Nasal Drug Delivery-A Pre Hospital Therapy in Status Epilepsy-Review

ChitraKarthikeyini.S ,K.Kavitha

Anna University ,Thiruchirappalli,Tamilnadu -620024

Abstract: Status epileptics is a brain disorder. It is an important neurological emergency with high mortality and morbidity. it causes loss of cerebral autoregulation and neuronal damage. Prompt and immediate prehospital treatment is required to shorten the duration of seizures. So Parents and care givers needssimple ,safe.,efficaciousprehospitaltherapy. As per parents and care givers needs and consideration of severity of status epileptics and complexity of brain this review has been focused on intra nasal route as a prehospital therapy. It is a potential route and alternative route for the administration of anticonvulsant drugs. It prevent the enzymatic or acidic degradation and first-pass hepatic metabolism. The nasal mucosa is one of the most permeable and highly vascularized site for drug administration ensuring rapid absorption and onset of therapeutic action. The objective of the review is provide information of status epileptics and its dangerous effects, need of rapid prehospitaltreatment, Factors to be considered in nasal drug delivery, new strategies of delivery of antiepileptic drugs by intra nasal route.

Keywords: Status epileptics ,Intranasal drug delivery, Brain targeting, anticonvulsant drug, Absorption enhancer, Blood Brain Barrier

Abbrevation: Status Epileptics(SE), AntiEpileptic Drug(AED)

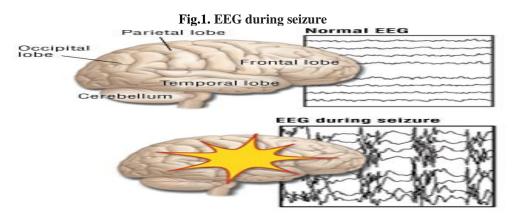
I. Introduction

Epilepsy is characterized by abnormal electrical activity within the brain, which can result in either generalized or partial seizures. Generalized seizures are widespread, affecting both hemispheres of the brain.Partial seizures originate at a focus and are isolated to specific areas of the brain. The presence of a focal lesion can be detected by electroencephalographic readings and functional molecular resonance imaging¹.

Status epileptics is a brain disorder .It is defined as seizure lasting more than 30 min during which the patient does not regain consciousness . It is an important neurological emergency with high mortality and morbidity² .status epileptics causes cell damage in the hippocampus amygdale,cerebellum,thalamus,middle cerebra cortical layers after 60 min of convulsive status epileptics .The cerebral neurons in the epileptic focus are continually firing and have increased metabolic demands. Status epileptics is harder to control, So prompt treatment is required to control seizure otherwise it causes loss of cerebral autoregulation and neuronal damage^{3,4}.

Prolonged seizures (more than 5 min)can cause Increased metabolic rate,Neuronalinjury,Cerebral oxygen extraction,Massive sympathetic and para sympathetic over activity like tachycardia hypertension, hyperglycemia, hyperthermia, excessive sweating in generalized or partial seizures.⁵ These dangerous seizures commonly occur in outside the hospital. Immediate and prehospital treatment is required to shorten the duration of seizures . So Parents and care givers needsSimple,Safe.Efficaciousprehospital Therapy.⁵

Brain is a complex organ and it is protected by blood brain barrier and cerebrospinal fluid barrier⁶.Brain is tightly segregated from circulating blood by BBB. It consist of tight junction called Zonaocculudens produced by interaction of several transmembrane protein such as occludin and claudin. Most of CNS drug cannot reach the brain in sufficient concentration due to this complexity. Based on parents and care giver needs and severity of status epileptics and complexity ofblood brain barrierpotential pre hospital therapy is needed.Intra nasal route is a non-injective special route to target brain by olfactory nervous system. It has less side effect and no first pass metabolism.so this review has been focused on nasal drug delivery.


The goal of review is study ofdelivering antiepileptic drugs (AEDs) to the brain by intra nasal route to reduce the frequency and severity of seizures without causing side effects. This transvascular route seems reasonable due to the high vascularity of the brain.

II. Status Epileptics

SE is differentiated from otherseizures by duration. SE resents as a prolonged seizure, a seizure that lasts longer than expected. Definition of SE or 'established' SE requires that seizures to last for a minimumof 30 min ^[6].Studies of SE have shown that more prolonged seizures are associated with a worse outcome.

