Strong Result for Level Crossings of Random Polynomials

${ }^{1}$ Dr.P.K.Mishra, ${ }^{2}$ A.K. Mansingh
${ }^{1}$ Dept. of Mathematics and Humanities, CET, BBSR, ODISHA, INDIA
${ }^{2}$ Dept. of Basic Science and humanities, MITM, BBSR, ODISHA, INDIA

Abstract: Let N_{n} be the number of real roots of the algebraic equation
$f_{n}(\mathrm{x})=\sum_{\mathrm{k}=0}^{\mathrm{n}} \xi_{\mathrm{k}} \mathrm{X}^{v}=0$ where $\xi_{\mathrm{k}} \mathrm{X}^{v}$ are independent random variables assuming real values only.
Then there exists an integer n_{0} such that for each $n>n_{0}$ the number of real roots of most of the equations $f(x)=0$ is at least en $\log n$ except for a set of measure at most $\frac{\mu}{\left(\in_{\mathrm{n} 0} \log \mathrm{n}_{0}\right)}$.
1991 Mathematics subject classification (Amer. Math. Soc.): 60 B 99.
Keywords and Phrases: Independent identically distributed random variables, random algebraic polynomial, random algebraic equation, real roots

I. Theorem

Let $f_{n}(x, w)$ be a polynomial of degree n whose coefficients are independent random variables with a common characteristics function $\exp \left(-C|t|^{\alpha}\right)$, where $\alpha=1$ and C is a positive constant. Take, $\left\{e_{n}\right\}$ to be any sequence tending to zero such that $e_{n} \log n$ tends to infinity as n tends to infinity. Then there exists an integer n_{0} such that for each $n>n_{0}$ the number of real roots of most of the equations $f(x)=0$ is at least en $\log n$ except for a set of measure at most $\frac{\mu}{\left(\epsilon_{\mathrm{n} 0} \log n_{0}\right)}$.

II. Introduction

Let N_{n} be the number of real roots of the algebraic equation

$$
f_{n}(\mathrm{x})=\sum_{\mathrm{k}=0}^{\mathrm{n}} \xi_{\mathrm{k}} \mathrm{x}^{v}=0
$$

where $\xi_{\mathrm{k}} \mathrm{X}^{v}$ are independent random variables assuming real values only. Several authors have estimated bounds for N_{n} when the random variables satisfy different distribution laws. Littlewood and Offord [2] made the first attempt in this direction. They considered the cases when the $\xi_{\mathrm{k}} \mathrm{X}^{v}$ are normally distributed or uniformly distributed in $(-1,+1)$ or assume only the values +1 and -1 with equal probability. They obtained in each case that

$$
P_{r}\left(N_{n}>\frac{\mu \log n}{\log \log \log n}\right)>1-\frac{\mathrm{A}}{\log n}
$$

Samal [3] has considered the general case when the $\xi_{\mathrm{k}} \mathrm{X}^{v}$ have identical distribution, with exception zero, variance and third absolute moment finite and non-zero. He has shown that $\mathrm{N}_{\mathrm{n}}>\mathrm{s}_{\mathrm{n}} \operatorname{logn}$ outside an exceptional set whose measure tends to zero as n tends to infinity, where s_{n} tends to zero, but $s_{n} \log n$ tends to infinity.

Samal and Mishra [4] have considered the case the $\xi_{\mathrm{k}} \mathrm{X}^{v}$ have a common characteristics function exp $\left(-\mathrm{C} \mid \mathrm{t}^{\alpha}\right)$ where C is a positive constant and $\alpha \geq 1$. They have shown that

$$
N_{n}>\frac{\mu \log n}{\log \log n}
$$

outside an exceptional set measure at most
$\left\{\begin{array}{l}\frac{\mu^{\prime}}{(\log \log n)(\log n)^{\alpha-1}}, \\ \frac{\mu \log \log n}{\log n}\end{array}\right\}$ if $1 \leq \alpha<2$, if $\alpha=2$
In all the above cases the exceptional set depends upon n. Evans [1], was the first to obtain 'strong result' for these bounds. In such case the exceptional set is independent of the degree n of the polynomial. We use the term 'strong result' in the following sense:

