

Green AI In Drug Manufacturing - The Future Roadmap

Aditi Munmun Sengupta

MBBS, MS (Clinical And Bioanalytical Chemistry, USA)
Harvard Medical School, Post Graduate Association Member

Abstract:

The integration of artificial intelligence (AI) and green chemistry principles in drug manufacturing has the potential to revolutionize the pharmaceutical industry. This scientific article explores the current landscape of green AI in drug manufacturing and presents a roadmap for the future. By leveraging AI algorithms to optimize processes, reduce waste, and minimize environmental impact, drug manufacturing can become more sustainable and efficient. In this article, we discuss the challenges and opportunities associated with implementing green AI solutions in drug manufacturing, as well as the potential benefits for both the industry and the environment. Looking ahead, the future of drug manufacturing lies in the intersection of AI and green chemistry, paving the way for a more sustainable and environmentally friendly pharmaceutical sector.

GRAPHICAL ABSTRACT

Definition of Green AI: Green AI refers to the use of artificial intelligence that prioritizes sustainability, aiming to minimize energy consumption and environmental impact during its applications in various fields, including drug manufacturing.

Importance in Drug Manufacturing: The pharmaceutical industry faces pressure to enhance sustainability due to resource scarcity and stringent regulations. Green AI offers innovative solutions to address these challenges effectively.

Benefits of Green AI: Integrating AI can lead to reduced waste, lower carbon footprints, and improved efficiency in drug production while maintaining high safety and quality standards.

Energy Consumption Reduction: Green AI aids in monitoring energy usage in drug manufacturing facilities, allowing companies to implement strategies that significantly decrease energy consumption.

Waste Minimization: Utilizing AI tools can help analyze and streamline manufacturing processes, resulting in reduced waste generation while ensuring compliance with environmental regulations.

Sustainable Material Use: AI can assist in the development of greener chemistry and eco-friendly materials, promoting sustainable alternatives to traditional solvents and reagents used in drug synthesis.

Figure 1: Graphical abstract

Keywords: Green AI, Drug Manufacturing, Sustainable, Optimization, Environment

Date of Submission: 04-02-2026

Date of Acceptance: 14-02-2026

I. Introduction

The integration of Green Artificial Intelligence (AI) in drug manufacturing processes is gaining traction as a sustainable solution for the pharmaceutical industry^[1]. Green AI refers to the use of artificial intelligence technologies to optimize processes and reduce environmental impact. In the context of drug manufacturing, Green AI plays a crucial role in enhancing efficiency, reducing waste, and minimizing the carbon footprint of pharmaceutical production^[2]. This communication explores the significance of Green AI in drug manufacturing and outlines a future roadmap for its implementation.

II. Current Challenges In Drug Manufacturing

The traditional methods of drug manufacturing are associated with significant environmental impacts, including high energy consumption, generation of hazardous waste, and pollution. As the demand for pharmaceutical products continues to rise, there is a pressing need for more sustainable practices in the industry. Technology, particularly artificial intelligence, presents an opportunity to address these challenges by revolutionizing drug manufacturing processes. By leveraging AI algorithms, pharmaceutical companies can optimize production schedules, improve resource utilization, and minimize environmental harm^[3,4].

III. Green AI In Drug Manufacturing

Green AI technologies encompass a range of tools and techniques that focus on enhancing the sustainability of industrial processes. In drug manufacturing, Green AI can be applied to various stages of production, including drug discovery, formulation, and quality control^[5]. By analyzing large datasets and identifying patterns, AI systems can help researchers design new drugs more efficiently, predict potential drug interactions, and optimize manufacturing protocols (Figure2). The incorporation of Green AI in drug manufacturing offers numerous advantages, such as faster time-to-market, reduced costs, and improved product quality^[6].

Optimizing Processes with AI

Process Automation: AI technologies enable the automation of repetitive tasks in drug manufacturing, reducing labor costs and minimizing human error while promoting consistency in production processes.

Predictive Analytics: By utilizing machine learning algorithms, companies can predict outcomes and optimize production parameters, reducing the need for extensive trial and error, and improving overall efficiency.

Resource Management: AI algorithms help in resource allocation, ensuring that energy and materials are used efficiently, thereby decreasing wastage and supporting sustainable practices.

