Phytochemical and Therapeutic Potential of Physalis species: a Review

Pooja Shah*, Dr. Kundan Singh Bora
Department of Pharmacognosy, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawal, Dehradun- 248001, Uttarakhand

*Corresponding Author: POOJA SHAH

ABSTRACT: The present review article disclosed the importance of specific species of genus Physalis Linn which are spreaded in all over the world and this considerable research details on different species is noteworthy for worldwide future researchers. In this article morphological, therapeutic activities phytochemicals and ethnobotanical data have been considerable records for important species of the genus Physalis L. In this extensive exploration on morphologic and phytochemical particulars for important medicinal species of Physalis, the aim of this article is to provide detailed, faithful and comprehensive information of precise species of the genus Physalis L like; P. peruviana L., P. angulata L., P. pubescens L., P. minima L., P. longifolia Nutt., P. ixocarpa Brot., P. hispida Waterf. P. alkekengi L. According to our awareness, there is no any single or combined, helpful review details available about the specific species of genus Physalis L. estimated by using morphological, phytochemical, ethnobotanical, and therapeutic activities based aspects.

Keywords: Physalis species, Morphology, Phytochemicals, Therapeutic activities, Ethno-botany.

I. Introduction

Physalis is a genus of perennial, herbaceous or annual plant, which is mostly local plant of tropical North and South America. Few species of Physalis are wildly distributed in the warmer parts of the world. Some species of Physalis grow for its edible fruits. One or two species occur wildly in India, while three other species are cultivated (Bertoncelli et al., 2017; Wealth of India, 1998). Physalis is the genus with great importance in the family solanaceae, due to the production of withanolides, carotenoids, polyphenols, ascorbic acid (Bertoncelli et al., 2017), between them the physalins, which holds significant pharmacological activities (El-Sheikha et al., 2008; Hassani, 2011).

The name of Physalis is derived from the Greek word ‘phusa’ which have meaning ‘a bladder’ after the corolla falls off the five cleft calyx greatly increases in size, thus the fruit enclose in a large, leafy bladder. The plant carries smooth dark green leaves and yellowish white flower. The fruit of Physalis is a round in shape and red or orange colored berry containing many flat seeds which have kidney like shaped. It grows grown freely in any garden but sufficient is found growing wild for medicinal purpose (Wealth of India, 1998).

About 120 species of genus Physalis spreaded all over the world and out of which six species of it are distributed in India within different geographical regions According to different literature (Sharma at. al., 2015; Ahmed et. al., 2014).

A wide variety of the different species of Physalis are used for hypertension, rheumatic disorder, asthma, urinary problems, tumors and mental disorders like anxiety. Specific species of it used in food, ornamental, local crafts and most common use is in the preparation of sauces (Elsa et al., 2013). According to the literature survey, there is no single or combined useful review report present about the specific species of genus Physalis L. assessed by using morphological, phytochemical, ethnobotanical and therapeutic activities based aspects from Indian (Wealth of India, 1998; Sharma et al. 2015).

So the present study is a prolongation of existing labours of researchers to explore the traditional knowledge, cultural practices, cytomorphological, biological and biochemical importance in these study areas with the ultimate aim of evaluating medicinal plants for diversity and utilization pattern and also to protect from disappearance of this treasure. Therefore, due to importance of different species of the genus Physalis L., it has been taken in to consideration for future exploration and evaluation.

Date of Submission: 03-08-2019 Date of Acceptance: 19-08-2019

DOI: 10.9790/3008-1404033451 www.iosrjournals.org 34 | Page
II. Morphological Description of Different Species of Physalis

