Distribution of K1and K2 serotypes of Klebsiellapneumoniae in water isolates in compare with clinical isolates

Elaf S. Mohammed¹ May T. Flayyih²

¹²Baghdad University, College of Sciences, Biology Department, Baghdad City, Iraq
Corresponding Author: Elaf S. Mohammed

Abstract: Serotypes of10 clinical isolates and 20 water isolates of Klebsiellapneumoniaewere identified by detection of k2A and magA genes by using polymerase chain reaction (PCR) technique. k2Agene was detected in 30% (3/10) of clinical isolates and not found in water isolates, while magA gene was detected in 60% (6/10) of clinical isolates and 15% (3/20)in water isolates. 20% of clinical isolates found to be having both magA and k2Agene. The results in the current study showed that clinical isolates distributed according to their serotypes in to four groups, K1(magA positive), K2(k2A positive), K1/K2(magA& k2A positive) and non K1/K2(magA& k2A negative) serotypes, but K1 serotype was more prevalence than other serotypes, while water isolates distributed in to K1(magA positive) and non K1/K2(magA& k2A negative) serotypes, but non K1/K2 serotype was more prevalence than K1 serotype.

Key words: Klebsiellapneumoniae, water, k2A, magA, serotype.

I. Introduction

Klebsiellapneumoniae is one of the most common Gram-negative bacteria, possess a prominent polysaccharide capsule [1]. It is composed of 63% capsular polysaccharide, 30% lipopolysaccharide and 7% protein. K.pneumoniae may colonize the skin, pharynx or gastrointestinal tract in humans. They form large moist colonies, which tend to coalesce into a mass with prolonged incubation, due to their large mucoid polysaccharide capsule (K antigen) that protects from phagocytosis and aids in adherence [2]. Typically, they express two types of antigens on their cell surface. The first is a lipopolysaccharide (O antigen); the other is a capsular polysaccharide (K antigen). Both of these antigens contribute to pathogenicity; about 77 K antigens and 9 O antigens exist. The structural variability of these antigens forms the basis for classification into various serotypes. The virulence of all serotypes appears to be similar [3, 4]. Capsular serotypes K1 and K2 are considered as predominant virulent strains of K. pneumoniae[5]. Several studies of bacterial pathogenesis have reported that serotype K1; magA is the possible virulence factor for K. pneumoniae[6, 7]. Thus, PCR analysis of magA is a rapid and accurate method to detect capsular K1 strains [8].

This study aimed to detection of the distribution of K1and K2 serotypes of Klebsiellapneumoniae in water isolates in compare with clinical isolates.

II. Materials and Methods

2.1 Isolation and Identification of Bacteria

Thirty eight specimens (urine, blood, burns) were collected in sterilized containers and sixty five surface water samples were taken from different places. The collected clinical specimens were streaked directly on MacConkey agar[9] while water samples were isolated by pour plate method [10]. Clinical and water then cultured on Simmon Citrate agar[11]incubated at 37ºC for 24 hours, then the isolates were subcultured on MacConky agar to obtain pure single isolate. The isolates were identified depending on the morphological features, their response to stain by the Gram stain, and their ability to ferment lactose sugar. The identification was also achieved by using different biochemical tests [11]and by VITEK 2 compact System.

2.2 DNA extraction and estimation of concentration and purity of extracted DNA

DNA extracted from all clinical and water isolates by using PrestoTM Mini gDNA Bacteria kit and the concentration and purity of extracted DNA was tested using Nano- drop system

2.3 Detection of magAandk2A genes by Polymerase Chain reaction(PCR)

PCR assay was performed in a monoplex patterns in order to amplify different fragments of genes under study in a single tube for detecting of genes (magAandk2A).
The primers listed in table (1) were selected for this study; these primers were provided in a lyophilized form, dissolved in sterile distilled water to give a final concentration of 100 pmol/μL and stored in deep freezer until used in PCR amplification.

