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Abstract:  
Public research universities, particularly land-grant institutions in the United States of America (USA), face 

mounting fiscal pressures, aging physical infrastructure, and intensifying competition for external funding. 

Simultaneously, the rapid decline in the cost of high-performance computing and the rise of scalable cloud 

services have redefined what is possible in data-intensive research. It is presented herein that transitioning from 

traditional field and bench-based methodologies to computational, cloud-enabled workflows is no longer optional 

but strategically essential. Drawing on representative discipline examples, illustrations are provided of how 

researchers can leverage affordable cyberinfrastructure to generate research results faster, at lower cost, and 

with improved reproducibility. Across domains, examples demonstrate that modest investments in GPU nodes, 

research software engineering, and reproducible pipelines yield superior returns in terms of funding success, 

publication speed, and employability. Funding agencies are reinforcing this shift by embedding computational 

readiness and data-sharing expectations into proposal criteria, while industries are increasingly demanding 

graduates who are fluent in data science and algorithmic thinking. This paper provides a framework for 

institutional transformation, outlining how public universities can align infrastructure, workforce development, 

and academic culture with the computational imperative. By embracing computational research as a core 

research modality, institutions can transform resource scarcity into a competitive advantage, accelerating 

discovery, increasing funding leverage, and fulfilling their public mission in a data-rich century. The manuscript 

concludes with an implementation roadmap for principal investigators, centers, and leaders, emphasizing the 

urgency of building durable, scalable, and mission-aligned cyberinfrastructure as the foundation for institutional 

resilience and relevance. 
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I. Introduction 
Public research universities, including land-grant institutions, particularly those in the United States of 

America (USA), face significant challenges to their funding models. State appropriations as a share of total 

revenue have fallen, on average, to levels unseen since the 1970s, while single-PI success rates at major USA 

agencies now hover below 20 percent [1,2]. Concurrently, the postponement of necessary maintenance for field 

stations and animal units imposes a multibillion-dollar burden on operational budgets. Conversely, researchers 

have never had such affordable access to petascale cloud nodes, open-source analytics tools, and exabyte-scale 

public datasets. For example, leasing a 64-GPU virtual machine or computing environment for a day now costs 

less than sending a graduate student into the field for a week, thereby eliminating the financial costs that once 

separated computational laboratories from other research types [3]. 

 

The convergence of computationally affordable research infrastructure and technologies with other 

research disciplines is fundamentally altering the scientific method. High resolution, high accuracy simulation is 

now recognized as the “third pillar” of inquiry and data-driven discovery as an emergent “fourth paradigm,” co-

equal with theory and experiment [4,5]. For example, hydrologists can now interrogate global satellite data 

archives to predict discharge in ungauged basins at 1-kilometer resolution [6]. Foresters map wildfire 

susceptibility with centimeter-scale LiDAR models trained on open cloud Graphics Processing Unit (GPU) stacks 
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[7]. Such breakthroughs result in journal-ready articles in weeks rather than field-season cycles, offering cost 

savings that can exceed an order of magnitude. 

 

Funding agencies are taking notice. The United States of America (USA/US) National Science 

Foundation’s AI Research Institutes, in partnership with the US Department of Agriculture (USDA),  US 

Department of Energy (DOE),  US National Institutes of Health (NIH), and US National Institute of Standards 

and Technology (NIST), now channel nine-figure investments into agriculture, climate resilience, and smart 

infrastructure, explicitly favoring campuses that demonstrate mature cyberinfrastructure and reproducible 

workflows [8]. For example, the Extreme Science and Engineering Discovery Environment (XSEDE) was a 

National Science Foundation (NSF)-funded virtual organization that provided researchers with access to advanced 

digital resources and services, like supercomputers, data storage, and visualization tools, to support computational 

and data-intensive research. A 2023 cross-campus analysis of XSEDE partner sites showed that each dollar 

invested in shared clusters leverages approximately five external grant dollars and accelerates publication output 

by 40 percent [9]. Given these advancements, it is not surprising that employers across sectors rate data fluency 

as a top hiring criterion. Ironically, fewer than one-third of non-computer science programs require substantive 

coding experience, underscoring an urgent workforce gap [10]. 

 

Considering the preceding context, the arguments presented in this article will emphasize that shifting 

from resource-intensive field and bench protocols to data-centric, computational research is not merely an increase 

in efficiency; it is a strategic imperative for scholarship, talent cultivation, and public relevance. Select discipline-

specific transitional strategies are outlined in the following areas: Forestry, Fish and Wildlife, Animal Sciences, 

Agriculture, Landscape Architecture, Economics, Innovation, Civic Engagement, Workforce Development, 

Environmental Stewardship, and Education. For each discipline, example workflows and funding pathways are 

offered as springboards for initiation. Finally, an implementation framework will be provided in response to and 

aligned with the National Academies’ call to treat cyberinfrastructure as “mission-critical” for the land-grant 

system. Notably, although a roadmap is not provided for all disciplines, the examples provided share many 

commonalities in approach that can guide other fields. Furthermore, although funding venues may shift, the 

fundamental changes and processes described herein are anticipated to remain constant for the foreseeable future. 