All the above results are of the form
$\mathrm{P}\left(\frac{\mathrm{N}_{\mathrm{n}}}{\Delta_{\mathrm{n}}}>\mu\right) \rightarrow 1$ as in tends to infinity
whereas the theorem of Evans is of the form
$\mathrm{P}\left(\operatorname{Sup}_{\mathrm{n}>\mathrm{n}_{0}} \frac{\mathrm{~N}_{\mathrm{n}}}{\Delta_{\mathrm{n}}}>\mu\right) \rightarrow 1$ as n_{0} tends to infinity.
Evans [1] has shown, in case of normally distributed coefficients, that there exists an integer n_{0} such that for $\mathrm{n}>\mathrm{n}_{0}$.

except for a set of measure at most $\frac{\mu^{\prime} \log \log n_{0}}{\log n_{0}}$
Samal and Mishra [5] have shown in the case of characteristic function exp $\left(-\mathrm{C}|t|^{\alpha}\right)$ that for $\mathrm{n}>\mathrm{n}_{0}$
$N_{n}>\frac{\mu \log n}{\log \log n}$
outside an exceptional set of measure at most
$\frac{\mu^{\prime}}{\left\{\log \left(\frac{\log n_{0}}{\log \log n_{0}}\right)\right\}^{\alpha-1}}$
where $\alpha>1$.

In [7], they have considered the 'strong result' in the general case. Assuming that the random variables (not necessarily identically distributed) have exception zero, variance and third absolute moment non-zero finite, they have shown that for $\mathrm{n} \geq \mathrm{n}_{0}$.

$$
N_{n}>(\mu \log n) / \log \left\{\left(K_{n} / t_{n}\right) \log n\right\}
$$

outside a set of measure at most

provided $\quad \lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{P}_{\mathrm{n}}}{\mathrm{t}_{\mathrm{n}}}$ is finite and $\quad \log \quad\left(\frac{\mathrm{K}_{\mathrm{n} 0}}{\mathrm{t}_{\mathrm{n} 0}} \log n_{0}\right)=0 \quad$ (logn) where $\mathrm{K}_{\mathrm{n}}=\operatorname{maX}_{0 \leq v \leq \mathrm{n}} \sigma_{v}, \mathrm{t}_{\mathrm{n}}=\operatorname{maX}_{0 \leq v \leq \mathrm{n}} \sigma_{v}$ and $\max _{0 \leq v \leq \mathrm{n}} \tau_{v} \sigma^{2}{ }_{v}, \tau^{3}{ }_{v}$ being the variance and third absolute moment respectively of ξ_{v}.

Our object is to improve the 'strong result' for lower bound in case of characteristic function exp $\left(-\mathrm{C}|\mathrm{t}|^{\alpha}\right)$. We have shown that for $\mathrm{n}>\mathrm{n}_{0}$.
$N_{n}>\in_{n} \log n$
Outside an exceptional set of measure at most $\left(\frac{\mu^{\prime}}{\in_{n \mathrm{O}} \mathbf{l O g n}_{0}}\right)$ where $\in_{\mathrm{n}} \rightarrow 0$, but $\in_{\mathrm{n} 0} \log \mathrm{n} \rightarrow \infty$.

The result of Evans [1] is a special case of ours and is obtained by taking $\alpha=2$ and $\epsilon_{\mathrm{n}}=(\log \log n)^{-1}$ in our theorem 1. The result of Samal and Mishra [5] is also a special case of our theorem 1. On the other hand our exceptional set is smaller.

All authors who have estimated bounds for N_{n} have used one kind of basic technique originally used by Littlewood and Offord [2].