During seizure changes in the subunit composition of AMPA, NMDA and GABA receptors promote self-sustaining seizures ^[7]. When the brain is exposed to prolonged seizures, there is a rapid decrease in the

number of functional postsynaptic GABAA receptors ^[8,9] and an increase in the number of functional postsynaptic NMDA receptors ^[10]. It leads to loss of inhibition and increase in excitation in the brain synapses promote self-sustaining prolonged seizures (**Figure 1**)

NEED OF RAPID PREHOSPITAL TREATMENT

Convulsivestatus epilepticus (SE) is a life-threatening emergency which requires rapid treatment .prolonged seizures cause brain damage. Several clinical studies have shown that more prolonged seizures are associated with a worse outcome.Parameters affect the prognosisof SE is age, etiology and SE duration ^[11,12,13,14]. Age is a nonmodifiable factor and etiology may or may be modifiable or treatable .One of study have shown that *the* duration of SE was shorter (32 vs 60 min) and the risk of recurrent seizures was lower (58 vs 85%) in pre-hospital diazepam^[15],Regarding this to shorten the SE duration appropriate rapid prehospital treatment is needed.

NASAL ROUTE AND ITS IMPORTANCE

Nasal route is the preferred and noninvasive route for brain targeting . Because brain and nose compartments are connected with each other via olfactory ,trigeminalnerves,the vasculatures, the cerebrospinal fluid, and lymphatic system ⁽¹⁶⁾. Nasal cavity consist of vascularised epithelium ,large surface area and lower enzymatic activity when compare to GIT⁽¹⁷⁾. This pathway of nose to brain deliver the drugs directly to CNS without first pass metabolism ⁽¹⁸⁾ and provide faster and maximum therapeutic effect. Generally intravenous route is given for immediate relief from status epilepsy.due to good bioavailability. But it produces pain ,irritation,local systemic adverse effect, and produces precipitation and tissue necrosis⁽¹⁹⁾. For status epilepsy Nasal route is alternative route to parentralsince it has good bioavailability and less side effect.Absorbtion mechanisms of nasal route are

- a) **Paracellular Transport-**. It involves an aqueous route of transport. Polar compounds pass through this route. but this route is slow and passive
- b) (b)**Transcellular Transport** It is responsible for the transport of lipophilic drugs. Drug also crosses the cell membranes by an active transport route via carrier-mediated transport ⁽²⁰⁾.

III. Advantages Of Nasal Drug Delivery^(21,22,23)

1) No drug degradation in GIT .

2) Hepatic first pass metabolism is avoided.

3) Bioavailability is good.

4) Nasal route is an alternative route toparentral.

5)Patient compliance

6) Polar compounds also provide good bioavailability by nasal route by addition of surfactants

7)large nasal mucosa surface area for dose absorption.

8) Ease of administration, non-invasive.

9) Lower dose reduced side effects.

10) Self-administration.

IV. Limitations^(24,25,)

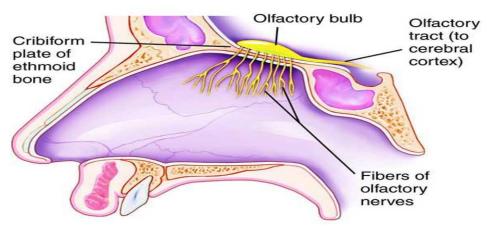
1)When molecular weight of drug is increased, drug Delivery is decreased.

2 Frequent use of intra nasal routecausesmucosal damages .

3) Very specific amount i.e. $25\text{-}200\mu$ can be delivered throw intra nasal route.

4) Drug administration is difficultduring cold or allergic reaction.

5) Some drugs causes nasal irritation.


6) Improper administration causes loss of doses.

V. Nasal Anatomy And Physiologyas Related To Intranasal Drug Delivery

Intranasal sprays of medication intended for systemic drug absorption are generally designed to target the turbinates on the medial wall of the nasal cavity. The nasal cavity is a located above the oral cavity & hard palate and below the skull base .The left & right nasal cavitybecomes continuous in the back if nose via the opening to the nasopharynx. Nose is divided by middle septum into twosymmetrical halves, each one opening at the face through nostrils & extending to the nasopharynx. Nasalcavity is lined with mucus layer and hair²⁶, composed of 95% water, 2% mucin, 1% salt, 1% other proteins such as albumin, immunoglobin, lysozymes &lactoferrin, & 1% lipid²⁷The main role of nose are olfaction, regulation of humidity & temp of inhaled air and removal of microorganism or particulate matter from inhaled air ²⁸.