By embracing the computational research enterprise, universities can transform fiscal austerity into an engine of 

discovery, turning fieldwork research projects into cloudwork while graduating students who are prepared to lead 

in the data-rich century that lies ahead.  

 

II. The Computational Imperative 
The logic for pivoting toward computational research rests on three mutually reinforcing realities: (a) 

unprecedented cost, speed, and scope advantages; (b) clear signals from funding agencies that reward data-centric 

readiness; and (c) strong labor-market demand for graduates who can think algorithmically. 

 

Cost, Speed, and Scope 

High-performance computing (HPC) and elastic (scalable in terms of power, storage, memory, and cost) 

cloud services have lowered the entry barrier that once confined intensive modeling and analytics to a handful of 

elite laboratories. For example, in 2000, a teraflop of processing power in US dollars (USD) cost more than $40 

million; in 2025, the same capacity can be rented from a commercial provider for less than $5 per hour [3]. This 

price inversion means that a 48-hour GPU burst sufficient to run a continental climate and water ensemble now 

costs less than a week of field per diem for a graduate assistant. Speed gains are equally remarkable: hydrologists 

training deep‐learning discharge models shorten calibration cycles from months to days [6]. Foresters mapping 

wildfire susceptibility can refresh statewide risk layers overnight rather than once per field season [7]. Crucially, 

once a workflow is containerized, marginal analyses are almost free. New scenarios require computing time but 

no additional travel, consumables, or animal-unit overhead. 

 

Funding-Agency Signals 

Federal and philanthropic sponsors have aligned their solicitations with this new reality. The US National 

Science Foundation now embeds cloud-credit supplements and reproducibility mandates in many core programs, 

and its National AI Research Institutes competition explicitly prioritizes proposals that leverage shared 

cyberinfrastructure and open pipelines [8]. The USDA’s Agriculture and Food Research Initiative (AFRI) 

introduced a dedicated computational track in 2023, which funds machine-learning and digital-twin approaches 

across the food–energy–water nexus. A return on investment (ROI) study of 16 US campuses found that every 

institutional dollar allocated to centrally managed clusters attracted $5 to $6 in new external awards within three 

years and shortened the time to publication by approximately 40 % [9]. Funding agencies, in effect, use proposal 
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review criteria to encourage universities to adopt platforms that guarantee scalability, transparency, and rapid 

translation. 

 

Workforce Necessity and Institutional Relevance 

Industry demands that institutions aggressively pursue computational research. Surveys of 1,200 US 

hiring managers showed that data fluency now ranks alongside disciplinary depth as a top screening criterion for 

entry-level positions [10]. However, fewer than one-third of agricultural, life-science, and environmental 

programs (and many others) require substantive coding or statistical computing beyond an introductory course. 

The mismatch poses a reputational risk: universities that fail to equip graduates to handle large data sets become 

less attractive to students, employers, and donors. Conversely, campuses that weave computation through the 

curriculum strengthen their enrollment pipelines and reinforce their public-service mandate. This may be 

particularly relevant for land-grant institutions, whose Morrill-era mission included, among other mandates, 

democratizing cutting-edge knowledge [11]. 

 

Strategic Take-Away 

Collectively, decreasing computing costs, sponsor-level incentives, and labor market dynamics create a 

wide-open, yet potentially brief, window for early adopters to transform fiscal constraints into strategic 

advantages. Researchers who redesign projects around simulation, machine learning, and data reuse can publish 

more quickly, secure additional grants, and produce students who are immediately ready for a digitized economy. 

For administrators, investing in shared cyberinfrastructure and research software engineer support is no longer 

just discretionary overhead; it has become a necessity for maintaining competitiveness in both scholarship and 

workforce development. In summary, the computational imperative has now evolved into a mission imperative. 

 

III. Discipline-Specific Pathways and Funding Channels 
The computational transformation will never be a one-size-fits-all exercise. The value of computational 

transformation will be recognized when workflows are customized to disciplinary epistemologies, data cultures, 

and funding ecologies. The following text distills ten representative research domains: Forestry, Fish and Wildlife, 

Animal Sciences, Agriculture, Landscape Architecture, Economics, Innovation and Entrepreneurship, Civic 

Engagement, Workforce Development, and Environmental Stewardship and Education. It illustrates (a) how 

researchers can shift from costly field or bench routines to data-centric methods, (b) the minimal 

cyberinfrastructure and human expertise required, and (c) the most active public and private funding streams that 

reward such shifts. Each domain integrates peer-reviewed exemplars and cites current solicitations or program 

rules, demonstrating that transitioning from fieldwork to cloud-work is both technically feasible and financially 

strategic (Table 1). 

 

Forestry 

Legacy fire-risk mapping relies on labor-intensive fuel-load transects that cover only a fraction of the 

landscape. High-resolution airborne LiDAR and Sentinel-2 imagery, processed through gradient-boosting and 

convolutional neural networks, now predict crown-fire potential at 10-m resolution across entire states, updating 

after every lightning storm [7]. A 2024 pilot in Oregon (USA) demonstrated that machine-learning maps captured 

91% of subsequent fire perimeters while reducing field sampling costs by 70% relative to classical transects. 

