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Abstract: The fact that makes image denoising a  difficult task is uncertainties in the impulse noise. The most 

knowledge in dayflies is uncertainty and erratic, unfortunately it is similar to impulse noise. The mathematic 

implements for handling uncertainty mostly are probability theory and fuzzy mathematics. That means, among 

the uncertainties involved in impulse noise, the randomness and the fuzziness are the two most important 

features. In this paper we use a detail-preserving filter based on the Cloud Model (CM) to remove severe 

impulse noise. CM is an uncertain conversion model, between qualitative and quantitative description that 

integrates the concept of randomness and fuzziness. The normal random number generation method in normal 

cloud generator algorithm overcomes the insufficiency of common method to generate random numbers. It can 

produce random numbers which can be predictable and replicated, and this random numbers present to be a 

random sequence as a whole. The digital features of the normal cloud characterized by three values with the 

expectation Ex, entropy En and Hyper entropy He and are good enough to represent a normal cloud. First, an 

uncertainty-based detector, normal cloud generator, identifies the pixels corrupted by impulse noise. Then, the 
identified noise pixels are replaced by a fuzzy mean estimation of the processed noise free pixels within the 

detection window. Compared with the traditional switching filters, the CM filter makes a great improvement in 

image denoising. Especially, at high density noise level. Thus, the cloud model filter can remove severe impulse 

noise while preserving the image details.                                                         
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I. Introduction 

Digital images are often corrupted by impulsive noise during data acquisition, transmission, and 

processing. The main sources of noise are malfunctioning pixel sensors, faulty memory units, imperfection 

encountered in transmission channels, external disturbances in a transmission channels, electro-magnetic 

interferences, timing errors in ADC, etc. The noise may seriously affect the performance of image processing 

techniques. Hence, an efficient de-noising technique   becomes   a   very     important   issue   in   image 

processing. Impulse noise produces  small dark   and    bright spots on an image. Grasping the noise 

characteristics is helpful to remove the noise. Noise reductions are basically classified into two types: linear and  

non-linear techniques. Mean filters are linear filters. Their estimation alter the good pixels, thus produce image 
blurring.  Non-linear noise reduction is a two step process: 1) noise detection and 2) noise replacement. Median 

filters and its variants [3], [4], [5], [8] have an effective noise suppression and high computational efficiency at 

low noise density (< 50%), but they fail to account local features such as thin lines, edges at high noise density. 

Also, they think about only the randomness. The randomness mainly shows in two aspects: 1) the pixels are 

randomly corrupted by the noise and 2) the noise pixels are randomly set to the maximum or minimum value.  

Some decision based filters [7] are good even at high noise density (80%), however, many jagged edges appear 

in the restored images. It requires more processing time since it uses 21 x 21 window. Sorting fixed window 

filter [6] uses the median values or the left neighborhood values to replace the noise pixels. This filter creates 

mainly stripe regions, because it often replaces the corrupted pixel by the left neighborhood pixel. It smears the 

image details seriously and also sharply decreases the qualities of restored images.  

This reveals that the early de-noising techniques fail to understand the uncertainties of noise 
completely. The better solution is that the pixels those identified as good ones would remain unchanged, while 

those identified as noisy are replaced with an appropriate estimation. Since, most knowledge in dayflies is 

uncertainty and erratic, unfortunately it is similar to impulse noise. Among the uncertainties involved in impulse 

noise, the randomness and the fuzziness are the two most important features. On the other hand, the fuzziness 

focuses on the pixels with the extreme values whether they belong to the noise or not. Not all of the pixels, 

which are set to the extreme values, will be the noise pixels [1]. The mathematic implements for handling 

uncertainty mostly are probability theory and fuzzy mathematics. In fact, CM is an uncertain conversion model, 

between qualitative and quantitative description that integrates the concept of randomness from probability 

theory and fuzziness from fuzzy set theory [2]. To represent the uncertainties better and resolve the afore 

mentioned problems, this paper presents a novel effective filter  based  on    the  CM  for  impulse  noise  

removal.  It is compared with the traditional switching filters, the CM filter has the better performance in image 
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de-noising across a wide range of noise levels with good detail preservation. The outline of the paper is as 

follows. The cloud model and   noise detection-estimation illustrations are reviewed in Section II and III. 

Simulation results and conclusions are presented in Sections IV and V, respectively. 
 