Mucus present over epithelial cell causes mucociliaryclearance.Drugtransported from nasal cavity for absorbtion through mucus only ⁽²⁹⁾. Mucous moves only in onedirection from the anterior to posterior part of nasal cavity to the nasopharynx^{30,31,32,33}. Mucous secretion givesimmune protection against inhaled bacteria or virus. Mucous has water holding capacity, it exhibit surfaceelectrical activity, it also act as transport & adhesive for particulate matter towards nasopharynx^{34.}

Fig.2. Nasal anatomy & physiology

OLFACTORY REGION:

Olfactory region is located on the roof of the nasal cavities which separates the nasal cavities from the cranial cavity and contains olfactory receptor cells for smell perception⁽³⁵⁾. It consist of three cell types:

- 1. Olfactory neural cells,
- 2. Sustenticular (supporting) cells,
- 3. The basal cells

Olfactory neuron are interspaced between supporting cell ³⁶. The cilia contain chemicaldetector, it will get activated by odour and cause depolarisation by ion gated channel or C-GMP pathway³⁷.beneath the epithelium layer lamina propria is present. Which contain blood supply, mucous secretion acinarglands, nasal lymphatic, & neuronal supply that consist of olfactory axon bundles, autonomic nerve fibreand maxillary branch of trigeminal nerve³⁸.Filia olfactory are unique feature that act as ionicreservoir for action potential propagation.Mesaxons are pores in Filia olfactory that allow passage of extracellular fluid into neuronal bundle structure. The transport of drug in nasal membrane to bloodstream is passive diffusion ³⁹.

VI. Factors To Be Considered In Nasal Drug Delivery

Eventhough Nasal Route is the good attempt to deliver the drug to brain ,otaher factors also important to attain better bioavailability.Thefacors are

- 1. Physicochemical FaNctors of Drug
- **2.Formulation Factors**
- 3.Nasal Cavity Factors

6.1 PHYSIOCHEMICAL PROPERTIES OF DRUGS ⁴⁰:

MOLECULAR WEIGHT:

Drugs molecular weight up to 300 Daltons have more absorption. When the molecular weight is greater than 1000 Daltons Absorption can be decreased. It should be enhanced with the use of absorption enhancers. Shape is also important factor that affects the absorption of drugs. Linear molecules have lower absorption whereas the cyclic – shaped molecules showed higher absorption.

PARTICLE SIZE:

Particle sizes greater than 10 μ m are easily absorbed in the nasal cavity. Too fine particles i.e, below 5 μ m should be avoided for nasal administration because chances of inhalation directly into the lungs⁴¹.

SOLUBILITY AND DISSOLUTION RATE:

Drug solubility and dissolution rates are directly influence nasal absorption from powders and suspensions⁴². The absorption profile is not only influenced by drugs solubility but also by the nature of pharmaceutical preparations. Therefore, drugs poorly soluble in water or requiring high doses may affect the dissolution rate. The particles deposited in the nasal cavity should get dissolved prior to absorption.

POLYMORPHISM:

Drug molecule exists in different polymorphs. Each polymorph has different dissolution rate.Polymorphic nature has affect the solubility of drugs and their absorption through biological membranes⁴³.

CHEMICAL FORMS:

The chemical form of a drug is an important factor in determining absorption. For example structural modification of carboxylic acid esters of L-Tyrosine was significantly greaterabsorbtion than of LTyrosine⁴⁴.

LIPOPHILICITY:

lipophilic drug can easily get through intranasal route. Pharmacokinetic profile of lipophilic drug administered through intravenous route is similar as intranasal route.Forexample Bioavailability of fexofenadine was 100% from the microemulsion applied intranasal route and absolute bioavailability was about 68% compared to intravenous administration⁴⁵. Bioavailability of polar drug is generally low. Polar drug having molecular weight less than 1000Da will generally pass through membrane⁴⁶.

Permeability of such polar drug can be improved by adding absorption enhancers like surfactants (laurenth-9, sodium lauryl sulphate) bile salt, bile salt derivatives, fatty acid, phospholipid, cationic compound like chitosan & its derivatives , poly-Larginine⁴⁷

6.2 FORMULATION FACTORS: PH OF THE FORMULATION:

The pH of the nasal cavity and pKa of a particular drug can be considered to optimize systemic absorption. When pH range is 4.5 to 6.5, Nasal irritation can be minimized . PH influence the drug ionization .Unionized form of drug reaches the systemic absorption⁴⁷.