Minimal infrastructure consisted of a campus GPU node (4 × A100 cards) and an open-source stack (PDAL + 

XGBoost). The Joint Fire Science Program (USDA-DOI), NSF’s Dynamic Ecosystems and Modeling for 

Sustainability program, and NASA’s A.37 FireSense Applied Science call all explicitly solicit “advanced 

analytics of multi-sensor remote-sensing streams.” Private timber consortia are also co-funding cluster refreshes 

in exchange for early access to predictive layers, creating an unrestricted revenue loop that helps universities 

amortize hardware [7]. 

 

Fish and Wildlife Sciences 

Population viability analyses once required multi-year mark-recapture studies. Agent-based models 

(ABMs) calibrated against open acoustic-telemetry or camera-trap repositories can evaluate reintroduction or 

harvest scenarios within weeks [12]. In the Upper Missouri Basin, an ABM of pallid sturgeon integrated 

hydrodynamic outputs from the Community Land Model, reproducing 85 % of observed recruitment dynamics 

and saving the US $1.2 million in vessel time. Infrastructure demands are modest: a 32-core CPU node with 256 

GB of RAM, and open-source software (NetLogo, Repast, or Mesa). Potential funding lines for such investigations 

include USFWS Science Applications, NSF’s Biodiversity on a Changing Planet, and the Luc Hoffmann 

Institute’s computational conservation fellowships. Because ABMs are fully replicable, investigators currently 

receive bonus credit under NSF’s “FAIR Data” merit-review criterion, increasing proposal competitiveness [12]. 
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Table 1. Digital Transformation across Select Land-Grant Domains: Legacy versus Computational Workflows, 

Impacts, Infrastructure, and Funding. 
Category Legacy → Digital upgrade 

(brief) 

Key impact Core infra-

structure 

Main funding lines* Select 

Citation 

Forestry Transect fuel loads → LiDAR 
+ Sentinel-2 + GBM/CNN 

91 % fires predicted; 
field cost ↓ 70 % 

4×A100 GPU 
node 

JFSP, NSF DEMS, 
NASA FireSense, 

timber consortia 

[7] 

Fish & 

Wildlife 

Mark–recapture → ABM w/ 

telemetry & cam-trap data 

85 % recruitment 

reproduced; US$1.2 M 
vessel cost saved 

32-core CPU, 256 

GB RAM 

USFWS SA, NSF 

BCP, Luc Hoffmann 

[12] 

Animal Sci. Human welfare scoring → 

YOLOv8 vision on 
video/thermal/IMU 

F1 > 0.93; labor ↓ 60 

%; 24×7 

RTX 4090 or 

burst-cloud GPU 

USDA AFRI-PLF, 

USCDI, FFAR Digital 
Ag 

[13] 

Agriculture Micro-plots → APSIM + 

Bayesian DL emulators + 

PlanetScope 

2 seasons faster release; 

N-trial cost ↓ US$340 

ha¹ 

Shared cluster or 

AI-Ag cloud 

credits 

USDA/NSF AI-Ag 

Inst.., state soybean 

boards 

[14] 

Landscape 

Arch. 

Scale models → Generative 

design over GIS layers 

Design labor ↓ 75 %; 

retention ↑ 14 % 

High-RAM WS 

or elastic CPU 

NEA RfC, EPA WISE [15,16] 

Economics Single-run CGE → Ensemble 
CGE sweeps 

4000 shocks overnight 
(128 cores) 

Campus HPC 
cluster 

NSF SciS, DOE EW-
Nexus, WB CC&DR 

[17] 

Innov. & 

Entr. 

Delphi panels → NLP on 

global patent corpus (Spark) 

Ag-robotics 

convergence shown 2y 

early 

Cloud Spark via 

NSF CloudBank 

NSF PFI-TT, USDA 

SBIR I, regional EDA 

[18] 

Civic 

Engage. 

Extension pamphlets → 

Python/Plotly public 

dashboards 

Counties save ≈ 

US$600k; publishable 

insights 

JupyterHub on 

cluster 

USDA RHSE, NIH 

HEAL, HUD T4H 

[19] 

Workforce 

Dev. 

Ad-hoc skills → RSE corps + 
micro-credentials 

Cluster use ↑ 10× post-
hire 

Salaried RSEs; 
existing HPC 

NSF IUSE, DOL 
Apprentice BA 

[10] 

Env. 

Steward-Ed. 

Field trips only → Digital-

twin walk-throughs + LA 

Vehicle miles ↓ 40 %; 

scores ↑ 8 pp 

LMS plug-ins + 

modest GPU 

NOAA CRET, NASA 

AIST-Ed, ED IES LA 

[20] 

*Abbreviations: JFSP = Joint Fire Science Program, NSF DEMS = NSF Dynamic Ecosystems & Modeling for 

Sustainability, USFWS SA = US Fish & Wildlife Service Science Applications, USCDI = US Council on Dairy 

Innovation, FFAR = Foundation for Food & Agriculture Research, NEA RfC = National Endowment for the Arts 

“Design for Climate”, EPA WISE = Water Innovation, Science & Engagement, NSF SciS = Science of Science 

Program, DOE EW-Nexus = Energy–Water Nexus, WB CC&DR = World Bank Country Climate & Development 

Reports, NSF PFI-TT = Partnerships for Innovation, Technology Translation, HUD T4H = Tech4Housing, DOL 

Apprentice BA = Apprenticeship Building America. 