Table (1): The primers and their sequences used in conventional PCR for detection of *Klebsiella pneumoniae*magAandk2Agenes.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Primer type</th>
<th>Sequence</th>
<th>Length</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>magA</td>
<td>magA-F</td>
<td>GGTGCTCTTTACATCATGCC</td>
<td>1280</td>
<td>[5]</td>
</tr>
<tr>
<td></td>
<td>magA-R</td>
<td>GCAATGGCCATTGTGCGTAG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k2A</td>
<td>k2A-F</td>
<td>CAACCATGGTGTGCATTAG</td>
<td>543</td>
<td>[7]</td>
</tr>
<tr>
<td></td>
<td>k2A-R</td>
<td>TGGTAGCCATATCCCTTGG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.4 PCR Amplification

The extracted DNA, primers and PCR master mix (promega), were mixed together. PCR mixture was set up in a total volume of 20 μL of master mix included 2 μL of each primer, and 3μL of template DNA have been used, the rest volume was completed with sterile de-ionized distilled water, then vortexed. De-ionized water added first, then primers and DNA template added at last. Negative control contained all material except template DNA, so instead that distilled water was added. PCR reaction tubes were centrifuged briefly to mix and placed into thermocycler PCR instrument where DNA was amplified as indicating in the table (2) (3), these tables showed different programs that used for (magA and k2A) genes amplification.

Table (2): Program used to amplify the magA gene according to:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Temperature</th>
<th>Time</th>
<th>Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial denaturation</td>
<td>95°C</td>
<td>5min</td>
<td>35</td>
</tr>
<tr>
<td>Denaturation</td>
<td>94 °C</td>
<td>1 Min</td>
<td></td>
</tr>
<tr>
<td>Annealing</td>
<td>51°C</td>
<td>1 Min</td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td>72 °C</td>
<td>1 Min</td>
<td></td>
</tr>
<tr>
<td>Final Extension</td>
<td>72 °C</td>
<td>10min</td>
<td></td>
</tr>
</tbody>
</table>

Table (3): Program used to amplify the k2A genes according to:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Temperature</th>
<th>Time</th>
<th>Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial denaturation</td>
<td>95°C</td>
<td>5min</td>
<td>30</td>
</tr>
<tr>
<td>Denaturation</td>
<td>94 °C</td>
<td>1 Min</td>
<td></td>
</tr>
<tr>
<td>Annealing</td>
<td>58°C</td>
<td>1 Min</td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td>72 °C</td>
<td>1 Min</td>
<td></td>
</tr>
<tr>
<td>Final Extension</td>
<td>72 °C</td>
<td>10min</td>
<td></td>
</tr>
</tbody>
</table>

III. Results and Discussion

Bacterial isolates which had the ability to utilize citrate as a source of carbon and energy were tested by VITEK 2 system, 10/20 (50%) of clinical isolates and 20/26 (77%) of water isolates were identified as *K. pneumoniae*. Great efforts have been made to understand the virulence determinants of *K. pneumoniae* especially the capsule serotypes, serotypes K1 and K2 considered the most virulent to humans [12]. Serotype-specific genes like a chromosomal gene magA(mucoviscosity associated gene A) is restricted to the gene cluster of *K. pneumoniae* capsule serotype K1 and the chromosomal K2 capsule associated gene (k2A) for the K2 serotype [13]. The concentration of DNA extracted from clinical isolates was (42.61 - 255.9) ng/ml, while DNA extracted from water isolates were (24.5 - 879). The purity of clinical isolates were (1.24- 2.08) ng/ml, while the purity of water isolates were (1.82- 2.09). Monoplex PCR technique was carried on to detect k2A and magA gene in water and clinical isolates of *K. pneumoniae*. In this assay, a specific primers were used, the results showed a band of PCR product with 543bp that represent k2A gene and a band of PCR product with 1280 bp that represent magA gene. The positive result of k2AandmagAgene was confirmed by 1.5% agarose gel electrophoresis stained with red safe stain, electrophoresed in 70 volt for 1 hrs. and photographed under ultraviolet (UV) trans illuminator, figure (1) (2).

k2Agene was detected in 3/10 (30%) of clinical isolates and not found in water isolates, while magA gene was detected in 6/10 (60%) of clinical isolates and 3/20 (15%) of water isolates, table (3-5). 20% of clinical isolates found to be have both magAand k2A gene, 40% of clinical isolates and 85% of water isolates don’t have magAor k2A gene. The results in the current study showed that clinical isolates distributed according to their serotypes in to four groups K1(magA positive), K2(k2Apositive), K1/K2(magA&k2A positive) and non K1/K2(magA&k2A negative) serotypes, but K1 serotype was more prevalence than other serotypes, while water
isolates distributed in to K1(magA positive) and non K1/K2(magA&k2A negative) serotypes, but non K1/K2 serotype was more prevalence than K1 serotype.