[FormulationAI: a novel web-based platform for drug formulation design driven by artificial intelligence, Brief Bioinform. 2023 Nov 22;25\(1\):bbad419. doi: 10.1093/bib/bbad419.](#)

Figure 2: Optimizing processes with Artificial Intelligence

Several pharmaceutical companies have already begun to integrate Green AI into their manufacturing processes with promising results. For example, some companies use AI-powered algorithms to optimize their supply chains, leading to reduced energy consumption and waste generation. Others leverage machine learning models to streamline drug development timelines and enhance the overall efficiency of production. These success stories demonstrate the transformative potential of Green AI in the pharmaceutical industry^[7].

IV. Case Studies

Continuous investment in AI and sustainable practices will be the key to creating an environmentally friendly drug manufacturing ecosystem. All industry players must recognize their role in reducing environmental impacts and commit to adopting Green AI solutions for a sustainable future in pharmaceuticals^[8]. These case studies spotlight successful implementations of Green AI (Figure3), showcasing innovations that lead to lower emissions and cost efficiencies.

CASE STUDIES

Case Study 1: AI-Driven Drug Discovery

Efficiency in Screening: Companies are utilizing AI to predict the efficacy of compounds, thereby significantly reducing the time and resources required for drug discovery, leading to lower environmental impact.

Minimized Chemical Waste: By optimizing chemical reactions through predictive analytics, firms have reported reductions in waste production during the drug development process.

Examples of Success: Notable firms adopting this approach have successfully accelerated discovery phases while maintaining product quality and sustainability.

Case Study 2: Sustainable Manufacturing Processes

Process Optimization: AI solutions are being implemented to streamline manufacturing processes, thereby reducing energy consumption and raw material use in drug production significantly.

Real-Time Monitoring: Utilizing AI for real-time monitoring of production lines allows for better adjustments, minimizing resource wastage during operations.

Collaboration with Green Technologies: Many companies are partnering with tech firms to integrate AI with renewable energy sources, enhancing sustainability throughout manufacturing.

Case Study 3: AI in Supply Chain Management

Enhanced Supply Chain Efficiency: AI algorithms are optimizing supply chains, reducing carbon footprints by predicting demand more accurately and minimizing excess inventory.

Reduction of Transportation Emissions: Smart logistics driven by AI can optimize transportation routes, thereby cutting down carbon emissions associated with drug distribution.

Case Examples: Firms report substantial savings not just in operational costs, but also in reducing environmental impact through effective AI-driven strategies.

Figure 3: Case studies in Drug manufacturing through Green AI; Case study 1^[9], Case study 2^[10], Case study 3^[11].

V. The Ethical Frameworks

As the pharmaceutical industry embraces AI for tasks like drug discovery, predictive modeling, and supply optimization, ethical considerations around sustainability, fairness, transparency, and global equity become critical. The integration of Green AI in drug manufacturing must balance innovation, environmental responsibility, and ethical stewardship^[12] (Table1).

<i>a. Environmental Sustainability</i>
• Energy Use: Developing large AI models often consumes significant computational energy, leading to carbon emissions. <i>Ethical dimension:</i> Balancing accuracy with energy efficiency.
• Lifecycle Impact: Data centers, hardware disposal, and chemical waste from manufacturing must be assessed for total ecological cost.
<i>b. Data Ethics and Equity</i>
• Bias and Representation: AI-driven molecular prediction models depend on data quality. Datasets biased toward Western pharmaceutical data may neglect global genetic or chemical diversity.
• Access Inequality: Wealthier firms or nations may monopolize green AI technologies, widening global health disparities.
<i>c. Transparency and Accountability</i>
• Explainable AI (XAI): Ethical responsibility requires ensuring decisions (e.g., compound selection or toxicity prediction) are interpretable and auditable.
• Traceability: Recording AI-driven decisions in drug design to ensure accountability if outcomes cause harm.
<i>d. Corporate Responsibility</i>
• Greenwashing Risk: Firms may label their AI initiatives as “green” without measurable sustainability verification.
• Regulatory Oversight: Ethical governance frameworks are needed to verify claims and promote verifiable carbon reduction.
<i>e. Human-Centered Ethics</i>
• Job Displacement: AI automation in manufacturing raises ethical questions about workforce transitions.
• Human Safety: Models must prioritize patient welfare over computational efficiency or profit motives.