 

Animal Sciences 

Precision livestock farming (PLF) utilizes computer vision and deep learning to analyze continuous video, 

thermal, and inertial data, thereby replacing periodic human scoring of welfare indicators. A multi-site dairy study 

utilized a YOLOv8 pipeline to detect lying, ruminating, and heat-stress postures, achieving F1 scores greater than 

0.93 while reducing labor by 60% and enabling 24/7 surveillance [13]. The necessary hardware, as an example, 

could include a single RTX 4090 workstation running on-farm or a burstable cloud GPU, which costs less than a 

year of undergraduate labor previously budgeted for scoring. USDA NIFA’s Agriculture and Food Research 

Initiative (AFRI) now maintains a PLF focus area, and the private US Council on Dairy Innovation funds data-

centric welfare research with up to a 50% university match. Such projects also currently qualify for the Foundation 

for Food & Agriculture Research’s (FFAR) Digital Ag Rapid Cycle grants, in which computational readiness is a 

primary review factor. 

 

Agriculture 

Experiment stations historically relied on dozens of micro-plots per cultivar compared to as many (or 

more) treatment combinations. The Agricultural Production Systems Simulator (APSIM), coupled with Bayesian 

deep-learning yield emulators, now replaces half of those plots, shaving two growing seasons from cultivar release 

time [14]. In Iowa, integrating APSIM with PlanetScope imagery and soil grids reduced nitrogen rate trial costs 

by USD 340 per hectare, while maintaining prediction error below 5%. Essential infrastructure is again 

lightweight, a shared cluster or commercial cloud credits provided under the USDA/NSF AI Institute for 

Agricultural Systems, whose RFA explicitly lists “APS-powered digital twins.” Matching state soybean boards 

have co-sponsored GPU cycles, creating a public–private co-investment model that shielded the university from 

full depreciation risk [14]. 

 

Landscape Architecture 

Planning stormwater retrofits with architectural awareness traditionally required the use of scale models 

or full-sized pilot installations. Generative-design algorithms, running with integrated GIS layers of topography, 
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parcel boundaries, and imperviousness, now automatically produce thousands of bio-retention layouts, optimizing 

for runoff, cost, and aesthetic coherence [15,16]. In suburban Maryland, the approach reduced design labor by 

75% and produced a 14% improvement in volumetric retention relative to conventional computer-aided drafting 

(CAD) workflows. Computational research methods are increasingly integral to high-performance landscape 

architecture. In Singapore’s Bishan-Ang Mo Kio Park, designers ran 1-D and 2-D MIKE flood-routing models to 

test channel geometry and floodplain widths before replacing a concrete canal with a sinuous, ecologically 

functional river corridor, a process detailed in a comparative nature-based-solutions study of Singapore and Lisbon 

[21]. At New York City’s Freshkills Park, planners combined fine-scale GIS layers with ecosystem services 

valuation models to quantify the ecological and economic benefits of converting an 890-hectare landfill into a 

regional green infrastructure system [22]. Designers are also leveraging generative tools. Huang, et al. [23] 

employed Grasshopper-based multi-objective optimization to place rain gardens and permeable pavements in a 

“sponge-city” micro-renewal project, thereby reducing peak runoff while minimizing costs. Additionally, Orsi’s 

prescriptive agent-based model rearranged built and green plots, allowing residents to remain centrally located 

yet close to nature [24]. Among other sources, funding is currently available through the National Endowment for 

the Arts Research Labs (Design for Climate) and the EPA’s Water Innovation, Science, and Engagement (WISE) 

program, both of which require community-scale data products. In terms of computing infrastructure, a high-

memory workstation or elastic cloud CPU node is often all that is necessary [15].  

 

Economics 

Wei and Aaheim [17] conducted a systematic review analyzing the applications of computable general 

equilibrium (CGE) models in climate change adaptation at the Center for International Climate Research 

(CICERO) in Oslo, Norway. They reviewed 97 peer-reviewed studies, concluding that while CGE models 

extensively evaluate planned adaptation measures, strategies deliberately enacted through policies, they 

insufficiently address autonomous adaptation, or the spontaneous, market-driven responses by economic actors 

without direct policy intervention. Recognizing this limitation, Wei and Aaheim emphasized the need for 

integrated modeling frameworks that better capture both planned and autonomous adaptation responses. Building 

on their insights, recent research teams, including a Department of Energy (DOE)-funded group at a western US 

land-grant university, expanded the use of large-ensemble CGE modeling techniques. Utilizing advanced 

computational clusters with 128 cores, this team efficiently processed 4,000 shock matrices overnight, a task 

traditionally spanning several months on conventional desktop systems. This methodological advancement 

enhances the capability to manage and quantify uncertainties in climate impact assessments, particularly in 

relation to agricultural and energy policy implications. Such innovative computational efforts are increasingly 

supported through funding from organizations such as the National Science Foundation’s Science of Science: 

Discovery, Communication, and Impact initiative, the DOE’s Energy-Water Nexus program, and the World 

Bank’s Country Climate and Development Reports. These developments collectively indicate significant progress 

toward more comprehensive and policy-relevant climate-economic modeling through sophisticated, high-

performance computational approaches. 