<table>
<thead>
<tr>
<th>Species</th>
<th>Part of plant /Picture</th>
<th>Morphological description</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. peruviana</td>
<td>Flower</td>
<td>Color-Yellow
Shaped- bell/star & five dark brown spots near throat
Length & width- (1.2-1.5×1.2-2) cm.</td>
<td>Bhat et al., 2018; Ganapathi et al., 1991; Fischer et al., 2011.</td>
</tr>
<tr>
<td></td>
<td>Leaves</td>
<td>Shape-blade cordate
Length & width (5-15×3-8) cm
Leaf-pubescent, base chordate, apex
Acuminate</td>
<td>Bhat et al., 2018; Fischer et al., 2011.</td>
</tr>
<tr>
<td></td>
<td>Fruits</td>
<td>Shape-Berry, fleshy
Color- yellow
Diameter- (1-2) cm</td>
<td>Bhat et al., 2018; Fischer et al., 2011.</td>
</tr>
<tr>
<td></td>
<td>Calyx</td>
<td>Shape- Broadly campanulate
Length- (4-8 mm) pubescent</td>
<td>Bhat et al., 2018; Fischer et al., 2011.</td>
</tr>
<tr>
<td>P. angulata</td>
<td>Flower</td>
<td>Color- Yellow
Shape- bell/star & five dark brown spots near throat
Texture- glabrescent
Size-(1.5-2×2-2.5) mm.</td>
<td>Bhat et al., 2018; Sharma et al., 2015.</td>
</tr>
<tr>
<td></td>
<td>Fruit</td>
<td>Shape- Berry & fleshy
Color- yellow
Diameter-1.2 cm.</td>
<td>Bhat et al., 2018; Sharma et al., 2015.</td>
</tr>
</tbody>
</table>
P. minima

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaves</td>
<td>Shape - blade ovate-lanceolate, length & width - (4.5-5.5×1.5-2.5 cm), texture - glabrescent, base - oblique, wavy margins, apex - acuminate. Bhat et al., 2018; Sharma et al., 2015.</td>
</tr>
<tr>
<td>Calyx</td>
<td>Shape - bell, Campanulate, length - (5-6.5) mm, texture - glabrous. Bhat et al., 2018; Sharma et al., 2015.</td>
</tr>
<tr>
<td>Flower</td>
<td>Color - yellow, shape - shortly tubular & pubescent, diameter - 5 mm. Kumari et al., 2018; Ganapathi et al., 1991; Bhat et al., 2018.</td>
</tr>
<tr>
<td>Fruits</td>
<td>Shape - Berry, fleshy, color - orange, diameter - 6 mm in. Bhat et al., 2018; Ganapathi et al., 1991.</td>
</tr>
</tbody>
</table>

P. alkekengi

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaves</td>
<td>Shape - Campanulate, size - 2.5-3 mm long, texture - pubescent, lobes deltate. Bhat et al., 2018; Kumari et al., 2018.</td>
</tr>
<tr>
<td>Calyx</td>
<td>Shape - blade ovate or ovate-lanceolate, size - (2-3 × 1-1.5) cm, texture - pubescent along veins, base - cuneate, apex - acuminate. Bhat et al., 2018.</td>
</tr>
<tr>
<td>Flower</td>
<td>Color - white, with a five-lobed width - corolla 10–15 mm across with an inflated basal calyx. Bhat et al., 2018; Kumari et al., 2018.</td>
</tr>
</tbody>
</table>

Sources:
- Bhat et al., 2018
- Sharma et al., 2015
- Kumari et al., 2018
- Ganapathi et al., 1991
- Bahmani et al., 2016
- https://en.wikipedia.org/wiki/Physalis_alkekengi
Phytochemical and Therapeutic Potential of Physalis species: A Review