Table1: Key ethical considerations

Green AI in drug manufacturing offers transformative potential for speeding up medicine discovery while minimizing environmental harm. However without ethical frameworks, these gains risk deepening inequalities or contributing to unsustainable practices. The future road map demands a holistic approach – balancing AI innovation with ecological consciousness, social justice, and transparent accountability^[13].

VI. The Future Road Map

Looking ahead, Green AI is poised to revolutionize drug manufacturing by enabling more sustainable and efficient practices. In drug discovery and development, AI algorithms can help identify novel drug candidates, predict their efficacy, and optimize dosage formulations. By simulating various scenarios and analyzing complex molecular interactions, AI systems can accelerate the drug development process and reduce the likelihood of costly errors^[14].

The widespread adoption of Green AI in drug manufacturing is expected to have a significant impact on sustainability and efficiency. By automating repetitive tasks, optimizing resource allocation, and reducing waste, AI technologies can help pharmaceutical companies operate in a more environmentally friendly manner. Moreover, Green AI can enable real-time monitoring of production processes, allowing for quick adjustments and improvements to enhance overall productivity^[10,15].

Despite the potential benefits of Green AI, there are challenges and limitations that must be addressed to facilitate its integration into the pharmaceutical industry. These include concerns about data privacy and security, the high cost of implementing AI systems, and the need for skilled personnel to operate and maintain these technologies. To overcome these challenges, stakeholders must collaborate to develop robust regulatory frameworks (Table2), invest in AI infrastructure, and provide training programs to up skill the workforce^[16].

Future Ethical Road Map

Future Focus Area	Ethical Imperative	Implementation Pathway
Sustainable AI Infrastructure	Minimize carbon footprint	Renewable energy data centers, low-power algorithms
Open & Fair Data Access	Reduce global inequality	Shared molecular databases, inclusive global data pooling
Transparent AI Governance	Ensure accountability	Mandatory AI audit trails and explainability standards
Regulatory & Policy Inclusion	Build public trust	International Green AI in Pharma standards (ISO-like)
Education & Workforce Transition	Ethical labor adaptation	Retraining programs for AI-integrated manufacturing

Table2: The future road map

VII. Conclusion

In conclusion, the integration of Green AI in drug manufacturing processes is crucial for the sustainability and efficiency of the pharmaceutical industry. By harnessing the power of artificial intelligence, companies can reduce their environmental footprint, improve production outcomes, and drive innovation in drug development. To realize the full potential of Green AI, concerted efforts from industry leaders, policymakers, and researchers are needed to overcome challenges and pave the way for a greener future of drug manufacturing.

Acknowledgements

Acknowledging the contributions of Sarosij Ray and Nandarani Ray, my grandparents in my life.

Statement for Conflict of Interest

There are no conflicts to declare

References

- [1]. Vora, L. K., Gholap, A. D., Jetha, K., Thakur, R. R. S., Solanki, H. K., & Chavda, V. P. (2023). Artificial Intelligence In Pharmaceutical Technology And Drug Delivery Design. *Pharmaceutics*, 15(7), 1916. <Https://Doi.Org/10.3390/Pharmaceutics15071916>
- [2]. Nayak, M., Pradhan, S. (2026). Artificial Intelligence For Green Innovation In Digital Lean Production. In: Raj, P., Sharma, D.P., Dutta, P.K., Prasad, B.S., Soundarabai, P.B. (Eds) *Artificial Intelligence (AI) For IT Energy Efficiency And Green AI For Environment Sustainability*. Springer, Cham. Https://Doi.Org/10.1007/978-3-031-89420-6_14
- [3]. Singh, A., Debnath, R., Chawla, V., & Chawla, P. A. (2026). Green Drug Discovery: Leveraging Biodiversity For Sustainable Pharmaceutical Solutions. *Chemistry & Biodiversity*, 23(1), E00733. <Https://Doi.Org/10.1002/Cbdv.202500733>
- [4]. Myladoor, Amal. (2024). GREEN CHEMISTRY IN PHARMACEUTICAL SYNTHESIS: SUSTAINABLE APPROACHES FOR DRUG MANUFACTURING.
- [5]. Sezer, E., Ulucan Karnak, F., & Akgöl, S. (2025). Green Carbon Dots In The Era Of AI: Sustainable Synthesis, Intelligent Drug Delivery, Advanced Diagnostics, And Bioimaging. *Turkish Journal Of Biology = Turk Biyoloji Dergisi*, 49(5), 498–533. <Https://Doi.Org/10.55730/1300-0152.2762>