BUFFER CAPACITY:

Nasal formulations are generally in small volumes ranging from 25 to 200μ L. Hence,nasal secretions may alter the pH of the administered dose. This can affect the concentration of unionized drug available for absorption. Therefore, during formulation buffer capacity may be adjusted to maintain the pH ⁴².

VISCOSITY:

Higher the viscosity of the formulation greater contact with nasal mucosa thereby increases the time for permeation. At the same time, highly viscous formulations may alter the normal functions like ciliary beating, mucociliary clearance and thus alter the permeability of drugs⁴⁸.

DRUG CONCENTRATION, DOSE AND DOSE VOLUME:

These are three interrelated parameters that affect the performance of the nasal delivery performance. Nasal absorption of L-Tyrosine was shown to increase with drug concentration in nasal perfusion experiments.

6.3NASAL CAVITY FACTORS: ENZYMES BARRIER:

Nasal mucosa contain various enzymes such as cytochrome P450- dependentmonooxygenase, carboxyl esterase and amino peptidase. These enzymes degrade the drug moleculein nasal cavity and affect the bioavailability. It provides apseudo-first-pass effect⁴⁹.

MUCOCILIARY CLEARANCE:

The fast clearance of formulation through nasal cavity is due to themucociliary clearance. Particles entrapped in nasal mucosa is get transport & cleared from body. Thisboth combined action at mucous & cilia is called as mucociliary clearance⁵⁰. Mucociliary clearance is directly praporshnal to residence(contact) time between drug andepithelial cells⁵¹. The clearance may be improve by adding Bioadhesives material in formulation in lessciliary part i.e. anterior part of nose^{52,53.}

PROTECTIVE BARRIERS:the nasal membrane is physical barrier & the mucociliary clearance is a temporalbarrier to drug absorption across nasal epithelium⁵⁴.

Classification	Mechanism
Surfactants	Perturbation of intercellular lipids,
	Protein domain integrity,
	Distrusts membrane,
Bile salts	Distrusts membrane,
	Open tight junctions,
	Mucolytic activity
Cyclodextrins	Inclusion of membrane Compounds,
	Open Tight junctions
Fatty acids	Increase fluidity of phospholipid domains,
	Distrusts membrane
Cationic	Ionic interaction with negative charge on the mucosal surface
compounds	
Chelators	Interfere with CaPolyacrylates
+Ve Charged polymers	Ionic interaction with negative charge on the mucosal surface
Bioadhesive Materials	Reduce nasal clearance, Open tight junctions

Table 1: Absorbtionenhancers and mechanisms of action⁵⁵⁻⁶³

VII. Enhancement Of Bioavailability Of Intranasal Formulation

Physicochemical factors, formulation factors, nasal cavity factors are the barriers to good bioavailability. To improve the bioavailability of intranasal formulation researches have concentrated on Novel drug formulation and addition of absorbtion enhancers in intranasal formulation.

7.1ABSORBTION ENHANCERS OR MUCOSAL PENETRATION ENHANCERS⁽⁵⁵⁻⁶³⁾

When a drug has large molecular weight ,lack of lipophilicity , enzymatic degradation and poor permeability , to improve the bioavailability absorbtion enhancers are incorporated in intra nasal formulation.(table:1)

7.2NOVEL DRUG FORMULATION NANOPARTICLES

Nanoparticles are drugs are enclosed or incorporated within carriers and a particles ranging from 1 to 1000nm in size. Itis madeby biodegradable and biocompatible polymers. Nanoparticles have several advantages due to their small size. Smallest nanoparticle easily penetrate the mucus membrane by paracellularroute⁽⁶⁴⁾ For example Margret F prepared intra nasal nanoemulsionofrisperidone. This study demonstrated rapid and larger extend of transport of resperidone to brain by intranasal route⁽⁶⁵⁾.