We shall denote μ for positive constants which may have different values in different occurrences.
We suppose always that n is large so that any inequalities true when n is large may be taken as satisfied.
Throughout the paper, $[\mathrm{x}]$ will denote the greatest integer not exceeding x .
It may be noted that although Evans [1] is a special case of ours, a much better estimate for the lower bound with smaller exceptional set can be derived from our theorem 1 . For example, if we take $\alpha=2$, $\epsilon_{\mathrm{n}}=(\log \log \mathrm{n})^{-\mathrm{p}}$ where $0<\mathrm{p}<1$, then for $\mathrm{n}>\mathrm{n}_{0}$.

$$
N_{n}>\frac{\log n}{(\log \log n)^{p}}
$$

outside an exceptional set of measure at most

$$
\frac{\mu\left(\log \log n_{0}\right)^{\mathrm{p}}}{\log n_{0}}
$$

Lemma 1.2.

If a random variable ζ has characteristic function $\exp \left(-C|t|^{\alpha}\right)$, then for every e>0

$$
\mathrm{P}_{\mathrm{r}}\{|\xi|>\in\} \leq \frac{2^{1+\alpha} \mathrm{C}}{1+\alpha} \frac{1}{\in^{2}}
$$

This lemma is due to Samal and Mishra [4].

Proof of the Theorem

Take constant A and B such that $0<B<1$ and $A>1$. Choose β_{m} such that β_{m} and $\frac{\log m}{\log \beta_{m}}$ both tend to infinity as m tends to infinity. Let

$$
\begin{equation*}
\lambda_{\mathrm{m}}=\mathrm{m}^{2 / \alpha} \beta_{\mathrm{n}}, \mathrm{M}_{\mathrm{n}}=\left[2^{\alpha} \beta_{\mathrm{n}}{ }^{\alpha}\left(\frac{\mathrm{Ae}}{\mathrm{~B}}\right)\right]+1 . \tag{1.1}
\end{equation*}
$$

So $\quad \mu_{1} \beta_{\mathrm{n}}{ }^{\alpha} \leq \mathrm{M}_{\mathrm{n}} \leq \mu_{2} \beta_{\mathrm{n}}{ }^{\alpha}$
We define

$$
\Phi(\mathrm{X})=\mathrm{x}^{[\log \mathrm{x}]+\mathrm{x}}
$$

Let k be the integer determined by

$$
\begin{equation*}
\varphi(8 \mathrm{k}+7) \mathrm{M}_{\mathrm{n}}^{8 \mathrm{k}+7} \leq \mathrm{n}<\varphi(8 \mathrm{k}+11) \mathrm{M}^{8 \mathrm{k}+11} \tag{1.2}
\end{equation*}
$$

The first inequality gives $\mathrm{k} \leq \frac{\log \mathrm{n}}{\log \beta_{\mathrm{m}}}$. The second inequality gives

$$
\begin{aligned}
& \log \leq\{\log (8 \mathrm{k}+11)\}^{2}+(8 \mathrm{k}+11) \log (8 \mathrm{k}+11)+(8 \mathrm{k}+11) \log \mathrm{M}_{\mathrm{n}} \\
< & 2(8 \mathrm{k}+11)+(8 \mathrm{k}+11)^{2}+(8 \mathrm{k}+11) \log \mathrm{M}_{\mathrm{n}} \\
< & \mu \mathrm{k}^{2} \log \mathrm{M}_{\mathrm{n}}
\end{aligned}
$$

So

$$
\mathrm{k}>\mu \sqrt{\frac{\log \mathrm{n}}{\log M_{\mathrm{n}}}}>\mu^{\prime} \sqrt{\frac{\log \mathrm{n}}{\log \beta_{\mathrm{m}}}} .
$$

Thus

$$
\begin{equation*}
\mu^{\prime} \sqrt{\frac{\log n}{\log \beta_{\mathrm{m}}}<\mathrm{k} \leq \mu} \sqrt{\frac{\log n}{\log \beta_{\mathrm{m}}}} . \tag{1.3}
\end{equation*}
$$