II. Cloud Model And Its Parameters 

Cloud is model described by linguistic values for representation of uncertain relationships between a 

specific qualitative concept and its quantitative expression. Cloud integrates the concept of randomness and 

fuzziness. The normal random number generation method in normal cloud generator overcomes the 

insufficiency of common method to generate random numbers. It can produce random numbers which can be 

predictable and replicated, and this random numbers present to be a random sequence as a whole. CM is defined 

as :  

 Let U be a universal set expressed by exact numbers, and C be the qualitative concept associated with U. If 

number x  U exists, which is the random realization of concept, and the certainty degree of x for C, i.e.,  µ(x)  

[0,1], is a random value with stabilization tendency, µ :U → [0,1]  x  U → µ(x)                                  (1)  

then the distribution of  x on  U is called the cloud, and each x is called a drop. The cloud can be characterized 

by three parameters, the expected value Ex, entropy En, and hyper entropy He. Ex is the expectation of the 

cloud drops’ distribution in the domain, it points out which drops can best represent the concept and reflects the 

distinguished feature of the concept. En is the uncertainty measurement of the qualitative concept, which is 

determined by both the randomness and the fuzziness of the concept. It represents the value region in which the 

drop is acceptable by the concept, while reflecting the correlation of the randomness and the fuzziness of the 
concept [1]. The greater the En is, the range of values represented by the concept is the greater, the more vague 

the concept is. Hyper entropy He, is entropy En of entropy, reflecting the degree of dispersion of the cloud 

droplets [2]. En is derived from Mean Deviation about the mean for n independent random variables xi. 

i=1,2,3,…n, with mean X. The cloud employs its three parameters to represent the qualitative concept as shown    

in Fig. 1. 

 

  
Fig 1. Illustration of three digital cloud parameters 

The distribution of pixel values on domain is called cloud and each pixel in the domain is called cloud drop. 

According to the normal cloud generator [2], the certainty degree of each drop is a probability distribution 

rather than a fixed value. It means that the certainty degree of each drop is a random value in a dynamic range. 

If He of the cloud is 0, then the certainty degree of each drop will change to be a fixed value. The fixed value is 

the expectation value of the certainty degree. In fact, the value is also the unbiased estimation for the average 
value of the certainty degrees in the range. All the drops and their expectations of certainty degrees can 

compose a curve, and the curve is the Cloud Expectation Curve (CEC) [1].  All drops located within [Ex+3En, 

Ex-3En] take up to 99.99% of the whole quantity and contribute 99.74% to the concept. Thus, the drops are 

located out of domain [Ex+3En, Ex-3En], and then, their contributions to the concept can be neglected.  The 

certainty degree of each pixel is calculated through the CEC, given by,  

   µ=exp(-(xi-Ex)2/2En2)                                                                                                                                        (2)                                                                                               

Where xi is cloud drops, Ex is their expectation value and En is entropy. 

 

Noise Model: 
Due to faulty switching devices, pixels are randomly corrupted by the two extreme values. Thus, the 

noise pixels are usually set to the maximum and minimum values in the dynamic range. Let x(i,j) for 

(i,j) be the gray value of image X at pixel location (i,j) and [ Smin, Smax] be the dynamic range of X, i.e., 

Smin ≤ x(i,j) ≤ Smax for all (i,j). Denote  y by a noisy image. In the salt and pepper impulse noise model, the

 observed gray level at location (i,j) is  
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                Smin ,   with probability p   ; for (i,j) = 0                  

Y(i,j) =    Smax ,  with probability q ; for (i,j) = 255 

   x (i,j) with probability 1-(p+q) ; for  0 < (i,j) < 255              where  p+q = noise level                    (3) 
 

 

III. Noise Detection And Estimation 
  We consider all the pixels in the window as a set and use CM to represent it. Let each pixel of image 

XMxN  be a cloud drop and input them into Backward Cloud Generator (BCG). It generates three parameters of 

the cloud C. These Ex, En and  He, will be inputs to  Forward  Cloud Generator (FCG), which generates cloud 

drops (random numbers). It is as shown in fig.2. This is  basis for uncertainty reasoning.   

 
                                                                                          CLOUD MODEL 

  
                                                   (Image pixels)                                                                                                                                                                                       

                                               

 

 

 
                                                             (3 x 3) window 

  

                                                                                           Cloud drops (xi,μi)                                                

 

Fig 2. Calculated the cloud drop (xi,μi) for a (3 x 3) window using normal cloud  generator. 