Drug	Formulation	References
Risiperidone	Mucoadhesivenanoemulsion	Mukeshkumaret al(65)
Clonazepam	Mucoadhesivemicroemulsion	Vyas TK et al (66)
Zolmitriptan/sumatriptan	Mucoadhesivemicroemulsion	Vyas TK et al (67)
Clonazepam	Mucoadhesivemicroemulsion	Tushar.K et al(68)
Lorazepam	Microemulsion	Hou, L.; Zhou, J. P (69)
Midazolam	Microemulsion	ShafirBotner, Amnon C.(70)
Diazepam	Microemulsion	ShafirBotner, Amnon C. (70)
Mirtazapine	Nanoparticle loaded nasal gel	RakhiChoudhary et al(71)
Sumatriptan	Mucoadhesivemicroemulsion	Vyas TK et al (72)

TABLE 2 : Current strategies of delivery of antiepileptic drugs by intra nasal route

|--|

MICROEMULSION

Intra nasal microemulsion is one of the non invasive drug delivery to systemic circulation .Vyas has formulated and reported that clonazepam microemulsion has faster onset of action and prolonged duration of action in status epileptics. Mucoadhesivemicroemulsion of Zolmitriptan and Sumatriptanstudies also reported that rapid and larger extend of drug transport into rat brain⁽⁶⁶⁾. Mucoadhesivemicroemulsion of clonazepam study revealed that clonazepam reached the brain rapidly and effectively⁽⁶⁷⁾.

VIII. Conclusion

Acute isolated seizure, repetitive or recurrent seizures, and status epilepticus are all deemed medical emergencies. Mortality and worse neurologic outcome are directly associated with the duration of seizure activity. To shorten the seizure speed of drug delivery is needed particularly in out side the hospital. Nasal drug delivery is considered as a promising alternative formulation to intravenous for rapid delivery of anti convulsant drugs to brain via the olfactory system. It is simple ,safe ,efficacious and gifted one to status Epileptic patients.

References

- [1]. Tiege X, Laufs H, B 2520yd S, et al. EEG-fMRI in children with pharmacoresistant focal epilepsy. Epilepsia.2007;48:385–389. (PubMed)
- [2]. P.P.Nair ,J.KalitaMisra UK Status epilepticuswhy,what and how .Journal of post graduated medicine ,2011,57,242 doi:10.4103/0022-3859.81807
- [3]. Edward M et al ,New management strategies in the treatment of status epilepticus,Dept of Neurology,Mayo Clinic Pro 2003,78,508-518.
- [4]. WermelingDP,Intranasal delivery of antiepileptic medication for treatment of seizures,Neurotherapeutics,2009,Apr.6(2)352-358 doi:10.1016/j.nurt.2009.01.002
- [5]. Ayseulgey et al,Nasal and buccal treatment of midazolam in epileptic seizures in paediatrics ,Clin.Med insights paediatrics ,2012,6 :51-60.doi:10.4137/cmped.58330
- [6]. pathanSA,ZaldiSM,Talegaonkar.SCNS drug delivery systems: novel approaches.Recent patent drug delivery formulation, 2009 Jan;3(1):71-89
- [7]. Sanchez Ferna ndez I, LoddenkemperT.Subunitcomposition.of neurotransmitter receptors in the immature and in theepileptic brain. BioMed Res Int 2014;2014:301950
- [8]. Goodkin HP, Yeh JL, Kapur J. Status epilepticus increases the intracellular accumulation of GABAA receptors. JNeurosci 2005;25:5511-20