By the condition imposed on β_{n} it follows that k tends to infinity as n tends to infinity. We have $\mathrm{f}(\mathrm{x})=\mathrm{U}_{\mathrm{m}}+\mathrm{R}_{\mathrm{m}}$ at the points

$$
\begin{equation*}
X_{m}=\left\{1-\frac{1}{\varphi(4 \mathrm{~m}+1) \mathrm{M}_{\mathrm{n}}^{4 \mathrm{~m}}}\right\}^{1 / \alpha} \tag{1.4}
\end{equation*}
$$

for $\mathrm{m}=[\mathrm{k} / 2]+1,[\mathrm{k} / 2]+2, \ldots \ldots \ldots \ldots . \mathrm{k}$ where

$$
\mathrm{U}_{\mathrm{m}}=\sum_{1} \xi v \mathrm{X} v, \mathrm{R}_{\mathrm{m}}=\left(\sum_{2}+\sum_{3}\right) \xi v \mathrm{X} v
$$

the index v ranging from $\varphi(4 m+1) M^{4 m-1}{ }_{n}+1$ to $\varphi(4 m+3) M^{4 m+3}{ }_{n}$ in \sum_{l}, from 0 to $\varphi(4 \mathrm{~m}+1) \mathrm{M}_{\mathrm{n}}^{4 \mathrm{~m}-1}$ and from $\varphi(4 \mathrm{~m}+3) \mathrm{M}_{\mathrm{n}}^{4 \mathrm{~m}+3}+1$ to n in \sum_{3}. We also have

$$
\begin{equation*}
\mathrm{f}\left(\mathrm{x}_{2 \mathrm{~m}}\right)=\mathrm{U}_{2 \mathrm{~m}}+\mathrm{R}_{2 \mathrm{~m}}, \mathrm{f}\left(\mathrm{x}_{2 \mathrm{~m}+1}\right)=\mathrm{U}_{2 \mathrm{~m}+1}+\mathrm{R}_{2 \mathrm{~m}+1} \tag{1.5}
\end{equation*}
$$

Obviously $U_{2 m}$ and $U_{2 m+1}$ are independent random variables. Again it follows from (1.3) that $2 k+1<n$ for larger n. Also the maximum index in $U_{2 m+1}$ for $m=k$ is $\varphi(8 k+7) M^{8 k+7}{ }_{n}$, which, by (1.2) is consistent with (1.5).

Let $\mathrm{V}_{\mathrm{m}}=\left(\sum_{1} \mathrm{X}^{\alpha \nu}{ }_{\mathrm{m}}\right)^{1 / 2}$. Then

$$
\begin{align*}
& \mathrm{V}^{\alpha}{ }_{\mathrm{m}}=\sum_{1} \mathrm{x}^{\alpha \nu} \mathrm{m}^{>}{ }^{\varphi(4 \mathrm{~m}-1) \mathrm{M}^{4 \mathrm{~m}-1} \mathrm{n}^{+1}} \sum_{\varphi(4 \mathrm{~m}-1) \mathrm{M}^{4 \mathrm{~m}-1}{ }_{\mathrm{n}}+1}^{\alpha v} \mathrm{x}^{\alpha \nu}{ }_{\mathrm{m}} \\
& >\left\{\varphi(4 \mathrm{~m}+1) \mathrm{M}^{4 \mathrm{~m}}{ }_{\mathrm{n}}\right\}-\varphi(4 \mathrm{~m}-1) \mathrm{M}^{4 \mathrm{~m}-1} \mathrm{n}^{x^{2 \phi(4 m+1) M_{n}^{4 m}}{ }_{m}, ~} \\
& >\left\{\varphi(4 \mathrm{~m}+1) \mathrm{M}^{4 \mathrm{~m}}{ }_{\mathrm{n}}\right\}\left\{1-\frac{\varphi(4 \mathrm{~m}-1)}{\varphi(4 \mathrm{~m}+1)} \frac{1}{M_{n}}\right\}\left(e^{-1} / A\right) \\
& >\left\{\varphi(4 \mathrm{~m}+1) \mathrm{M}^{4 \mathrm{~m}}{ }_{\mathrm{n}}\right\}(B / A) e^{-1} \tag{1.6}
\end{align*}
$$

