Cytotoxic Effect of Methotrexate on Leishmaniadonovani Promastigotes

Buraq Abdulameer Fingan1, Hayder Zuhair Ali2
1(Biology Department, College of Science, University of Baghdad, Baghdad, Iraq)
2(Biology Department, College of Science, University of Baghdad, Baghdad, Iraq)

Abstract: Leishmania is auxotroph to folic acid, antifolates drug inhibit the synthesis and conversion of folate derivatives. In this study, cytotoxic effect of methotrexate was investigated on the procyclic promastigotes proliferation of L. donovani. The results showed a significant (p ≥ 0.05) difference in growth of treated groups at high concentrations (1000, 500, 250, 125.5) μM after 24, 48 hrs., while at 72 hrs. significant difference was observed at all concentration. The IC50 values were measurable after 24, 48 and 72 hrs. and it was 174.238, 52.283 and 109.175 μM, respectively. The present study showed the cytotoxic effect of methotrexate on the proliferation of promastigotes of the visceral type of Leishmania.

Date of Submission: 30-10-2018
Date of acceptance: 15-11-2018

I. Introduction

Leishmaniasis, a complex disease caused by protozoa of the genus Leishmania spp., which can infect humans and several animals through the bite of phlebotomine insect vector (1), it was distributed worldwide and is responsible for a wide spectrum of diseases, including visceral, mucocutaneous or espundia and cutaneous leishmaniasis (1,2). Leishmaniais distinguished two morphologically forms during its lifecycle which required promastigotes, flagellated insect stage and amastigote, non-flagellated form to be completed (3, 4). Leishmania is transmitted through the bite sandflies of the genus Phlebotomus in the Old World and Lutzomyia in the new world (5). Leishmaniasis is prevalent in 88 countries, affecting an estimated 12 million people with approximately 2 million new cases per year. Leishmaniasis has been deemed a tropical affliction that compose one of the seven entities on the list of most important diseases of World Health Organization/Tropical Disease Research (WHO/TDR) in addition to malaria, African Trypanosomiasis, Schistosomiasis, Chagas disease, Filariasis, Leprosy and Tuberculosis. Among these, 5,00,000 are visceral leishmaniasis and 15,00,000 are cutaneous leishmaniasis (6).

Leishmania usually reside within the macrophage of the vertebrate host; to enter the macrophage, Leishmania utilizes a variety of cellular receptors to mediate endocytosis. Once inside the macrophage, Leishmania is protected from phagolysosome degradation by a variety of adaptations to inhibit cellular defense mechanisms (7). No vaccines are presently available against Leishmania infection and treatments rely primarily on chemotherapy(8).

The chemotherapeutic arsenal is limited and includes pentavalent antimonial sodium stibogluconate (Sb) or (Pentostam) as first-line drugs exhibited some problems such as prolonged systemic therapy, less efficacy against various forms and high toxicity and the second-line drugs amphotericin B and pentamidine have limitations for use because of, prolonged length of therapy, high cost and adverse reactions. Leishmania is sensitive to MTX, the drug is not used clinically to treat leishmaniasis (9-11). Methotrexate, folate antimetabolite used since more than 40 years as a potent anticancer agent in cases of leukemia, sarcoma and rheumatic disorders, it was less toxic than the then-current treatments (4, 12). MTX has been found to toxic on some parasites, such as malaria spp. and thus, more investigation are currently on process for screening of this drug on other parasites, such as Leishmania(13). In this study, different concentrations of MTX were screened on the procyclic forms of Leishmania donovani and follow-up was made for 72 hours.

II. Material And Methods

2.1. Parasite culture:
Leishmania donovani isolate was kindly provided by Biotechnology Research Centre/ Al-Nahreen University and it was previously diagnosed as L. donovani by PCR (14). Parasite culture was routinely maintained in vitro in cell-culture media (RPMI) and incubated at 26°C with continuous passages, three times a week.
2.2. Drug concentrations:
The following concentrations (15.6, 31.25, 62.5, 125, 250, 500, 1000) µM of methotrexate was investigated for cytotoxicity screening against L. donovani promastigotes, follow up was made for three times, 24, 48 and 72 hours. Control was made by following the same procedure above but pentostam was added instead of MTX. Triplicates was made for each concentration.

2.3 Cytotoxicity screening (Colorimetric assay):
Alamar Blue is widely used as a metabolic indicator for living cells because it is nontoxic. The biochemical mechanism to resazurin (Blue) is reduced to resorufin (pink). Resazurin was added to the culture in micro-plate of 96 flat bottom wells in a ratio of 1:10 and incubated for 4 hours at 26°C prior reading the plates by ELISA reader (Avusturya®) at 570/600 nm wavelength (15).

2.4 Statistical analysis
The t test was used to determine the significance of methotrexate effect and IC50 was calculated as previously described by (16).

III. Result and discussion
Procyclic insect stage promastigotes of L. donovani was treated with different concentrations of methotrexate to detect the cytotoxicity of this drug on the parasite viability. Results showed that there was a significance difference in absorption between test and control for the high concentration (1000, 500, 250, 125.5) µM after 24, 48 hrs., while at 72 hrs. signifcancy (p ≥ 0.05) was detected at all concentrations shown in figure [1, 2, 3 and 4].

