Studies on Metal Chelating Property and Pharmaceutical Applications of Curcumin Metal Complex.

Dr. M. Amutha¹, J. Sivasakthi¹, Dr. A. Gubendran², P. Dhanasekaran², R. Imayatharasi²

¹Assistant professor, Department of chemistry V.V. Vanniaperumal college for women Virudhunagar, Tamilnadu, India.
²M.Sc Scholar Department of chemistry V.V. Vanniaperumal college for women Virudhunagar, Tamilnadu.
²Associate professor, Department of chemistry Saraswathi Narayanan College, Madurai, Tamilnadu, India.
²M. Phil Scholars, Department of chemistry Saraswathi Narayanan College, Madurai, Tamilnadu, India.

I. Introduction

1.1 Curcumin

“From kitchen to clinic” Curcumin plays a vital role in human life. Curcumin (C₁₇H₁₂O₆) is a component of the Indian spice turmeric, manufactured from the rhizome of the perennial herb Curcuma longa that is widely cultivated in tropical countries in South and South East Asia, especially in China and India. Curcuma longa belongs to the Zingiberaceae (ginger) family [1-5]. Through chemical derivatization, it was clearly established the identity of curcumin as diferuloylmethane or 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione. The two potentially useful derivatives, dicarbomethoxycurcumin and dicarboethoxycurcumin, by treatment of curcumin with two equivalents of methyl- or ethylchloroformate, respectively, in the presence of aqueous potassium hydroxide. These two derivatives are particularly valuable in curcumin chemistry as they are easily accessible in good yields and high purity [6-8].

1.2 Molecular target and chelating ligand effect of curcumin

Various studies have shown that curcumin modulates numerous targets (Figure). These include the growth factors, growth factor receptors, transcription factors, cytokines, enzymes, and genes regulating apoptosis. The chemical structure of curcumin was first identified in 1910 by Milobedzka, von Kostaneccki and Lampe. Through chemical derivatization, it was clearly established the identity of curcumin as diferuloylmethane or 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione. The two potentially useful derivatives, dicarbomethoxycurcumin and dicarboethoxycurcumin, by treatment of curcumin with two equivalents of methyl- or ethylchloroformate, respectively, in the presence of aqueous potassium hydroxide. These two derivatives are particularly valuable in curcumin chemistry as they are easily accessible in good yields and high purity [6-8].

1.3 Molecular target and chelating ligand effect of curcumin
II. Materials and Methods

2.1 Synthesis of Curcumin

Fresh rhizomes were cleaned, washed with deionized water, sliced and dried in the sun for one week and again dried at 50 °C in a hot air oven for 6 hours. Dried rhizomes were cut in small pieces, powdered. Approximately 20g of sample were taken and set up with various solvent from nonpolar to polar. 150mL of solvent was added and extracted according to their boiling point for 6 hours. The solvents used were Hexane (b.pt = 69° C), Chloroform (B.P = 61°C), Ethyl acetate (b.pt=77°C), Methanol (b.pt=65°C), and Acetone (b.pt=56.53° C). And one sample was extracted with hexane for 2 hours and hexane extract was discarded and the powder was re-extracted with methanol for 6 hours. After completion of extraction the dark brown extract was then cooled, filtered, concentrated using rotary evaporator, and finally by vacuum suction to get a crude dried extract which was black orange in color. Each raw sample of turmeric was extracted by the same method and yield was calculated. Curcuma longa (Turmeric) rhizome were collected from Assam - Lakhadong variety. All solvents / Chemicals used were of AR / HPLC grade and obtained from E-Merck. The reference standard of Curcumin was purchased from Sigma Chemicals Co. U.S.A [9-11].

2.2 Synthesis of Curcumin- Chromium complex

The Cr(III)–curcumin complex was synthesized by mixing equi-molar amounts of Chromium chloride (1.0 mmol) and curcumin (0.37 g, 10 mmol) in ethanol and the mixture was heated at 60°C for 1 h under a nitrogen atmosphere and the reaction was further continued for 2h under reflux. Then the complex solution formed was concentrated and the solid residue was separated by filtration and washed several times by water/ethanol to remove unreacted curcumin.