when n is large

Now we estimate

$$
\begin{aligned}
& \mathrm{P}=\mathrm{P}_{\mathrm{r}}\left\{\left(U_{2 m}>\mathrm{V}_{2 m}, U_{2 m+1}<-\mathrm{V}_{2 m+1}\right) \cup\left(U_{2 m}<-\mathrm{V}_{2 m}, U_{2 m+1}>\mathrm{V}_{2 m+1}\right)\right\} \\
& \mathrm{P}_{\mathrm{r}}\left\{\left(U_{2 m}>\mathrm{V}_{2 m}, \operatorname{Pr}\left(U_{2 m+1}<-\mathrm{V}_{2 m+1}\right)+\operatorname{Pr}\left(U_{2 m}<-\mathrm{V}_{2 m}\right) \operatorname{Pr}\left(U_{2 m+1}>\mathrm{V}_{2 m+1}\right)\right\}\right.
\end{aligned}
$$

Since the characteristic function of ξ_{v} is $\exp \left(-\mathrm{C}|t|^{\alpha}\right)$, the characteristic function of $\mathrm{U}_{2 \mathrm{~m}}$ is therefore

$$
\exp \left\{\left(-\mathrm{C}|\mathrm{t}|^{\alpha}\right) \sum_{4} \mathrm{x}^{\alpha \nu}{ }_{2 \mathrm{~m}}\right\}=\exp \left(-\mathrm{C} \mid \mathrm{t}^{\alpha} \mathrm{V}^{\alpha}{ }_{2 \mathrm{~m}}\right)
$$

where the index V ranges from $\varphi(8 \mathrm{~m}-1) \mathrm{M}^{\mathrm{m}-1}{ }_{\mathrm{n}}+1$ to $\varphi(8 \mathrm{~m}+3) \mathrm{M}_{\mathrm{n}}{ }^{8 \mathrm{~m}+3}$ in \sum_{4}. Therefore the characteristic function of $U_{2 m} / V_{2 m}$ is $\exp \left\{\left(-\mathrm{C}|\mathrm{t}|^{\alpha}\right)\right\}$, which is similarly also the characteristic function $U_{2 m+1} / V_{2 m+l}$. Thus the characteristic function is dependent on m .

Let $\mathrm{F}(\mathrm{x})$ be the common distribution function. Hence
$\mathrm{P}_{\mathrm{r}}\left\{\left(U_{2 m}>\mathrm{V}_{2 m}\right)=\operatorname{Pr}\left(U_{2 m} / \mathrm{V}_{2 m}>1\right)=1-\operatorname{Pr}\left(U_{2 m} / \mathrm{V}_{2 m} \leq 1\right)=1-\mathrm{F}(1).\right\}$
Thus $\mathrm{P}=\{1-\mathrm{F}(1)\} \mathrm{F}(-1)+\mathrm{F}(-1)\{1-\mathrm{F}(1)\}=2 \mathrm{~F}(-1)\{1-\mathrm{F}(1)\}=\delta$ (say) .
Obviously $\delta>0$.

1.2. We shall need the following lemmas.

Lemma 1.2.

$$
\begin{aligned}
& \left|\sum_{3} \xi \mathrm{vx} v_{\mathrm{m}}\right|<\mathrm{V}_{\mathrm{m}} / 2 \text { except for a set of measure at most } \\
& \frac{2^{1+2 \alpha} \mathrm{CAe}}{\mathrm{~B}(1+\alpha)} \exp \left\{-(4 m+1)^{2} \mathrm{M}_{\mathrm{n}}^{2}\right\} \text { for sufficiently large } \mathrm{n} .
\end{aligned}
$$

Proof.
The characteristics function of

$$
\begin{aligned}
& \left|\sum_{3} \xi v x v_{\mathrm{m}}\right| \text { is } \exp \left\{-\mathrm{C}|\mathrm{t}|^{\alpha} \sum_{3} \mathrm{x}^{\alpha v}{ }_{\mathrm{m}}\right\} \\
& \leq \frac{2^{1+2 \alpha} \mathrm{C}}{(1+\alpha) \mathrm{V}^{\alpha}{ }_{\mathrm{m}} \mathrm{x}^{\alpha v}{ }_{\mathrm{m}}}
\end{aligned}
$$