| Fruit | Size- big
Color- bright orange to red fruit-papery covering over it. | Bahmani et al., 2016;
https://en.wikipedia.org/wiki/Physalis_alkekengi |
|-------|--|---|
| Leaves | Color- Green
Size- (6–12) cm long and (4–9) cm broad | Bahmani et al., 2016;
https://en.wikipedia.org/wiki/Physalis_alkekengi |
| Calyx | Matures into the papery orange fruit covering
Size-(4–5)cm long and broad. | Bahmani et al., 2016;
https://en.wikipedia.org/wiki/Physalis_alkekengi |
| *P. longifolia* | Color- Pale yellow, dark yellow or green to purple-brown spots on the base of throat.
Shape- bell shaped with 5 shallow lobes.
Texture- sparsely hairy on the outer surface. | Frederick., 2016;
Kindscher et al., 2012;
https://www.minnesotawildflowers.info/flower/long-leaf-ground-cherry |
| Flower | Color- green turns yellow in ripen.
Shape – round into a papery shell shaped, and dries as the fruit matures. | Frederick 2016;
Kindscher et al., 2012;
https://www.minnesotawildflowers.info/flower/long-leaf-ground-cherry |
| Fruits | Color- Medium to dark green
Shape- lance-elliptic, blunt at the tip
Size- (1 to 5) inches long, up to 3 inches wide
Shape- toothless to irregularly toothed around the edge.
Texture- hairless but may have scattered, appressed hairs especially along major veins. | Frederick 2016;
Kindscher et al., 2012;
https://www.minnesotawildflowers.info/flower/long-leaf-ground-cherry |
| Leaves | 5 pointed lobes, is 10-veined with
Hairs- minute appressed mostly just along the veins and edge. | Frederick 2016;
Kindscher et al., 2012;
https://www.minnesotawildflowers.info/flower/long-leaf-ground-cherry |
<table>
<thead>
<tr>
<th>P. pubescens</th>
<th>P. hispida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flower</td>
<td>Flower</td>
</tr>
<tr>
<td>Color- Yellow with maroon maculations with 5 distinct purple-brown spots towards base. Size- Corolla 5–angled, (1.0-1.30) mm Diameter. Anthers (1.5–2) mm long. Style (4–5) mm long.</td>
<td>Color- Pale yellow, center with faint or no dark spots, 5-angled to entire Size- 0.5 to 0.7 inch. stamens 5, included.</td>
</tr>
<tr>
<td>Fruit</td>
<td>Fruits</td>
</tr>
<tr>
<td>Shape-Berry globular to ovoid, Size-(12–15) mm diam. Seeds disc-shaped, 1.5 mm long, light brown. Pedicels 5–10 mm long.</td>
<td>Fruiting calyx bladdery-inflated, loose-fitting around berry, Size- 0.4 to 0.6 inch diam. Seeds numerous, reniform to ovate, somewhat flattened, minutely pitted.</td>
</tr>
<tr>
<td>Leaves</td>
<td>Leaves</td>
</tr>
<tr>
<td>Shape- Ovate with wavy margin, leaves alternate, lamina ovate to ovate-elliptic, cordate at base. Size- up to 10 cm long, toothed or with obtuse, triangular lobes; petiole to 7 cm long. Color- green.</td>
<td>Shape- Thick leaves, Cauline, alternate; petiole 0.2 to 1 inch, blade elliptic to oblanceolate Size- (1 to 2.8) inches long, width (0.16-1) inch Base & margins- attenuate entire to slightly irregularly, dentate Apex acute to obtuse.</td>
</tr>
<tr>
<td>Calyx</td>
<td></td>
</tr>
</tbody>
</table>
III. Ethnobotanical Aspects of Different Species Of Physalis

The leaves of specific species of *Physalis* are sometimes used for treatment in inflammations of the bladder, liver and spleen. The whole cooked plant is recommended in the treatment of inflammatory processes, such as rheumatism (Hinton, 1976). Most of Amazon valleys, the juice of its fruits are used in treatment of rheumatism, fever as sedative, depurative, and also for relief of earache (Pogan, *et al*., 1989). In Taiwan, traditionally, it was used to prepare the medicine for diabetes, hepatitis, asthma and malaria. In western Africa this herb used as a traditional medicine for the treatment of cancer (Bir *et al*., 1978). It is also considered that extracts of the whole plant of *Physalis* showed antipyretic, analgesic, diuretic, anti-inflammatory, anti-rheumatic activity and in the treatment of hepatitis, sore throat, abdominal pain and cervicitis (Rao *et al*., 197; Pedrosa., 1999). The numerous evidence proved that the different species of *Physalis* plant is traditionally used for the treatment of gout, fever, malaria, asthma, kidney and bladder diseases, jaundice, etc. (Kumar *et al*., 1989; Gupta *et al*., 1996; Beest *et al*., 2014).