 

Innovation and Entrepreneurship 

A significant methodological advancement for entrepreneurial-ecosystem scholars was introduced by 

applying natural language processing (NLP) to global patent databases, effectively replacing the traditionally used 

Delphi panels [18]. While Delphi panels rely on expert consensus and can be slow and subjective, NLP rapidly 

processes extensive unstructured patent data, objectively identifying emergent technology clusters. This 

innovative approach enables researchers and policymakers to efficiently track technological trends, facilitating 

timely strategic decisions and fostering targeted investments in entrepreneurial innovation. A 2024 study of 

agricultural-robotics patents revealed regional convergence dynamics two years before the official Organization 

for Economic Co-operation and Development (OECD) statistics, which guided venture capital placement. The 

OECD is an international organization comprising member countries that are committed to democratic and market 

economy principles. The organization collects, analyzes, and publishes comprehensive statistics on economic, 

social, and environmental aspects. The infrastructure for this initiative included an Apache Spark cluster (a widely 

used open-source software framework designed for big-data processing and analytics) on a commercial cloud, 

accessible via US NSF-funded CloudBank credits through the NSF Partnerships for Innovation–Technology 

Translation (PFI-TT) program. The USDA SBIR Phase I now also accepts patent-text analytics as an eligible 

feasibility study. Corporate co-investment often follows, as regional economic-development authorities subscribe 

to the resulting dashboards, generating non-federal indirect revenue. 

 

Civic Engagement 

The land-grant extension model is a federally supported initiative historically focused on connecting 

universities with local communities to deliver practical knowledge, resources, and technical assistance. 
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Traditionally, extension efforts have involved distributing seed packets, providing advice to local farmers, 

conducting educational workshops, and participating in numerous community activities. However, this model has 

evolved toward digitalization and data-driven methods, exemplified by the emergence of Community-Engaged 

Data Science (CEDS) teams. Olvera et al. [19] illustrated this approach by describing how CEDS embedded 

student data ambassadors within Ohio counties to collaboratively develop interactive dashboards, specifically 

mapping critical regional issues such as opioid overdose trends and broadband accessibility gaps using Python 

and Plotly visualization tools. This shift toward interactive dashboards enabled counties to make informed 

decisions based on dynamic, real-time data, resulting in approximately $600,000 in savings from external 

consulting fees and the generation of publishable social-science insights. Notably, the infrastructure required for 

these initiatives is minimal, relying primarily on accessible, browser-based platforms such as JupyterHub, 

connected to university computing clusters. Recognizing the significant impact and efficiency of these data-driven 

community tools, major funding programs such as USDA NIFA’s Rural Health and Safety Education, NIH’s 

HEALing Communities, and HUD’s Tech4Housing Cooperative Agreements currently prioritize proposals that 

incorporate computationally driven approaches, offering extension faculty with computational expertise a distinct 

competitive advantage. 

 

Workforce Development 

Human capital has emerged as a critical bottleneck in the effective utilization of high-performance 

computing (HPC) and artificial intelligence (AI) resources within academic research environments. To address 

this challenge, institutions are adopting a dual-faceted strategy: establishing dedicated Research Software 

Engineer (RSE) teams and implementing stackable micro-credential programs focused on HPC, AI, and 

reproducible research practices. Chen, Ghafoor and Impagliazzo [10] highlighted a case where a Midwestern land-

grant university significantly increased its HPC cluster utilization tenfold by hiring four RSEs and integrating a 

mandatory one-credit "Data Notebook" course across all STEM majors. This course emphasized essential skills 

in data management, coding, and reproducibility, thereby enhancing students' computational competencies. The 

RSEs provided critical support in developing and maintaining research software, ensuring that computational tools 

met rigorous standards for reliability and reproducibility. This approach not only optimized the use of existing 

computational infrastructure but also fostered a culture of best practices in research software development. 

Moreover, funding agencies such as the US. National Science Foundation's Improving Undergraduate STEM 

Education (IUSE) program and the US. Department of Labor's Apprenticeship Building America initiative have 

recognized the value of this model. These agencies offer financial support, often covering up to 50% of early-

career RSE salaries when matched by institutional funds, thereby incentivizing the integration of RSEs into 

research teams. By investing in human capital through Research Support and Educational (RSE) programs and 

targeted educational initiatives, institutions can enhance research productivity, ensure software sustainability, and 

better prepare students for the evolving demands of computational research. 

 

Environmental Stewardship and Education 

The integration of learning analytics platforms with satellite data is revolutionizing conservation education 

by personalizing curricula and enhancing field readiness. Students now engage in digital twin walkthroughs, 

virtual simulations of real-world habitats, before participating in fieldwork, allowing them to anticipate 

environmental conditions and challenges [20]. This approach has led to significant improvements; for instance, a 

large-enrollment environmental science course reported a 40% reduction in vehicle miles traveled for field 

activities and an eight-percentage-point increase in concept inventory scores. Implementing such systems requires 

minimal resources: existing campus learning management system plug-ins and a modest GPU capable of real-

time image classification. Funding opportunities to support these initiatives currently include, but are not limited 

to, NOAA’s Coastal Resilience Education and Training, NASA’s Advanced Information Systems Technology 

(education track), and the US. Department of Education’s Institute of Education Sciences Learning Analytics for 

STEM program. Proposals that emphasize reproducible data pipelines and the development of open data 

repositories are particularly competitive, reflecting the broader shift towards computational proficiency in 

environmental education. This evolution not only enhances student learning outcomes but also contributes to more 

sustainable and efficient educational practices. 

