields in the instruction is referred to as

instruction format.

For arithmetic and logical instructions, an opcode field, three 3 bits address fields and a function field
is required. The resulting instruction format is known as R format.

For load, store and branch instructions, an opcode field, two 3 bits address fields and an immediate

field is required. The resulting instruction format is known as I format.

Table 1 Instruction Set

Format Opcode Instruction Operation

R

(00)2 add Rd, Rs, Rt Rd Rs + Rt

(00)2 sub Rd, Rs, Rt Rd Rs – Rt

(00)2 and Rd, Rs, Rt Rd Rs & Rt

(00)2 or Rd, Rs, Rt Rd Rs | Rt

(00)2 slt Rd, Rs, Rt if (Rs < Rt) then Rd 1 else Rd 0

(11)2 beq Rs, Rt, Imm if (Rs = Rt) then PC PC + 1 + Imm else PC PC + 1

I
(01)2 lh Rt, Imm(Rs)

Rt Mem[Rs + Imm]

(10)2 sh Rt, Imm(Rs)

Mem[Rs + Imm] Rt

Table 2 Control Signals

Table 3 Truth Table for Control Unit

Opcode RegRd RegWr ALUsrc ALUop Branch MemRd MemWr MemtoReg

(00)2 1 1 0 (10)2 0 0 0 0

(01)2 0 1 1 (00)2 0 1 0 1

(10)2 0 0 1 (00)2 0 0 1 0

(11)2 0 0 0 (01)2 1 0 0 0

IV. DATAPATH AND CONTROL
The third step is design of datapath and control unit. Datapath is a systematic arrangement of hardware

components and their interconnection for performing an operation. The instruction set is divided into two or

more parts with each part containing instructions which require the same logic or hardware for implementation.

In this case the instruction set is divided into three classes, arithmetic and logical, memory reference and branch
instructions. The datapath for each instruction class is designed and combined to get the final datapath. While

combining datapaths a hardware resource is shared by using multiplexer at its input.

opcode (2 bits) rs (3 bits) rt (3 bits) rd (3 bits) unused (2 bits) function (3 bits)

opcode (2 bits) rs (3 bits) rt (3 bits) imm (8 bits)

Control signal Value Function

RegRd
0 Selects rt as destination register address

1 Selects rd as destination register address

RegWr
0 Disables write to register file

1 Enables write to register file

ALUsrc
0 Selects Rt as 2nd source for ALU

1 Selects Imm as 2nd source for ALU

ALUop

(00)2 Instruction is load or store

(01)2 Instruction is branch

(10)2 Instruction is arithmetic or logical

Branch
0 Instruction isn’t a branch

1 Instruction is branch

MemRd
0 No memory read operation

1 Memory read operation

MemWr
0 No memory write operation

1 Memory write operation

MemtoReg
0 Selects output of ALU

1 Selects output of Memory

Design, Implementation and Testing of 16 bit RISC Processor

www.iosrjournals.org 3 | Page

Table 4 Truth Table for ALU

IM
Inst

0
1

R

1

PC

NPC

Braddr

PCsrc

Figure 1 Instruction Fetch (IF) Stage

Inst[15:14]

Inst[13:11]

Inst[10:8]

Inst[7:0]

Control

Reg
EQUAL

Sign

Unit

File

Exten

Braddr

Imm16

rtdata

rsdata

Braddr
RegRd
ALUsrc
ALUop

MemWr
MemRd

MemtoReg
RegWr

NPC

Inst

rd

rddata

zflag

Figure 2 Instruction Decode (ID) Stage

ALUout

rsdata

rtdata

Imm16

ALUsrc

0

1

ALU

Imm16[2:0]

Control

Inst[13:11]

Inst[10:8]

RegRd

0

1

rd

ALUop

Figure 3 Execution (EX) Stage

ALUout

rtdata

MemOut
DM

MemRd

MemWr

Figure 4 Memory (MEM) Stage

ALUout

MemOut

MemtoReg

0

1

rddata

Figure 5 Write Back (WB) Stage

For each instruction to perform the expected operation control signals are required. The control signals

required and the function performed by them is listed in table 2. Control signals are generated by the control unit

according to the opcode of instruction. The value of control signal for each instruction is listed in table 3. The

ALUop control signal and function field in instruction are used to generate ALU function select signal. The
truth table for ALU function select signal is shown in table 4. Depending on the operation performed by each

section of datapath, during execution of an instruction, the datapath can be divided into five stages. The five

stages are, instruction fetch (IF) (Fig. 1), instruction decode (ID) (Fig. 2), execution (EX) (Fig. 3), data memory

access (MEM) (Fig. 4) and write back (WB) (Fig. 5) stage. The operation of each stage was verified by writing

VHDL code and simulating it using ISE simulator [2]-[3]. The propagation delay of each stage, as observed in

Post Route simulation, is listed in table 5.