But

$$
\begin{aligned}
& \left|\sum_{3} \mathrm{X} v_{\mathrm{m}}<\sum_{\varphi(4 \mathrm{~m}+3) \mathrm{M}^{4 \mathrm{~m}+3+1}}^{\infty} \mathrm{X}_{\mathrm{m}}^{\alpha v}\right|=\frac{\left.X^{\alpha\left\{\varphi(4 \mathrm{~m}+3) \mathrm{M}^{4 \mathrm{~m}+3+1}\right.}\right\}_{\mathrm{m}}}{1-\mathrm{X}^{\alpha}{ }_{\mathrm{m}}} \\
& =\varphi(4 \mathrm{~m}+3) \mathrm{M}^{4 \mathrm{~m}+3+1}\left\{1-\frac{1}{\varphi(4 \mathrm{~m}+3) \mathrm{M}^{4 \mathrm{~m}+3+1}}\right\}^{\varphi(4 \mathrm{~m}+3) \mathrm{M}^{4 \mathrm{~m}+3+1}}
\end{aligned}
$$

Since

$$
\begin{aligned}
& \varphi(4 \mathrm{~m}+3) \mathrm{M}^{4 \mathrm{~m}}+3+1 \\
&>(4 \mathrm{~m}+3)^{[\log (4 \mathrm{~m}+3)]+(4 \mathrm{~m}+3)} \mathrm{M}_{\mathrm{n}}{ }^{4 \mathrm{~m}+3} \\
&>(4 \mathrm{~m}+1)^{[\log (4 \mathrm{~m}+1)]+(4 \mathrm{~m}+1)+2} \mathrm{M}_{\mathrm{n}}^{4 \mathrm{~m}+1} \mathrm{M}_{\mathrm{n}}{ }^{2} \\
&>\varphi(4 \mathrm{~m}+1)(4 \mathrm{~m}+1) \mathrm{M}_{\mathrm{n}}{ }^{4 \mathrm{~m}} \mathrm{M}_{\mathrm{n}}^{2}
\end{aligned}
$$

We have

$$
\sum_{3} \mathrm{X}_{\mathrm{m}}^{\alpha v}<\varphi(4 \mathrm{~m}+1) \mathrm{M}_{\mathrm{n}}^{4 \mathrm{~m}} \exp \left\{-(4 \mathrm{~m}+1)^{2} \mathrm{M}_{\mathrm{n}}^{2}\right\}
$$

Hence using (1.6), we obtain

$$
\mathrm{P}_{1}<\frac{2^{1+2 a} \mathrm{CAe}}{\mathrm{~B}(1+\alpha)} \exp \left\{-(4 \mathrm{~m}+1)^{2} \mathrm{M}_{\mathrm{n}}{ }^{2}\right\}
$$

as required

Lemma 1.3.

$$
\left|\sum_{2} \xi v X^{v}{ }_{\mathrm{m}}\right|<\lambda_{\mathrm{m}}\left(\sum_{2} \xi v \mathrm{X}_{\mathrm{m}}^{v}\right)^{1 / \alpha} \text { except for a set of measure at most } \frac{2^{1+2 \alpha} \mathrm{C}}{(1+\alpha) \lambda^{\alpha}{ }_{\mathrm{m}}}
$$