- [9]. Naylor DE, Liu H, WasterlainCG.Trafficking of GABA(A) receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. J Neurosci 2005;25:7724-33
- [10]. Naylor DE, Liu H, Niquet J, Wasterlain CG. Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus. Neurobiol Dis 2013;54:225-38doi :10.1016/j.nbd.2012.12.015 Epub
- [11]. ,Maytal J, Shinnar S, Moshe SL, Alvarez LA. Low morbidity and mortality of status epilepticus in children. Pediatrics 1989;83:323-31
- [12]. 12. Raspall-Chaure M, Chin RF, Neville BG, Scott RC. Outcome ofpaediatric convulsive status epilepticus: a systematic review. Lancet Neurol2006;5:769-79
- [13]. 13.Logroscino G, HesdorfferDC,CascinoGD,J.F.Annegress,Ba et al. Long-term mortality after a first episode of status epilepticus.Neurology 2002;58:537-41,doi: 10.1212/wnl
- [14]. 14. Sutter R, Kaplan PW, Ruegg S. Outcome predictors for status epilepticus -- what really counts. Nat Rev Neurol 2013;9:525-34doi :10.1038/nrneurol-2013.154
- [15]. 15.Alldredge BK, Wall DB, Ferriero DM. Effect of prehospital treatment on the outcome of status epilepticus in children. PediatrNeurol 1995;12:213-16.
- [16]. 16.Dhuria SV ,Hanson LR, Frev WH et al Intra nasal delivery to the CNS mechanism and experimental condition,Journal of Pharmaceutical sciences,2010,99(4),1654-1673 doi:10.1002/jps.21924
- [17]. 17.UgwokeMI,Nobert.V,Rennaf.K,The Pharmaceutical aspects of nasal mucoadhesive drug delivery ,Journal of Pharmacy and Pharmacology,2001,(53):3-22.
- [18]. A.M.Privalora ,N.V.Gulycera,T.V.Burkeera, Intra nasal administration :a prospective drug delivery route to the brain ,Neurochemical Journal 2012,6(2),77-88 doi:101134/s1819712412020080
- [19]. .Serrano EE, Wilder BJ. Intramuscular administration of diphenylhydantoin. Histologic follow-up studies.Arch Neurol. 1974;31:276–278. [PubMed]
- [20]. Swatantra KS, Kushwaha, Ravi Kumar KeshariAK.Rai. Advances in nasal trans-mucosal drugdelivery Journal of Applied PharmaceuticalScience 2011; 01 (07):21-28
- [21]. Aulton M.E. "Pharmaceutics-The of Doasge Form Design" Churchill Livingstone., 494, 2002,
- [22]. Sam E, Jeanjean AP, Maloteaux JM, Verbeke N. Apomorphin pharmacokinetics in parkinsonism after intranasal and subcutane application. Eur J MetabPharmacokinetic.1995;209(1):27-33.
- [23]. Bahl CR, Pamplaskar HK, Sileno AP, Romeo VD. Effects of Physicochemical properties and other factors on systemic nasal drug delivery, Advance Drug Delivery Review.1998;(29):89-116.
- [24]. Kadam SS, Mahadik KR, Pawar AP, Paradkar AR. Tranasal Delivery of Peptides- a Review. The East. Pharm. 1993;47-49.
- [25]. Hirai S, Yashik T, Mima H. Effect of Surfactant on nasal absorption of insulin in rats. Int. J.Pharm.1981;9:165-171,doi :10.1016/0378-5173(81)90009-0.
- [26]. Justin H. turner, MD and Jayakar V. Nayak.MD PhD, Nasal anatomy, America rhinoogical society.
- [27]. Kaliner M., Marom Z., Patow C., Shelhamer J, Human respiratory mucus, J. allergy Clin. Immunol.1984, 73,318-323.doi;10.1016/0091-6749(84)90403-2