| Calyx | Shape- campanulate, 5-lobed Size- (0.4- 0.6) inch, sometimes only along veins, lobes. Texture- Pubescence with long villous. | Frederick Hinton 2016; Dyki *et al*., 1998; http://www.kswildflower.org/flower_details.php?flowerID=695 |
|-------|--|
| P. ixocarpa | Color- Sympetalous corolla of five bright yellow petals with a dark blue or brownish patch near the base. Stamens- Five with different height. Style- Long and thick. | Dyki *et al*., 1998; Beest *et al*., 2014. |
| Flower | Shape- berry similar to tomato fruit. Size- 3-7cm diameter. Color- green, yellow or dark violet or dark purple. | Dyki *et al*., 1996; Beest *et al*., 2014. |
| Fruits | Shape- Leaves alternate, 1 or 2 per node (but not opposite); lamina ovate-lanceolate, cuneate at base. Size- 6 cm long, 3 cm wide, sometimes larger irregularly toothed or lobed; petiole to 6 cm long. | Dyki *et al*., 1998; Beest *et al*., 2014. |
| Leaf | Color- pale yellow with five dull brownish blotches. Pale green when dry. Shape- Fruiting calyx circular in section, Shape - lobes triangular, 1–2 mm long. Corolla broadly stellate to 5–angled, Size- (6–10) mm long, Anthers (1–1.5) mm long. Style (2–2.5) mm long. | Dyki *et al*., 1996; Beest *et al*., 2014. |
et al., 1981). The fruit and other aerial parts of Physalis used in the treatment of boils, wounds, constipation and digestive problems (Shibata et al., 1962).

There are six species of Physalis found in India and they used for various medicinal properties. P. alkekengi (L.) exert various medicinal values like diuretic, antimicrobial in skin and urinary disease like urinary tract infection, as abortifacient (Sharma et al., 2015). It is also used in kidney and bladder stone, inflammation, febrile disease, constipation, general edema, arthritis and rheumatism. P. alkekengi has also anti-neoplastic and anti-cancer activity.

P. ixocarpa fruits are very rich in vitamin C and these fruits have antiseptic properties (Chopra et al., 1956; Grzybek et al., 1986). P. minima has diuretic properties and used as a tonic purgative, antifertility and antitumor agent (Purushothaman et al., 1997). Physalis minima are also used in the cure of colic, earache and paste of roots is used in treatment of backache, edema treatment and gonorrhea (Das et al., 1991; Jain et al., 1984).

Many species of Physalis specially P. longifolia Nutt are used in the treatment of headache, stomach trouble and to cure the wounds and also used as food (Kindscher et al., 2012; Glimore et al., 1977). The leaves of P. peruviana reveal numerous medicinal properties, juice of the leaves used in the treatment of worm infection and the plant whole plant spacially leaves exert diuretic properties (Agarwal et al., 1997). P. peruviana is a plant with different traditional uses; the fruit juice of P. peruviana is directly used in the eye for treatment of common eye disease in Colombia (Garcia et al., 1975; Wong W. et al., 1978). The juice of aerial parts of P. peruviana has anti-diabetic activity (Sanchooli et al., 2011). P. angulata traditionally used as diuretic and cures the stomach troubles used as analgesic and anti-rheumatic. The aerial parts of P. angulata used in treatment of malaria, cancer and also use as anti-inflammatory for cervicitis and hepatitis (Bastos et al., 2006; Lin et al., 1992).

IV. Different Phytochemical Study On The Different Species Of Physalis

About 216 phytochemicals have been isolated from the different species of genus Physalis over the past two decades, including withanolides, sucrose esters, flavonoids, ceramides labdne diterpenes, and others (Zhang et al., 2016). Different species of Physalis contain various carbohydrates, lipids, minerals, vitamins, phytosteroids etc and they contribute in the withanolide type structures. Withanolides are defined as a group of C22, 26 δ- lactone group, first isolated from genus Withania Linn. (Sharma et al., 2015).