This follows directly from lemma 1.1.
1.3. Now

$$
\begin{aligned}
& \lambda_{\mathrm{m}}\left(\sum_{2} \xi v \mathrm{X}_{\mathrm{m}}{ }^{\mathrm{m}}\right)^{1 / \alpha}<\lambda_{\mathrm{m}}\left\{\varphi(4 \mathrm{~m}-1) \mathrm{M}_{\mathrm{n}}{ }^{4 \mathrm{~m}-1}+1\right\}^{1 / \alpha} \\
& =\lambda\left\{\varphi(4 \mathrm{~m}-1) \mathrm{M}_{\mathrm{n}}{ }^{4 \mathrm{~m}-1}\left(1+\frac{1}{\varphi(4 \mathrm{~m}-1) \mathrm{M}_{\mathrm{n}}^{4 \mathrm{~m}-1}}\right)^{1 / \alpha}\right\} \\
& <2^{1 / \alpha} \lambda_{\mathrm{m}}\left\{\varphi(4 \mathrm{~m}-1) \mathrm{M}_{\mathrm{n}}{ }^{4 \mathrm{~m}-1}\right\}^{1 / \alpha} \\
& =2^{1 / \alpha} \lambda_{\mathrm{m}}\left\{(4 \mathrm{~m}-1)^{[\operatorname{LOG}(4 \mathrm{M}-1)+(4 \mathrm{M}-1)} \mathrm{M}_{\mathrm{n}}{ }^{4 \mathrm{~m}-1}\right\}^{1 / \alpha} \\
& <\left\{\frac{2^{1 / \alpha} \lambda_{m}\left\{(4 \mathrm{~m}-1)^{[\operatorname{LOG}(4 \mathrm{M}-1)+(4 \mathrm{M}-1)} \mathrm{M}_{\mathrm{n}}{ }^{4 \mathrm{~m}-1}\right\}}{\left\{(4 \mathrm{~m}+1)^{2} \mathrm{M}_{\mathrm{n}}\right\}}\right\}^{1 / \alpha} \\
& <\left\{\frac{2 \lambda^{\alpha}{ }_{m} \varphi\left\{(4 m+1) M_{n}{ }^{4 m}\right\}}{\left\{16 m^{2} M_{n}\right\}}\right\}^{1 / \alpha} \\
& <\left\{\frac{2 \lambda^{\alpha}\left(\frac{\mathrm{Ae}}{\mathrm{~B}}\right) \mathrm{V}_{\mathrm{n}}{ }^{4 \mathrm{~m}}}{\left\{16 \mathrm{~m}^{2} \mathrm{M}_{\mathrm{n}}\right\}}\right\}^{1 / \alpha} \\
& <\left\{\frac{2 \lambda^{\alpha}\left(\frac{A e}{B}\right) V_{n}{ }^{4 m}}{\left\{16 m^{2} M_{n}\right\}}\right\}^{1 / \alpha}<\left\{\frac{\beta^{\alpha}\left(\frac{A e}{B}\right) V_{n}{ }^{\alpha}}{\left\{M_{n}\right\}}\right\}^{1 / \alpha} \\
& <\frac{1}{2} \mathrm{~V}_{\mathrm{m}}
\end{aligned}
$$

The last two steps above follow from (1.1) and (1.6). Hence by using lemmas 1.2 and 1.3 , we have R_{m} $<\mathrm{V}_{\mathrm{m}}$ for every sufficiently large n except for a set of measure at most

Thus we have
$\left|\mathrm{R}_{2 \mathrm{~m}}\right|<\mathrm{V}_{2 \mathrm{~m}}$ and $\left|\mathrm{R}_{2 \mathrm{~m}+1}\right|<\mathrm{V}_{2 \mathrm{~m}+1}$
for $\mathrm{m}=\mathrm{m}_{0}, \mathrm{~m}_{0}+1 \ldots \ldots . . \mathrm{k}$, where $\mathrm{m}_{0}=[\mathrm{k} / 2]+1$
The measure of the exceptional set is at most

$$
\begin{align*}
& \mu \exp \left\{-\left(4 m^{2} M_{n}^{2}\right\}+\frac{\mu^{\prime}}{\lambda^{\alpha}{ }_{2 m}} \leq \mu \exp \left\{-(2 m+1) M_{n}^{2}\right)\right\}+\frac{\mu^{\prime}}{\lambda^{\alpha}{ }_{2 m+1}} \\
& <\mu \exp \left\{\left(-m^{2} M_{n}^{2}\right)\right\}+\frac{\mu_{2}}{\lambda^{\alpha}{ }_{m}} \tag{1.7}
\end{align*}
$$