- [6]. Mirakhorri, F., & Niazi, S. K. (2025). Harnessing The AI/ML In Drug And Biological Products Discovery And Development: The Regulatory Perspective. *Pharmaceuticals*, 18(1), 47. <Https://Doi.Org/10.3390/Ph18010047>
- [7]. Khairnar, V. N., Maske, S. S., Deshmukh, A. P., Phuse, A. S., Kohale, N. B., & Sawarkar, H. S. (2025). Artificial Intelligence For Green Pharmacy: Minimizing Waste And Environmental Impact. *International Journal Of Pharmaceutical Sciences Review And Research*, 85(10). <Https://Doi.Org/10.47583/Ijpsrr.2025.V85i10.011>
- [8]. George, A. Shaji & George, A.S. (2025). The Role Of Artificial Intelligence In Advancing Sustainability Across Business, Medical, And Agricultural Domains. 03. 17-25. 10.5281/Zenodo.14907960.
- [9]. Blanco-González, A., Cabezón, A., Seco-González, A., Conde-Torres, D., Antelo-Riveiro, P., Piñeiro, Á., & Garcia-Fandino, R. (2023). The Role Of AI In Drug Discovery: Challenges, Opportunities, And Strategies. *Pharmaceuticals* (Basel, Switzerland), 16(6), 891. <Https://Doi.Org/10.3390/Ph16060891>
- [10]. Rajesh, M. V., & Elumalai, K. (2025). The Transformative Power Of Artificial Intelligence In Pharmaceutical Manufacturing: Enhancing Efficiency, Product Quality, And Safety. *Journal Of Holistic Integrative Pharmacy*, 6(2), 125–135. <Https://Doi.Org/10.1016/J.Jhip.2025.03.007>
- [11]. Mohammed, Irsadullah Asim. (2024). AI IN SUPPLY CHAIN OPTIMIZATION: IMPROVING EFFICIENCY THROUGH MACHINE LEARNING- IPE Journal Of Management -UGC Care Listed. Vol-14.
- [12]. Suksaeree, J. (2025). A Review Of Artificial Intelligence (AI)-Driven Smart And Sustainable Drug Delivery Systems: A Dual-Framework Roadmap For The Next Pharmaceutical Paradigm. *Sci*, 7(4), 179. <Https://Doi.Org/10.3390/Sci7040179>
- [13]. Adam, Ansar & Abubakar, Musa & Donatus, Raymond & Okpaegbe, Ucheoma & Muhammad, Shittu. (2026). INTEGRATING ARTIFICIAL INTELLIGENCE INTO GREEN MEDICINAL CHEMISTRY FOR SUSTAINABLE DRUG DESIGN. Conference: 8th BİLSEL INTERNATIONAL TRUVA SCIENTIFIC RESEARCHES And INNOVATION CONGRESS At: ÇANAKKALE/TÜRKİYE
- [14]. Serrano, D. R., Luciano, F. C., Anaya, B. J., Ongoren, B., Kara, A., Molina, G., Ramirez, B. I., Sánchez-Guirales, S. A., Simon, J. A., Tomietto, G., Rapti, C., Ruiz, H. K., Rawat, S., Kumar, D., & Lalatsa, A. (2024). Artificial Intelligence (AI) Applications In Drug Discovery And Drug Delivery: Revolutionizing Personalized Medicine. *Pharmaceutics*, 16(10), 1328. <Https://Doi.Org/10.3390/Pharmaceutics16101328>
- [15]. Khairnar, V. N., Maske, S. S., Deshmukh, A. P., Phuse, A. S., Kohale, N. B., & Sawarkar, H. S. (2025b). Artificial Intelligence For Green Pharmacy: Minimizing Waste And Environmental Impact. *International Journal Of Pharmaceutical Sciences Review And Research*, 85(10). <Https://Doi.Org/10.47583/Ijpsrr.2025.V85i10.011>
- [16]. Alzoubi, Y. I., & Mishra, A. (2024). Green Artificial Intelligence Initiatives: Potentials And Challenges. *Journal Of Cleaner Production*, 468, 143090. <Https://Doi.Org/10.1016/J.Jclepro.2024.143090>