 

Strategic Implications 

Across the above ten domains, three patterns repeat. First, virtual experimentation and big-data analytics 

displace the most expensive stages of field or bench work, freeing scarce dollars for student stipends or additional 

projects. Second, shared cyberinfrastructure, whether an on-premises GPU node or cloud credits, scales across 

disciplines, lowering marginal cost and flattening equity gaps between resource-rich and resource-poor 

departments. Third, sponsors are already embedding computational readiness into their review criteria, effectively 

rewarding institutions that adopt reproducible, data-centric workflows. The implications for principal 
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investigators are clear: a modest upfront investment in code containers, research software engineer support, and 

training converts into faster publications, higher hit rates at funding agencies, and demonstrably job-ready 

graduates. Land-grant administrators, in turn, gain a compelling narrative for legislators and donors in favor of 

computational infrastructure. 

 

IV. Mapping the Funding Landscape 
Federal research funding is tightening, resulting in reduced resources for traditional disciplines. 

Regardless, the rapid growth of data, interdisciplinary needs, and global competition make it essential to integrate 

computational methods across nearly all fields for scientific relevance and funding success. Institutions and 

researchers that do not adapt risk falling behind, despite limited budgets. A successful shift toward computational 

research could be supported through a mix of federal, philanthropic, and industry investments that increasingly 

favor data-centric readiness. While current and future funding environments and competitions may evolve, the 

strategies outlined here are expected to remain relevant for the foreseeable future. 

 

Federal Baseline 

In fiscal year 2024, the United States National Science Foundation (NSF) requested $11.355 billion, 

reflecting a 19% increase from the prior year, yet funding success rates remained highly competitive across 

directorates, with the Directorate for Biological Sciences (BIO) maintaining a 19% success rate and divisions such 

as Biological Infrastructure (DBI) falling as low as 13% [25]. Similarly, the US. Department of Agriculture’s 

National Institute of Food and Agriculture (NIFA) allocated $445 million to the Agriculture and Food Research 

Initiative (AFRI), with $300 million earmarked for the Foundational and Applied Science (FAS) program, which 

explicitly prioritizes projects leveraging advanced analytics and artificial intelligence to address key societal 

challenges in areas such as food security, environmental sustainability, and public health [26]. Given this 

heightened competition and the strategic focus on computational methodologies, funding agencies are 

increasingly favoring proposals that deliver greater insight per dollar by integrating reproducible data pipelines, 

open data repositories, and advanced analytics, positioning computational approaches as a critical differentiator 

in securing competitive federal research funding. 

 

Dedicated Computational Programs 

Federal agencies have developed high-profile funding programs explicitly designed with robust 

cyberinfrastructure capabilities in mind. For example, the NSF, USDA, DOE, NIH, and NIST jointly established 

the National AI Research Institutes, offering seven-year awards of up to $ 20 million (USD) each. Three institutes 

selected for 2024 specifically target agriculture–food systems, climate resilience, and workforce development, 

emphasizing open, scalable data pipelines [8]. The NIH’s Bridge2AI initiative was developed to distribute $130 

million over four years to create comprehensive, “AI-ready” biomedical datasets that adhere strictly to the FAIR 

(findable, accessible, interoperable, reusable) data criteria [27]. DOE’s Exascale Computing and Earthshot 

programs prioritize large-scale ensemble simulations, which require documented high-performance computing 

(HPC) capabilities, as indicated by cluster utilization metrics similar to those reported by previous authors [9]. 

Many other funding sources exist; researchers should proactively engage with institutional, state, and federal 

research support offices to identify and align with these valuable opportunities. 

 

Philanthropic Catalysts 

Private foundations are increasingly treating open cyberinfrastructure as a public good, recognizing its 

role in enabling scientific discovery, education, and innovation across disciplines. Schmidt Futures exemplifies 

this shift with its $148 million "AI in Science" fellowship, supporting postdoctoral researchers who apply machine 

learning outside traditional computer science domains, aiming to accelerate discovery in fields such as biology, 

chemistry, and climate science [28]. Similarly, the Gordon and Betty Moore Foundation's Data-Driven Discovery 

and Moore Inventor Fellows programs collectively provided approximately $34 million through 2025, targeting 

early-career scientists and inventors developing novel computational tools, data curation methods, and scientific 

software to advance research impact [29]. Complementing these efforts, the Alfred P. Sloan Foundation allocates 

around $80 million annually through its Digital Infrastructure and Exemplary Pathways initiatives, much of which 

supports open-source software, data stewardship, and cyberinfrastructure development at minority-serving 

institutions [30]. These investments reflect a broader recognition that open, interoperable, and accessible digital 

infrastructure, combined with support for human capital, is foundational to equitable, reproducible, and scalable 

science. Furthermore, these programs emphasize community-centered development models, ensuring that tools, 

data, and knowledge generated are accessible to a broad range of researchers, educators, and communities, thereby 

amplifying the societal return on philanthropic investment. 
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Industry and Cluster-Access Models 