 

It is seen that in the fig. 2 at the output of FCG, the certainty degrees of the noise pixels (shaded figures) are far 

less than that of the uncorrupted pixels. Also, the noise pixels are usually distributed on the both sides of the 

cloud, and the uncorrupted pixels are located near the central region of the cloud. The CM uses all the pixels in 

the window to detect the noise pixel and the certainty degrees of each pixels in the proposed detector are “soft” 

values between [0,1]. Hence, cloud model filter is capable to overcome the drawbacks of existing filters. 
According to “the 3En rule,” the drops out of domain [Ex±3En] can be neglected, which is helpful to identify 

the noise. Based on this idea, this section presents a novel impulse noise detector using only a fixed 3x3 

window, and its details shown as follows.  Let w (i,j) be a window of size (2N+1) x (2N+1) centered at location 

(i,j).  w (i,j) = x (i+p, j+q)   p,q  (-N, N)  where N = 1. 

 

Step 1: Impose 3x3 window with N = 1 for      

             w(i,j)(2N+1) x (2N+1)  on image X. 

Step 2: Compute expectation Ex: 

             Ex = 1/n  ∑ x (i+p, j+q)                                                                                                                      (4)  
                                 x (i+p, j+q)  w (i,j)3x3 

Step 3: Compute entropy En 

      En =  *  
   

∑ | x (i+p, j+q)  -x(i,j) |                                                                                                         (5) 

                         
 x (i+p, j+q)  w (i,j)3x3

 

Step 4: Calculate wmin  and  wmax  in w(i,j)(3x3)  which are extreme operations to recover the smallest and the 

largest of two values, respectively. i.e., wmax = min (Smax, Ex+3En) and  

                                               wmin = max (Smim, Ex -3En) 

 
Step 5: If  wmin <  x(i,j) <  wmax   , x(i,j)  is uncorrupted pixel (it has to remain unchanged). Then,    y(i,j)   =  x(i,j). 

Otherwise, x(i,j) is a corrupted pixel. Go to step 6. 

Step 6: Noisy pixel x(i,j)  is replaced by weighted mean of already  processed  previous four  uncorrepted  pixel 

values , Xnbp,  within the w(i,j)(3x3).    i.e.,                          Xnbp  = [x(i-1,j-1), x(i,j-1), x(i+1,j+1), x(i-1,j),] 

Step 7: Calculate the weights for Xnbp within the w(i,j)(3x3) µnbp= exp[-(Xnbp -Ex)2 / 2En2].                                (6)  

Step 8: Then, calculate the weighted mean,                     y(i,j) = 1/m ∑ Xnbp *µnbp .                                          (7)                               

The CM filter replaces the noise pixel by using the weighted mean of the neighborhood pixels, and their weights 
are the certainty degrees of them. For understanding of the above steps, a 3x3 windowed sub-image, shown in 

fig. 2, as an example, is illustrated as follows: Assume that the central pixel 21 lies at an edge of the image.  

Since, the certainty degrees of each pixels in the proposed detector are “soft” values between [0,1], the noisy 

pixel values will be replaced by an appropriate pixel values.  

               Ex  

  BCG EnFCG 

               He 

0.73968
0.92159
0.82507
0.78156
0.36440 
0.70058
0.03229
0.78564
0.65609  

 

139   119  64 

135   21    52 

238   60    48 
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*The pixel under test is  x(i,j) = 21;  Expectation,  Ex = 97; Entropy,  En = 53.7;  Smin = 21 ; Smax = 238.                         

*Computing               wmax = min (238, 258.4) = 238;                                        wmin = max (21, -63.8) = 21.                                                                   

*If  wmin < x(i,j) <  wmax   ;  21 < 21< 238 ;                          hence,  x(i,j) = 21,   is a noisy  pixel.                                          
*To replace the noisy pixel, x(i,j), collect already processed   previous four good pixel values,  Xnbp  = [139, 

119, 64, 135] and compute the weights of Xnbp using equation (5). 

 i.e.,  µnbp =  [0.73968, 0.92159, 0.82507, 0.78156]. 

Then, noisy pixel value 21 is replaced by equation (6).       

 i.e., y(i,j) = 92,   is an appropriate pixel value, this provides higher correlation between the corrupted pixel and 

neighborhood pixel. Higher correlation gives rise to better edge preservation. to preserve the edge of the given 
image [6]. 