Fig. 1 Microtiter Plate of 96 wells, cytotoxicity of Methotrexate against L. donovani promastigotes after 48 hrs. treatment.

Fig. 2 Methotrexate cytotoxicity, 24 hrs. incubation, (*) significant difference.
Cytotoxic effect of Methotrexate on Leishmania donovani promastigotes

The mean of cell viability measured at the highest concentration of 1000 μM was (51.22, 26.65, 28.02) % after 24, 48 and 72 hours, respectively. Furthermore, the mean of cell viability measured at the lowest concentration of 15.6 μM was (99.93, 100, 74.70) % after 24, 48 and 72 hours respectively, Figures (5, 6 and 7). According to the cytotoxicity and cell viability results, the IC50 was calculated along the three times of follow up and demonstrated a time-dependent inhibition of the parasite growth to 50 % in which the IC50 value was measurable after 24, 48 and 72 hrs. and it was 174.238, 52.283 and 109.175 μM.

Fig. 3 Methotrexate cytotoxicity, 48 hrs. incubation, (*) significant difference.

Fig. 4 Methotrexate cytotoxicity, 72 hrs. incubation, (*) significant difference.

Fig. 5 Cell viability of L. donovani promastigotes treated with Methotrexate, after 24 hours of incubation.
Cytotoxic effect of Methotrexate on Leishmaniadonovani promastigotes

A study by Scott et al. (17) indicated leishmaniacidal activity of L. donovani at 100 µM methotrexate, it was high enough to kill wild type cells in medium not supplemented with folate. MTX ataconcentration of 4 µM did not significantly decrease the rate of cell division of MTX-A5 cell (multiply in folate-deficient medium) to L. donovani, whereas the EC50 value of the drug was approximately 130 µM. Previous results indicated that MTX are potent effect against P. falciparum, with IC50<50 nM. The concentration of methotrexate required to inhibit the growth of wild type L. donovani in Dulbecco’s modified Eagle’s medium was 2 orders of magnitude higher than that reported to inhibit the growth of wild type L. major in M199 medium (17).

In previous study by (18)proved that MTX has more potent parasitical effect on both resistant and susceptible P. falciparum vitro than miltefosine dose on L. donovani promastigotes and the IC50 was 25µM. The Differential toxicity of methotrexate, due to the different of folate concentration contain media between the DME-L culture medium 9.1µM and the M199 medium 23 nM folate. Another study (19) detected the IC50 of Amphotericin(nM), Miltefosine(µM) and Pentamidine (µM) against L. donovani was (8.88, 17.5 and 1.3) L. infantum (42, 15.5, and 2.87) respectively.

The traditional therapy of cutaneous leishmaniasis is usually carried out by the glucantime drug but it is known for its toxicity and leading to broad side effects (20). Miltefosine and Paromomycin are two drugs that have been introduced in the last decade for the therapy of leishmaniasis disease (21). While the IC50 to relative drug such miltefosine for amastigotes L. donovani was 52.0µM. Methotrexate is a potent inhibitor of the enzyme dihydrofolate reductase and causes a depletion of the cellular tetrahydrofolate pools. Despite the insensitivity of L. mexicana promastigotes to methotrexate, the dihydrofolate reductase from this organism was inhibited 50% by MTX at a concentration of only 2 X 10^{-9}M (17). Tetrahydrofolates are necessary for both purine and thymidylate nucleotide biosynthesis in animal cells, and mammalian cells (4). Another study (22) demonstrated the effects of antimionals and NO donors resistance of amastigotes L. infantam 4.7 µM and 37.7µM, respectively. Furthermore, one MTX conjugate that is known to accumulate selectively in the spleen reduces L. donovani infection in vitro and in experimental animals MTX elicited an inhibitory chemotactic response 30–40%, even at concentrations far lower its IC50. Another study done by Scott et al. (17) indicated the
Cytotoxic effect of Methotrexate on Leishmanianodonovani promastigotes

M&B 35769 (May & Baker compounds used, 2,4-diamino-5-[3-[4-4'—chlorophenylphenoxy]-propyl - 1 - oxy) was similarly active against promastigotes of L. donovani and L. major. The M&B 35769-resistant line of L. m. mexicanacould grow in 120µM (50µg/ml) however, revealed that there had been no change in the specific activity of the enzyme. The IC50 of Lmexicanum dihydrofolate reductase to inhibition by methotrexate2 x 10^-3, was very similar to that reported for L. major. The effectiveness of several 2,4-diaminopyrimidines in killing L. mexicanum promastigote demonstrates that antifolates do have potential as agents against this parasite(17).

IV. Conclusion

This study is considered one of the very first trials of screening MTX cytotoxicity on promastigotes of the Iraqi isolates of visceral leishmaniasis, L. donovani.

Acknowledgment

Great thanks to the Dept. of Biology, College of Science, University of Baghdad for giving the opportunity to work in Parasitology lab.

References


DOI: 10.9790/3008-1305056569 wwwIOSRJournals.org