Campus community clusters have emerged as a financially sustainable and academically enriching model 

for shared research computing infrastructure. By offering tiered corporate memberships that provide priority job 

queues, exclusive research collaboration opportunities, and student capstone partnerships, institutions can recover 

15–20% of their annual refresh costs while simultaneously enhancing experiential learning opportunities for 

students. A longitudinal return on investment (ROI) analysis by Stewart et al. [9] of XSEDE partner campuses 

showed that every dollar invested in shared-cluster expenses leveraged approximately US $5 in external awards, 

significantly increased interdisciplinary collaboration, and reduced time-to-publication by 40%, effectively 

accelerating research dissemination and impact. Supporting these findings, a recent study at Purdue University 

demonstrated a strong correlation between institutional investments in campus high-performance computing 

(HPC) infrastructure and growth in financial, academic, and reputational outputs [31]. Collectively, these studies 

reinforce that investments in campus community clusters not only offer economic efficiencies but also position 

institutions to foster research innovation, accelerate knowledge dissemination, and strengthen industry 

partnerships. 

 

Strategic Take-Away 

Federal solicitations, philanthropy, and corporate cost-sharing now incorporate computational 

expectations into research, development, and education. Investigators documenting containerized workflows, 

reproducible code, and cluster access signal lower project risk and higher translational velocity, attributes 

increasingly rewarded in competitive funding environments. Demonstrating detailed plans for data management 

and analysis pipelines enhances scalability and collaboration potential. Institutions that leverage shared 

computational facilities effectively demonstrate a commitment to resource optimization and interdisciplinary 

engagement, significantly increasing proposal competitiveness and appeal, thereby positioning projects for 

accelerated review and success in securing diverse funding streams. 

 

V. Implementation Roadmap 
Translating computational opportunities into lasting capacity requires a phased strategy that integrates 

finance, IT, faculty affairs, and external relations. This process includes auditing current needs, piloting high-

impact projects with research software engineers, adopting a cost-sharing model for community clusters, and 

embedding data science into curricula and promotional standards. Continuous monitoring and ROI assessments 

ensure alignment with institutional goals, enhance research productivity, accelerate funding success, and establish 

cyberinfrastructure as a core strategic asset (Figure 1). 

 

 
Figure 1. An example implementation roadmap including a timeline for building durable computational capacity. 

Timing and time periods may vary depending on institutional capacity and need. 

 

Audit and Align (Months 0 – 6) 

Organizations should begin by conducting a comprehensive gap analysis, including inventorying existing 

computing workloads, storage profiles, and GPU demand, then overlaying those data with recent proposal reviews 

to pinpoint where inadequate cyberinfrastructure drew criticism. They should then cross-tabulate these 

Audit & Align (Months 0-6): Identify gaps, map needs to 
grants, and justify shared infrastructure model.

Pilot to Prove Value (Months 6 - 18): Launch diverse pilots, 
assign RSEs, track usage and grant outcomes.

Scale Sustainably (Years 2 - 4): Adopt cost-share model, 
balance budget, expand cluster access.

Embed Skills & Incentives (Ongoing): Require data science 
training, offer HPC/AI credentials, revise policies.

Monitor, Iterate, and De-Risk: Track KPIs, review ROI, 
report impact to leadership.
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requirements against public grant calendars projected 24 months forward, such as NSF AI Institutes and USDA 

AFRI Foundational calls, to forecast future demand. This audit phase has previously shown that approximately 

60 to 70 percent of anticipated usage can be satisfied by a single, shared mid-tier cluster augmented with cloud-

burst credits, obviating the need for multiple discipline-specific servers. Empirical studies reinforced the value of 

this data‑driven approach: Stewart et al. [9] showed that each dollar invested in shared XSEDE‑style resources 

returned about five dollars in external awards and shortened time‑to‑publication by 40 percent, validating the 

economic rationale for consolidating infrastructure. Complementing this, Smith [31] demonstrated that balanced 

investment in on-campus HPC hardware and support personnel significantly enhanced institutional research 

outputs, confirming that strategic, evidence-based planning directly improves both productivity and 

competitiveness.  

 

Pilot to Prove Value (Months 6 – 18) 

During the 6- to 18-month pilot phase, three to five high-visibility research projects should be launched 

(this may vary by institutional capacity and need). For example, one each in the life sciences, physical sciences, 

socio-economic analysis, and digital humanities, on the new shared cluster. Each research team could receive 

fractional support from a Research Software Engineer (RSE) plus a modest allotment of cloud-burst credits, 

ensuring that code is containerized and reproducible from the outset. At Indiana University (USA), a comparable 

initiative led to a tenfold increase in core-hour utilization and a 38 percent rise in annual grant volume, outcomes 

directly linked to RSE-led containerization and workflow hardening [32]. Complementary evidence from an 

extensive survey of container technologies in high-performance computing revealed that systematic container 

adoption enhances portability while incurring negligible performance overhead, thereby accelerating time-to-

science across heterogeneous environments [33]. Institutions captured pilot metrics, core-hour consumption, job-

queue wait times, grant dollars secured, and publications produced in quarterly dashboards; these data streams 

underpinned compelling ROI narratives, sustained cabinet-level enthusiasm, and informed subsequent 

investments in both hardware expansions and additional RSE personnel. 