<table>
<thead>
<tr>
<th>Name of chemical/Chemical Structure</th>
<th>Species</th>
<th>Activities</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. angulata</td>
<td>Anti-tumor effect, anti-malarial activity, antiileishmanial activity</td>
<td>Vasina et al., 1986; Wen et al., 2016; Fang et al., 2009.</td>
</tr>
<tr>
<td></td>
<td>P. angulata, P. alkekengi</td>
<td>Anti-melanoma effect, antileishmanial activity, antitumor activity, anti-malarial activity, anti-inflammatory effect.</td>
<td>Vasina et al., 1986; Zheng Li et al., 2008; Yang et al., 2016; Fang et al., 2009.</td>
</tr>
<tr>
<td>Physicals</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. angulata</td>
<td>Antitumour activity, antimicrobial activity, anti-malarial activity. Vasina et al., 1986; Magalhaes et al., 2005; Yang et al., 2016.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. angulata</td>
<td>Antitumour activity, antimicrobial activity against Gram-positive bacteria, in dermatitis. Vasina et al., 1986; Anjaneyulu et al., 1998; Pinto et al., 2010.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. angulata</td>
<td>Immunosuppressive activity on T cells activation and proliferation both in vitro and in vivo. Vasina et al., 1986; Xia et al., 2016.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. alkekengi</td>
<td>Anti-ulcer, cytotoxic, anti-inflammatory activity. Wang et al., 2018; Yang et al., 2016; Hong et al., 2014.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. alkekengi</td>
<td>Anti-oxidant, hypoglycemic activity. Kun et al., 2008; Tong et al., 2008; Xia et al., 2016.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Phytochemical and Therapeutic Potential of Physalis species: A Review

<table>
<thead>
<tr>
<th>Compound</th>
<th>Source Species</th>
<th>Therapeutic Activities</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Withanolides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. angulata</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. angulata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>Plant</td>
<td>Activity / Effect</td>
<td>References</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Phytochemicals</td>
<td>Species</td>
<td>Actions</td>
<td>References</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>P. angulata</td>
<td>Trypanocidal activity against epimastigotes and trypomastigotes of T. cruzi in vitro</td>
<td>Ding et al., 2014; Vasina et al., 1986; Ngern et al., 2016.</td>
</tr>
</tbody>
</table>
V. Pharmacological Activities On The Different Species Of Physalis

Anti-inflammatory activity: Anti-inflammatory activity of ethanolic extract of *P. alkekengi* L. calyxes studied by Ji Long and his various workers in 2012. They evaluated the anti-inflammatory activity by HRBC membrane stabilization method in different concentrations and found positive response shown by ethanolic extract (Ji Long et al., 2012). Khan et al. (2008) proven that methanolic extract of whole plant of *P. minima* shows the anti-inflammatory, antipyretic and analgesic activity. *P. angulata* L. aqueous extract prepared from the roots exhibited significant anti-inflammatory activity against Carrageenan induced inflammation (Bastos et al., 2008). Wu and co-workers (2006) reported that, the aqueous extract of the leaves of *P. peruviana* used for the treatment of inflammation in pterygium disease (Wu et al., 2006). further different fractions obtained from calyxes of *P. peruviana* showed anti-inflammatory activity in mice (Franco et al., 2007).
Antioxidant and cytotoxic activity- Anti-oxidant and cytotoxic activities of the aqueous and ethanolic extract of fruits and aerial parts of *P. peruviana* were estimated by using the assay methods of DPPH and MTT respectively. Aqueous extract exert potent anti oxidant activity and 0.43±0.003mg/ml the IC50 values were calculated (Horn Robeta et al., 2015) and for the cell lines HT-29 and SH-SY5Y for IC50 values of cytotoxicity were calculated as 40.79 and 44.24μg/ml respectively. According to these results the aerial part’s extract of *P. peruviana* was found more cytotoxic than the whole plant extract (Lan et al., 2009). In one of the research investigation, the antioxidant properties of leaves of *P. angulata* using aqueous extract was also evaluated. The DPPH and H2O2 scavenging assay were used for the investigation. The leaf extracts were found to be effective (Kumar et al., 2017). The aqueous extract of the leaves of the *P. minima* was evaluated to study of in vitro antioxidant activity. DPPH radical scavenging assay and nitric oxide scavenging assay methods were used to investigate the antioxidant activity of this plant leaves and this plant showed significant anti-oxidant activity (Kumar et al., 2013). The aqueous extract of the fruits of *P. alkekengi* (Yang- Kum et al., 2008) and ethyl acetate extract of the fruits of *P. ixocarpa* also evaluated for their antioxidant potential (Khan et al., 2018). Both the extracts exhibited potential antioxidant activity.