ALUop Function field ALU function Operation

(00)2 (XXX)2 (010)2 Addition

(01)2 (XXX)2 (110)2 Subtraction

(10)2 (000)2 (000)2 Bitwise AND

(10)2 (001)2 (001)2 Bitwise OR

(10)2 (010)2 (010)2 Addition

(10)2 (011)2 (110)2 Subtraction

(10)2 (111)2 (011)2 Set on less than

Design, Implementation and Testing of 16 bit RISC Processor

www.iosrjournals.org 4 | Page

V. PIPELINING
Pipelining is an implementation technique in which multiple instructions are overlapped in execution.

The datapath is pipelined by inserting a register, known as pipeline register, between two stages. The stage

enclosed between two pipeline registers is known as pipe stage. The PC and pipeline registers are driven by the

same clock and reset signal. For pipelined datapath to work properly, clock with period greater than or equal to

maximum of propagation delays of pipe stages, is required. For this processor, according to table 5, the

minimum clock period is 20 ns. Problems associated with pipelined datapath are referred to as pipeline hazards.

Data dependence between instructions results in data hazards. Data hazards are solved by compiler by inserting
no operation (NOP) instruction between the instruction producing the result and the instruction using it. In

hardware, techniques like forwarding and stalling are used. In data forwarding, the data forwarding logic creates

a path from the location in the pipeline where the required data is available to the location where it is required.

In stalling, the hazard detection logic detects data hazard and stalls the pipeline. In case of branch instructions,
the delay in starting execution of instruction at branch target address, when branch condition is true, results in

control hazards. This delay is reduced by modifying the datapath. VHDL codes for pipelined datapath, pipelined

datapath with forwarding logic, pipelined datapath with forwarding and stalling logic, and pipelined datapath

modified to handle control hazard were written and tested.

VI. TESTING
The processor was implemented in XC3S400 FPGA. The device utilization is presented in table 6. The

XC3S400 development board, from Mechatronics, has 16 input pins, 16 output pins, 4 seven segment LED

displays, RS232 interface, USB interface, VGA interface, ADC and DAC. A memory mapped input port at
address 8, memory mapped output port at address 9, 4 digit multiplexed display controller and serial transmitter

were added to the design. The 4 digit multiplexed display controller was used to display the current instruction

fetched from IM (Fig. 6). The serial transmitter was used to transmit, PC contents, instruction fetched, next PC

calculated, Rs contents, Rt contents, Imm16, ALU output, ALU output bypassed, memory output, end of line

indicator (33), carriage return and line feed, during each clock cycle with 8-N-1 format and 4800 bps. Before

transmitting the 16 bit data, it was divided into four 4 bit data and each 4 bit data was converted from binary to

ASCII. A test code (table 7) containing the instructions supported by the processor was written to IM, to test the

processor. This code contains both data hazard and control hazard. The data obtained in hyperterminal clearly

indicates the activities inside the processor. The data dependency between the

first and second instruction and fourth and fifth instruction stalls the pipeline. Stalls and one clock

cycle branch delay are indicated by square in Fig. 7.

VII. CONCLUSION
This processor is similar to the 32 bit MIPS processor explained in [1] however, this processor uses

word addressing and supports only eight instructions. This processor is useful for demonstrating pipeline

hazards and the techniques used to solve them.

REFERENCES
[1] David A. Patterson and John L. Hennessy, Computer organization and design (Morgan Kaufmann, 1998)

[2] Douglas Perry, VHDL Programming (Tata McGraw Hill)

[3] John Wakerly, Digital design (PHI)

BIBLIOGRAPHY
Mr. V. R. Gaikwad born in Maharashtra, in India on December 29, 1977. He graduated from Dr. J. J.

Magdum College of Engineering, Jaysingpur and post graduated from Walchand College of Engineering,
Sangli. He received B.E and M.Tech. degree in Electronics Engineering from Shivaji University, Kolhapur.
He is working as Assistant Professor in the department of electronics engineering at walchand college of
engineering, sangli. His fields of interest include circuits and systems, embedded systems and VLSI.