 

Scale Sustainably (Years 2 – 4) 

To escape the inefficiencies of one-off, grant-funded server purchases, institutions could consider 

implementing a community-cluster cost-share model in which faculty contribute start-up or sponsored-research 

dollars, central IT matches those funds, and industry affiliates purchase queue-priority memberships. As noted 

previously, Stewart et al. [9] quantified the impact of this model at XSEDE partner campuses, reporting that every 

US $1 invested yielded approximately US $5 in new external awards and shortened median time‑to‑publication 

by 40 percent. Similar benefits were observed at the national scale: the XSEDE program’s shared 

cyberinfrastructure lowered per‑project computing costs and accelerated scientific output compared with siloed 

resources, underscoring the leverage gained through pooled investment [34]. Financial modeling across multiple 

land-grant campuses now recommends a 40/40/20 spending split for hardware procurement, human capital 

(Research Software Engineers and data stewards), and continuous training, respectively, because this ratio 

maximizes return on investment while sustaining a skilled support ecosystem that keeps the cluster fully utilized. 

 

Embed Skills and Incentives 

Ultimately, hardware investments may deliver limited returns until institutions pair them with systematic 

human‑capital development. In response to this gap, several universities have mandated entry-level, credit-bearing 

data science courses for all majors. They then offered stackable certificates in high-performance computing (HPC) 

and artificial intelligence. Within two graduating cohorts, programs that adopted this scaffold saw data-centric job 

placements rise by approximately 15 percent, a trend echoed in Communications of the ACM, where Chen et al. 

[10] documented how a competency-based HPC curriculum produced graduates who were immediately 

productive in real-world research settings. To cement cultural change, promotion and tenure policies also evolved. 

An eLife consensus paper urged institutions to credit curated data sets, FAIR-compliant workflows, and reusable 

open-source code equally with traditional articles, arguing that such research products accelerate discovery and 

widen access to knowledge [35]. Embedding micro-credentials and revising incentive structures thus transformed 

underutilized compute resources into a vibrant, talent-driven ecosystem that sustains both research excellence and 

workforce readiness. 

 

Monitor, Iterate, and De-Risk 

To keep cyberinfrastructure performance tightly aligned with institutional goals, campuses should 

consider establishing a joint Faculty, IT Advisory Board charged with evidence-based oversight. The board could 

track a concise set of key performance indicators, which might include cluster-core utilization hours, external 

research dollars captured, Research Software Engineer (RSE) tickets resolved, and peer-reviewed publications 

that acknowledge the system, among other criteria. When a metric softens, the board could recalibrate queue 
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priorities, shift staffing, or recommend targeted hardware upgrades before minor inefficiencies escalate into costly 

bottlenecks. The groups could also commission independent return‑on‑investment studies that apply the 

International Integrated Reporting (IR) Framework, translating scientific outputs and workforce training into 

financial terms that resonate with trustees and legislators. A recent IR analysis of the national XSEDE program 

showed every federal dollar invested generated between US $4.7 billion and $22.7 billion in societal benefit, a 

finding that helped secure bipartisan budget support [32]. By cycling transparently through audit, pilot, scale, and 

embed stages, while continuously refining KPIs, universities could transform one‑time server purchases into a 

resilient, self‑reinforcing ecosystem of grant wins, reproducible science, lower carbon intensity, and graduates 

that are market-ready for data‑intensive careers. 

 

VI. Conclusions 
The accelerating affordability and accessibility of advanced computing infrastructure have eliminated 

many of the historical barriers that once limited computational research to elite institutions. For land-grant 

universities and other public research entities facing declining appropriations, deferred maintenance, and 

escalating competition for federal funding, this technological shift represents not just an opportunity but a strategic 

imperative. As illustrated across various domains, from forestry and agriculture to economics and civic 

engagement, the transition from fieldwork to cloudwork enables researchers to produce high-impact insights more 

quickly, at lower cost, and with greater scalability. Institutions that invest in shared cyberinfrastructure, research 

software engineering support, and reproducible data pipelines consistently experience higher grant success rates, 

shorter time-to-publication, and stronger graduate employability. These gains, however, are not merely technical; 

they are institutional in nature. Cyberinfrastructure must now be regarded as mission-critical, on par with 

experimental farms, wet labs, and county extension offices. The evidence is clear: computational readiness 

translates directly into research productivity, funding competitiveness, and labor market alignment. 

 

Nevertheless, the challenge extends beyond hardware and software. To fully capitalize on the 

computational research paradigm, universities must embed data fluency across their curricula, revise promotion 

and tenure metrics to value open science, reusable code, and realign extension and workforce development 

initiatives toward digital engagement and training. Institutions that act decisively can secure founder advantages, 

build interdisciplinary capacity, and reassert their relevance in a data-driven economy. Those that delay risk 

obsolescence as sponsors increasingly demand reproducibility, transparency, and translational velocity. The future 

of research, and by extension, the public mission of higher education, depends on a systematic pivot toward 

computational capability. This is not a passing trend but a structural transformation that will define institutional 

viability for decades to come. By turning financial constraint into strategic leverage, universities can revitalize 

their land-grant mission, accelerate discovery, and graduate a new generation of leaders prepared to thrive in the 

era of data-intensive science. 
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