Diuretic activity- Jyothibasu and co-workers (2012) was proven that the methanolic extract of the *P. minima* produced significant diuretic activity in albino wister rats where furosemide was used as positive control (Jyothibassa et al., 2012). The diuretic activity was also evaluated in methanolic extract of *P. angulata* L. leaves where extract was investigated in rats and furosemide was used as the positive control. Diuretic effect of the extract was estimated by calculating volume of urine and electrolytes viz; Na+, K+ & Cl ions content in urine and concluded results showed that *P. angulata* exert the notable diuretic activity (Nanumala et al., 2012).

Anti-diabetic activity- Kasali et al., (2013) reported that aqueous decoction prepared from the dried leaves of *P. peruviana* decrease the concentration of glucose against in the guinea pigs model as diabetes. The ethanolic extract of the entire plant of *P. pubescens* exhibited hypoglycemic effect against alloxan-induced diabetic albino rats (Hasan et al., 2013). Researcher and co- workers (2014), announced the in-vitro anti-diabetic activity of *P. angulata* fruits. Extract of fruits by powdered material of *P. angulata* were prepared by sequential maceration method by using solvents namely, n-hexane, CHCl3, EtOAc, Ace and MeOH (Sateesh et al., 2014) The anti-diabetic activity was examined by inhibition of alpha amylase and alpha glucosidase enzymes and the study exposed that the methanolic extract of fruits inhibited both of the enzymes (Poojari et al., 2014). Haibin and co-workers proven that the aqueous extract of the fruits of *p. alkekengi* showed hypoglycemic effect on male adult Kunming mice (Tong et al., 2007).

Anti- bacterial activity- Melissa and co- workers compared the anti-microbial activity of *P. angulata* crude fruit extract with ZnO ointment against *Pseudomonas aeruginosa* and *Staphylococcus aureus* and ethanolic extract of plant fruits exhibited the highest inhibitory activity against *S. aureus* (Melissa et al., 2005). The result revealed that plant fruits extract is useful against the *S. aureus* infections (Silva T.G. Melissa et al., 2005). Nathiya and Dorcus worked on the antimicrobial activity of the extract of aerial parts and fruits of *P. minima* against Bacillus cereus, Bacillus subtilis, Citrobacter sp., Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, *P. fluorescens* and *Staphylococcus aureus* bacterial strains. According to this study, agar well diffusion method was used. Researchers concluded the ethanolic extract of aerial parts was found to be more effective against their bacterial strains (Nathiya et al., 2012). The antifungal activity of the ethanolic extract of *P. alkekengi* (L.) calyces against *Microsporum canis*, *Candida albicans*, *Trichophyton mentagrophytes* and *Nocardia asteroides* were evaluated by Yang Kun and co- researchers. Ethanolic extracts showed the potent inhibition effect with minimum inhibition concentration of 15.62mg/mL for all tested fungus (Yang et al., 2016). The aqueous and methanolic extract of *P. longifolia* leaves were evaluated against Bacillus subtilis, Pseudomonas aeruginosa, Klebsiella pneumonia and Staphylococcus aureus. These fungal strains were found susceptible to the extract of the plant. This study rationalized the use of plant for treatment of cuts, sores and some skin diseases often reported in traditional medicine (Ghosh et al., 2008). Anti-microbial activity of aqueous and dichloromethane extract of whole plant of *P. peruviana* was evaluated. Both extracts of plant were tested against gram-positive and gram-negative bacteria and some Candida species. Disk diffusion and broth micro dilution methods were used to evaluate the antimicrobial activity of the extracts. The aqueous extract showed moderate activity against fungi and the dichloromethane extract had low activity against fungi (Kamau et al., 2017). Anti-microbial activity of *P. ixocarpa* calyx, fruits and aerial extract using solvents methanol and n-butanol against pathogenic bacteria and fungi, following broth dilution assay was evaluated (Khan et al., 2016).