The CM detector has three major differences with the traditional detectors. First, the proposed detector uses all 

the pixels in the window to detect the pixel. Second, the traditional filters usually discard the extreme values in 

the detection window. However, not all of the pixels that are set to the maximum or minimum values will be the 

noise pixels, the CM does not. Third, the proposed detector identifies if the detected pixel is a noise pixel or not 

and replacel the noise candidate in w(i,j)(3x3)   at the same time. It is a pretreatment to increase the computational 

efficiency of the post-processing, because those pixels with lower contribution degrees play a small role in the 

post-filtering. 

 

IV. Simulation Results 

 
An 8-bit gray scale image Lena of 512 x 512 size, has been used to test the performance of the CM 

filter with dynamic range of values. Image will be corrupted by salt-and-pepper noise at different noise 

densities, 10% to 80%. The restoration performances are quantitatively measured by peak signal-to-noise ratio 

(PSNR),  

  

          PSNR= 20 log10  dB                                                                                                                              (8) 

          MSE = )-x(i,j))2                                                                                                                (9) 

 

Where y(i,j) and x(i,j) denote the pixel values of the restored image and the original image, respectively.  

 

The experiment aims to study the detail-preserving abilities of the filter when the images are affected by a 

severe noise. In this case, since, an effective result would be obtained the window size of the CM filter is 

limited to 3x3, this causes to increase the computational efficiency. It removes a pixel immediately after    the 

pixel has been identified as a corrupted candidate. Therefore, in the CM filter, the noise detector and the 

postfilter (replacing noisy pixel) use the same windows.  
For comparison, the boundary discriminative noise detection (BDND) filter [7], and the fast median 

(FM) filter [6] are used. When the noise level is lower than 60%, the performance of the CM filter is similar to 

the BDND filter, at high noise densities the CM filter proves that having good detail preserving ability. For the 

FM filter, the decrease in the PSNR is more pronounced than the others and it creates many stripe regions, 

because it often replaces the corrupted pixel by the left neighborhood pixel. However, the CM filter is a 

switching fuzzy mean filter, which restores the images and preserves the details well without any jagged edges. 

To study the detail-preserving abilities of two filters CM and BDND filter, they are tested by the noise image 

with the noise level 90% (see Figs. 3). Although the BDND filter restores the images without noise, however, 

many jagged edges appear in the image details at the high noise levels, particularly in the Lena hat region. 

 

        
(a)                     (b) 

(a) Lena with the noise level of 90%  (b) Original image. 
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(b) CM filter (26.85 dB).         d) BDND filter (25.45 dB) 

Fig. 3. Restoration results of different filters. 

All these are because theBDND filter is a switching median filter, which makes the filter often smear the image 

details. Obviously, in those regions, the images restored by the CM filter basically keep the same gray levels 

with the original images. Table-I lists comparison of restored images in PSNR (in decibels) 

 

Table-I (comparison of restored images in PSNR)      (in dB) 
.                                       Noise Density(%) 

Filter           10             30              50           70             80 

CM 42.23 37.13 33.26 30.61 28.36 

BDND 41.91 35.95 32.62 29.53 27.08 

FM 41.64 34.01 29.83 25.82 23.08 

To make a reliable comparison, each filter is run 20 times in the same running environment; it is MATLAB 

7.0.1 on a personal computer equipped with the 3.2-GHz CPU and 2 GB RAM. Table-II lists the average 

runtimes in milliseconds for each filter operating on the Lena. 
Table-II (average runtimes in milliseconds) 

                                      Noise Density(%) 

Filter              10            30             50           70            80 

CM 440 439 439 440 441 

BDND 12324 11390 12074 11509 11341 

FM 186 187 186 187 187 

 

V. Conclusion 
There are three important aspects in image denoising: First, the accuracy of the noise detection, it will 

directly influence the results of the image denoising. Second, the computational efficiency, for the real-time 

work, the filters with lower computational efficiency may not obtain the satisfactory results. Finally, large 

uncertainties exist in the noise. Thus, understanding the uncertainties can completely help to improve the 

qualities of the restored images. In this paper, a novel filter with uncertainty for impulse noise removal has been 

proposed. It represents the uncertainties of the noise perfectly by using the CM, which is helpful in detecting 

and removing the noise. In addition, the proposed filter identifies the noise pixel without needing to sort the 

pixel gray values, using 3x3 window, which immensely increases the computational efficiency in noise 

detection. No matter whether, in noise detection, the image details preservation or computational complexity, 

the CM filter makes a great improvement and has the higher performances. In sum, the CM filter is a 

moderately fast denoising filter with good detail preservation. 
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