Figure (1): Gel electrophoresis of amplified PCR product of k2A gene (543bp) in monoplex pattern, agarose (1.5%). (A, B) represent water isolates, (C) represent clinical isolates, all water isolates were negative to k2A gene while three clinical isolates were positive to it. Lanes (26,27,30) were k2A gene positive, TBE buffer (1x), 70 volt for 1 hrs. Stained with red safe stain. DNA ladder (100 bp).

Figure (2): Gel electrophoresis of amplified PCR product of magA gene (1280bp) in monoplex pattern, agarose (1.5%). (A, B) water isolates, (C) clinical isolates, lanes (3,11,12) of water isolates were positive to magA gene ,lanes (25,26,27,28,29,30) of clinical isolates were positive to it, TBE buffer (1x), 70 volt for 1 hrs. Stained with red safe stain. DNA ladder (100 bp).
Local study by [14] recorded K1, K2, K1/K2 serotypes in clinical isolates of *K.pneumoniae* but not recorded non K1/K2 serotype, their results recorded depending on genotype detection of magA, rmpA genes. They also found that the prevalence of K2 serotype were higher than K1 serotype and these results were not in agreement with the results of the current study which recorded that K1 serotype was more prevalence than other serotypes, but the results of the current study were in agreement with [15, 16] who found that K1 serotype was significantly higher. Also study by [17] found that K1 most common serotype in community acquired and nosocomial *K. pneumoniae* infections. On the other study, 21 isolates where classified as non K1/K2 .These isolates may belong to other serotypes such as K5, K14, K20 [18].

Results of the current study were not agreed with study by [19], they reported that magA virulence gene was not detected in all of the aquatic-borne *K. pneumoniae* isolates, also the PCR assay for the K1 and K2 serotypes illustrated the K2 serotype for six of water isolates. K1 serotype is a major cause of primary liver abscesses and has greater potential for causing metastasis, while K2 is a major cause of secondary liver abscesses [20]. Also K1 serotype was primarily responsible for community-onset bacteremia in patients with less severe underlying illness [21]. The results in the current study showed that clinical isolates have multi serotypes of *K. pneumoniae* than water isolates, so clinical isolates considered more virulent than water isolates.

Local study by [22] revealed the k2A fragment of 543 bp was detected in 11 (27.5%) of clinical *K. pneumoniae* isolates and not found in environmental isolates, these results were corresponding with the results of the current study. Their results also referred that these (pathogenic) isolates have a K2 serotype, and 23 isolate (57.5%) was positive for magA gene (gave a band 1283 bp in size). Their results demonstrated that these pathogenic (23 isolates) have a K1 serotype. Al-Jailawialso pointed that *K. pneumoniae* serotype K1 was the most common found in clinical and environmental samples than K2 and Non-K1/K2 serotype. Based on their study, Molecular diagnosis of *K. pneumoniae* serotype K1 using magA gene is rapid and accurate while using k2A is a rapid and accurate method to molecular diagnosis of *K. pneumoniae* serotype K2.

The k2A gene of *K. pneumoniae* could be used as a highly specific diagnostic method to identify the cps of *K. pneumoniae* capsule K2 serotype, which corresponds to the magA region in the cps gene clusters of K1 isolate [23].

IV. Conclusion

k2A gene was absent in water isolates while its detected in clinical isolates. The results of the present study revealed that *K. pneumoniae* clinical isolates had K1, K2, K1/K2 and non K1/K2 serotypes while water isolates had K1 and non K1/K2, which indicated that clinical isolates had various serotypes more than water isolates.

References

Distribution of K1 and K2 serotypes of Klebsiella pneumoniae in water isolates in compare with clinical isolates.