1.4. We define the events E_{m} and F_{m} as follows:

$$
\left.\begin{array}{l}
\mathrm{E}_{\mathrm{m}}=\left\{\mathrm{U}_{2 \mathrm{~m}}>\mathrm{V}_{2 \mathrm{~m}}, \mathrm{U}_{2 \mathrm{~m}+1}<-\mathrm{V}_{2 \mathrm{~m}+1}\right\} \\
\mathrm{F}_{\mathrm{m}}=\left\{\mathrm{U}_{2 \mathrm{~m}}<\mathrm{V}_{2 \mathrm{~m}}, \mathrm{U}_{2 \mathrm{~m}+1}>-\mathrm{V}_{2 \mathrm{~m}+1}\right\}
\end{array}\right\}
$$

We have shown earlier that

$$
\mathrm{P}_{\mathrm{r}}\left(\mathrm{E}_{\mathrm{m}} \cup \mathrm{~F}_{\mathrm{m}}\right)=\delta>0
$$

Let η_{m} be a random variable such that it takes value 1 on Em Ufm and zero elsewhere. In other words
$\eta_{\mathrm{m}}\left\{\begin{array}{l}=1, \text { with probability } \delta \\ =0, \text { with probability } 1-\delta\end{array}\right.$
Let η_{m} are thus independent random variables with $\mathrm{E}\left(\eta_{\mathrm{m}}\right)=\delta$ and $\mathrm{V}\left(\eta_{\mathrm{m}}\right)=\delta-\delta^{2}<1$.
We write
$\mathrm{S}_{\mathrm{m}}\left\{\begin{array}{l}0 \text { if }\left|\mathrm{R}_{2 \mathrm{~m}}\right|<\mathrm{V}_{2 \mathrm{~m}} \text { and }\left|\mathrm{R}_{2 \mathrm{~m}+1}\right|<\mathrm{V}_{2 \mathrm{~m}+1} \\ 1 \text { otherwise }\end{array}\right.$

III. Conclusion

By considering the polynomial $f_{n}(\mathrm{x})=\sum_{\mathrm{k}=0}^{\mathrm{n}} \xi_{\mathrm{k}} \mathrm{x}^{v}=0$
where $\xi_{k} X^{v}$ are independent random variables assuming real values only we found that the number of zeros of the above polynomial of the equations $f(x)=0$ is at least (en $\log n$) except for a set of measure at most for an integer $\mathrm{n}>\mathrm{n}_{0}$ the number of real roots of most $\frac{\mu}{\left(\epsilon_{n 0} \log n_{0}\right)}$

References

[1]. J.E. Littlewood and A.C. Offord, On the number of real roots of a random algebraic equation II, Proc. Camb. Philos. Soc., 35(1939), 133-148.
[2]. J. Hajek and A. Renye, A generalization of an inequality of Kolmogorov, Acta Math Acad. Sci. Hungary, 6(1955), 281-283.
[3]. G.Samal, On the number of a random algebraicequation, Proc. Camb. Philos. Soc., 58(1962), 433-442.
[4]. E.A. Evans, On the number of a random algebraicequation, Proc. London Math. Soc., 3(15)(1965), 731-749.
[5]. G.Samal and D. Pratihari, Strong result for real zeros of random polynomials, J.Indian Math. Soc., 40(1976), 223-234.
[6]. G.Samal and D. Pratihari, Strong result for real zeros of random polynomials, II. J.Indian Math. Soc., 41(1977), 395-403.
[7]. N. Ranganathan and M. Sambandham, On the lower bound of the number of real roots of a random algebraic equation, Indian Pure Appl. Math., 13(1982), 148-157.
[8]. N.N.Nayak and S.P. Mohanty, On the lower bound of the number of real zeros of a random algebraic polynomial, J. Indian Math. Soc., 49(1985), 7-15.