2.3 FTIR

IR spectra of curcumin and its complexes were recorded on spectrometer in KBr discs with resolution of 4 cm-1 and scans of 32. The spectral range was from 4000 to 400 cm-1.

Electronic spectra

Electronic spectra of the ligands and their complexes were recorded in DMSO on a Thermo electron Nicolet evolution 300 UV-vis spectrophotometer.

2.4 Antimicrobial Activity of Compound on Pathogens -Well Diffusion Method

Antimicrobial activity of the extract of compound was determined using well diffusion method. It was performed by sterilizing Mueller Hinton agar media. After solidification, wells were cut on the Mueller Hinton agar using corn borer. The test pathogens were swabbed onto the surface of Mueller Hinton agar plates. Wells were impregnated with 25 μl of the test samples. The plates were incubated for 30 min to allow the extract to diffuse into the medium. The plates were incubated at 30°C for 24 hours, and then the diameters of the zone of inhibition were measured in millimeters. Each antimicrobial assay was performed in triplicate and mean values were reported.

III. Results And Discussion

In order to establish the relative importance of phenolic and enolic centre to the antimicrobial activity of curcumin, the synthesis of only 1:1 complexes were attempted even though 1:2 complexes of curcumin were also reported [12-13]. This was to retain the number of phenolic group as two, similar to the parent curcumin.

Curcumin

Electronic spectra

UV spectrum was recorded in the range of 300-600 nm in DMSO. Maximum absorption band of curcumin was obtained at 438 nm indicating the n- Pi* transition. Figure 4.1 showed the electronic spectra of curcumin.
Studies On Metal Chelating Property And Pharmaceutical Applications Of Curcumin Metal Complex.

Figure 4.1 Electronic spectra of curcumin

Infrared spectra

Figure 4.2 IR spectra of curcumin

The strong broad absorption band centred at 3440 cm$^{-1}$ was interpreted as the result of (O-H) stretching. The peak at 2930 cm$^{-1}$ is characteristic to C-H. The sharp band at 1628 cm$^{-1}$ can be assigned to (C=O). The intense band at 1500 cm$^{-1}$ may be due to (C=C). The sharp peak at 1271 cm$^{-1}$ corresponds to (C-O) of phenol. A medium intense band at 1029 cm$^{-1}$ can be ascribed to (O-CH$_3$). The spectrum obtained was as in Fig 4.2.

Curcumin - metal complex

The UV spectra of curcumin-I exhibited a peak at 434 nm and in metal complex the absorption maxima was shifted to a higher region of 437-442 nm. The complex exhibited a shoulder peak in the range of 450-463 nm indicating Curcumin Metal (M$^{3+}$) charge transfer transition. The absorption data obtained was in agreement with the data for 1:1 complexes as suggested by Barik et al [13-16]. For 1:2 complex Barik et al showed an absorption in the range of 370 nm. Curcumin exhibit keto-enol tautomerism, the enol form that predominate in basic condition easily gets deprotonated to give enolate ion, which is capable of forming a very stable complex with a vast range of metal ion. In acidic condition the diketone form predominate which can also undergo metal chelation. The strong C=O stretching peak observed for curcumin at 1623 cm$^{-1}$ showed a blue shift in metal complex and the value assigned is 1606 cm$^{-1}$ Cr(III) complex. The IR data of the entire synthesized complexes suggest the chelation mode as shown in Fig. 4.4, where the ionic enol form is chelated with metal. In the IR spectrum of curcumin and its metal complexes the O-H band of phenol do not show considerable shift from 3433 cm$^{-1}$ hence concluded that the phenolic O-H is not involved in complex formation. Moreover, the appearance of new bands at 506 cm$^{-1}$ corresponds to ν(M-O). Also the new bands at 1380 cm$^{-1}$ and 1282 cm$^{-1}$ corresponds to symmetric and asymmetric stretching for ν(M-O) which evidenced the participation of the COO$^-$ ion in the complexes. These facts are further supported by the appearance of bands between 1390-1456 cm$^{-1}$ and 1280-1321 cm$^{-1}$ attributed to uasy(COO$^-$) and uasy(COO$^-$).