Antileishmanial activity- The anti-leishmaniasis activity of methanolic extract of the aerial parts of *P. minima* was evaluated by Iqbal and co- workers. This activity of methanolic extract was tested against intracellular.
amstigotes of *Leishmania amazonensis* and *Leishmania major*. Methanolic extract exhibited potent activity against leishmaniosis (Choudhary et al., 2005). The leishmanicidal activity of *P. angulata* was evaluated by Renata and co-researchers. They used the ethanolic extract of stem of the plant. The results showed the potent leishmanicidal activity against the promastigotes of *Leishmania major* (Nogueira et al., 2013).

Anti-gastric ulcer- Effect of alcoholic extract of the leaves and fruits of *P. alkekengi* L. in rats with gastric ulcer was investigated and when compared to the aspirin, the methanolic extract of plant had significantly lower gastric ulcer formation (Wong et al., 2017).

CNS depressant- Dharamveer and co-researchers studied that ethanolic extract of the fruits of *p. minima* showed CNS depressant activity against actophotometer model on the male Albino mice. The locomotor activity was also studied. Ethanolic extract in doses of 50 and 100 mg/kg produced significant reduction in locomotor activity as compared to the control animals (Dharamveer et al., 2009).

Anti-asthmatic activity- Ethanolic extract of the *P. angulata* L. roots was used to evaluate the anti-asthmatic activity in albino mice by ‘Jyothibasu et al.,’ in 2012. Asthma was induced in rats with ovalbumin and the extract of plant inhibited ovalbumin induced asthma by decreasing the release of inflammatory mediators. The anti-asthmatic activity was due to depletion in inflammatory mediator release.

Anti-fertility activity- The anti-fertility activity of petroleum ether extract of the fresh leaves of *P. alkekengi* Linn, was studied. The extract of leaves was prepared using soxhlet extraction method with petroleum ether and the extract showed significant anti-fertility activity in Albino rats (Sudhakaran et al., 2008).

VI. Conclusion

The various species of *Physalis* is widely available in many areas of the world as weed and many species of *Physalis* cultivated for different purposes like medicinal, forage, ornamental, food, and other usages. The presentation can be shaped on the basis of this detailed examination of literature, that the *Physalis* species are being used traditionally, due to their broad remedial potential to treat various diseases. All species are found a rich source of bioactive compounds like different physalins, withanolides, steroids etc. with vast range of health benefits. The morphological data of described species of *Physalis* reveals that there is an massive need to find out new morphotypes for further germplasm maintenance and evaluation, because till today no attention of researchers towards these important aspects. As per all reported phytochemical data, it is concluded that there is a need to identify some more chemotypes for further herbal and allopathic drug formulations. There is huge need to isolate new bioactive components from unmarked species of the genus *Physalis* from many countries of the world. Many studies revealed noteworthy anti-oxidant, anti-asthmatic, anti-inflammatory, anti-cancer, anti-fertility, anti-bacterial, anti-diabetic activities etc. which are described in the different extracts developed from different parts of *Physalis* species. As per the recorded data and study it is cleared that eight species of *Physalis* have been immense studied on different parameters but need to do further extensive pharmacological activities on these species. Different studies and investigations exhibit that, these all species of *Physalis* mainly involved in the immunological effects. So, there pharmacological activities and identified compounds provide us a solid scientific evidence for some of the traditional therapeutic claims. A variety of phytochemicals has been isolated from the different parts of various species of *Physalis*. So, there is a very vast scope for further scientific investigation of *Physalis* species to fixed their therapeutic potency and commercial exploitation. Further, it is the first useful, short and appears to be more crucial review article for the genus *Physalis* L. from origin of India and other countries of world, which will surely help researchers for further exploration of various *Physalis* species.

References

DOI: 10.9790/3008-1404033451 www.iorsjournals.org
Phytochemical and Therapeutic Potential of Physalis species: A Review

Phytochemical and Therapeutic Potential of Physalis species: A Review

[45] https://plants.usda.gov/java/classification servlet? Source=display and classid= PHPE4#

[46] https://www.cab.org/tc/datasheet/40713

Physicochemical and Therapeutic Potential of Physisalis species: A Review

[84] Page no. 766-788.

[87] Samadi K. Abbas. 2015. Potential anticancer properties and mechanisms of action of withanolides. Elsevier Inc. All rights reserved. ISSN 1874-6047. Page no. 74-84.