Figure 4.3 curcumin - Cr metal complex

DOI: 10.9790/3008-1203017277 www.iosrjournals.org 74 | Page
2.5.3.4 Thermal Analysis

TGA was used to determine degradation temperatures and absorbed moisture content. Curcumin was stable up to 150°C and the DTG peak observed at 160°C can be attributed to the dehydroxylation of two -OH groups and after 400°C there is complete decomposition [12-14]. The Cr III complex showed a weight loss around 175°C corresponding to loss of coordinated water (weight loss found: 3.7%, calcld 3.8%). The Cr(III) complex showed a weight loss at 165°C due to loss of coordinated water (weight loss found: 3.8%, calcld 4.0%).
Antimicrobial activity of the compound against bacterial pathogens
Pharmaceutical applications of Cr-Curcumin complex was studied for Staphylococcus aureus, E. coli, Klebsiella pneumonia and Pseudomonas fluorescence. On the basis of MCI zone area the activity of the complex is in the order, Klebsiella pneumonia > E. coli > Staphylococcus aureus > Pseudomonas fluorescence. The following figures (1-4) showed the antimicrobial activity for the microbes.

Plate: 1. complex against Staphylococcus aureus

Plate: 2. complex against E. coli

Plate: 3. complex against Klebsiella pneumonia

Plate: 4. complex against Pseudomonas fluorescence

<table>
<thead>
<tr>
<th>Test organisms</th>
<th>Cr</th>
<th>Solvent control</th>
<th>Standard Amp 10µg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>40</td>
<td>NZ</td>
<td>16</td>
</tr>
<tr>
<td>E. coli</td>
<td>43</td>
<td>NZ</td>
<td>14</td>
</tr>
<tr>
<td>Klebsiella pneumonia</td>
<td>47</td>
<td>NZ</td>
<td>23</td>
</tr>
<tr>
<td>Pseudomonas fluorescence</td>
<td>32</td>
<td>NZ</td>
<td>19</td>
</tr>
</tbody>
</table>

Solvent used: DMSO (Dimethyl Sulphoxide)
Standard used: Ampicillin 10 µg.
IV. Conclusion

The novel Cr-Curcumin complex was synthesized and its structure was confirmed by FT-IR spectra. The interaction of curcumin and Cr(III) was significant Cr(curcumin)₂. The diffuse reflectance IR spectra indicated that the complex was reasonably stable both in aqueous solution and in solid state. Pharmaceutical applications of Cr-Curcumin complex were studied for Staphylococcus aureus, E. coli, Klebsiella pneumonia and Pseudomonas fluorescence. On the basis of MCI zone area, the activity of the complex is in the order, Klebsiella pneumonia > E. coli > Staphylococcus aureus > Pseudomonas fluorescence. Results obtained provide a promising role of Chromium-curcumin complexes in diverse biological applications especially for UTI patients. It is simple to prepare and cost-effective drug for patients. In the complex of curcumin, the enolate form of curcumin ligands to the metal. The complexes have comparable antimicrobial activity to parent curcumin-I, establishing the minimal involvement of keto-enol moiety of curcumin as the antioxidant centre and hold up the phenolic -OH as the prime centre for the antioxidant activity. Thus it can conclude that different parts of curcumin help in different way to accelerate its biological property. The C=O group as metal chelator reducing oxidative stress, phenol as antioxidant centre and neutral hydrophobic conjugated hydrocarbon bridge facilitate the penetration into the microbes-cell barrier.

Reference

[7]. Vogel, H.A.; Pelletier, J. Curcumin—biological and medicinal properties. J. Pharma1815, 2, 50.
[14]. Li, M.; Ngadi, M.O.; Ma, Y. Optimisation of pulsed ultrasonic and microwave-assisted extraction for curcuminoids by response surface methodology and kinetic study. Food Chem. 2014, 165, 29–34.