- [28]. Menache MG, Hanna LM, Gross EA, Lou SR, Zinreich SJ, Leopold DA, Jarabek AM, Miller FJ. Upper respiratory tract areas and volumes of laboratory animals and humans:consideration of dosimentry models. J Toxicol Environ Health 1997;50:475-506.doi:10.1080/00984 109708984003
- [29]. Riddle.D,WashingtonN, and Wilson CD,Drug delivery to the nasal and buccal cavities anatomical and physiological considerations In Duchene D(eds) Buccal and nasal administrationas an alternative to parentral administration, Edition de Santeparis,1992:29-39.
- [30]. Alpesh M., Snjezana S, LisbethIllumM.Nanoparticles for direct nose to brain delivery of drugs.1982;71-97.doi:10.1016/j.ijpharm2009.06.019
- [31]. Schipper et al. The nasal mucociliary clearance: relevance to nasal drug delivery. pharma. Res.1991;7:807-814,doi: 10.1023/A:1015830907632
- [32]. JungingerBiosdhesive polymer system for peptide delivery. Acta. pharma ,. Tech. 1990;36:110-126.
- [33]. Chien YW, Su KS, and Chang SF. Anatomy and Physiology of the nose.In nasal Systemic Drug Delivery:Drugs and the Pharmaceutical Sciences. New York: Marcel Dekker;1989;1-26.
- [34]. Lee, V.H., Enzymatic barriers to peptide and protein absorption. Crit. Rev. Ther. Drug Carrier Syst.5, 1998,69-97.
- [35]. RaoSB,SharmaCP,Use of chitosan Biomaterial studies on its safety and hemostaticpotential,Journal of Biomed Mater,1997,:34:21-28
- [36]. Adams GL,Boies LR, Hilger PA, Boies's Fundamentals of Otolaryngology a Textbook of Ear, Nose and Throat Diseases. Saunders, Philadelphia;1989:177-195.
- [37]. Gartner LP, Hiatt JL. Color Atlas of Histology. Lippincott Williams & Wilkins, Philadelphia;2000.
- [38]. Brand G. Olfactory/trigeminal interactions in nasal chemoreception. NeurosciBiobehav Rev. 2006;30:908-917.doi:10.1016/ineurbiorev.2006.01.002
- [39]. Talegoanka S, Mishra PR, intranasal delivery: An approach to bypass the blood brain barrier. Indian journal of pharmacology.2004;36(3):140-147.
- [40]. Akhtar Ali, Prajapati SK, Singh Devendra, kumarBrajesh, ShafatKausar; EnhancedBioavailability of Drugs Via IntraNasal Drug Delivery System, Int. Res J. Pharm 2012; 3 (7):69
- [41]. kushwaha KS, Keshari RK, RaiAk, Advances in nasal trans mucosal drug delivery, JAPS 2011; 01(07):21-28.
- [42]. Costantino HR, Illum L, Brandt G, Johnson PH,Quay SC. Intranasal delivery: Physico chemical and therapeutic aspects. Int J Pharm 2007;337:1-24.
- [43]. Dhakarchand ram, Non-invasive system drug delivery via nasal route: AReview, AJPSP 2011;2 (1):119
- [44]. Huang C, kimura R, Nassar A, HussainA.Mechanism of nasal drug absorption of drug II:absorption of L-tyrosine and the effect of structural modification on its absorption. J.Pharm. Sci 1985:74: 1298-1031.
- [45]. Hong-Mei Piaoa, PrabagarBalakrishnana, Hyun-Jong Choa, HyunjunKimb, You-Sun Kimb,Suk-Jae Chunga, Chang-Koo Shima, Dae-DukKima,Preparation and evaluation of fexofenadine Microemulsions for intranasal Delivery,International Journal of Pharmaceutics,(2010); 309–316.doi:10.1016/ijpharm2010.05.041
- [46]. Mc martin C, Hutchinson LE, Hyde R, Peter GE, Analysis of structural requirments for the absorptions of drugs and macromolecules from nasal cavity. J. Pharm. Sci. 1987;76:535-540.
- [47]. Davis SS, Illum L. Absorption Enhancers for Nasal Drug Delivery. Clin. Pharmacokinetic; 2003;42(13);1107-1128.
- [48]. Jadhav RK Et al. Nasal Drug Delivery System –Factors Affecting and Applications, Bentham Science Publishers ltd 2007; 2(1):29. DOI: 10.2174/157488507779422374
- [49]. Soane RJ, Frier M, Perkins AC, Jones NS and Davis ss. Illum L Evaluate ion of the clearance characteristics of bioadhesive systems in human.Int J Pharm. 1999;178:55-65.doi :10.1016/S0378-5173(98) 00367-6
- [50]. Illum L, Mathiowit ZE and Chickering DE. Bioadhesive formulations for nasal peptidedelivery:fundamentals, Novel Approch and Development. New York: Marcel Dekker. 1999;507-539.
- [51]. Merkus FW, Verhoef JC, Schipper NG, Marttin E. 1998. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev. 29:13-38 doi:10.1016/S0169-409x(97)00059-8
- [52]. Kublik H, VidgrenMT.Nasal delivery system and their effects on deposition and absorption. Advance Drug Delivery Review. 1998;29:157-177.
- [53]. Harris AS, Nilsson IM, Wagner ZG, Alkner U, Intranasal administration of desmopressin. J Pharm Sci. 1986;75(11):1085-1088
- [54]. Lee V H L. Enzymatic barriers to peptide and protein nose to brain pathway for psychotropic peptides: CRC Crit Rev Ther Drug Carrier Sys 1998:5:69-97.
- [55]. .Karasulu E, Yavasoğlu A, Evrensanal Z, Uyanikgil Y, Karasulu HY. Permeation studies and histological examination of sheep nasal mucosa following administration of different nasal formulations with or without absorption enhancers. Drug Delivery. 2008;15:219-225. doi: 10.1080/10717540802006377.
- [56]. Sinswat P, Tengamnuay P. Enhancing effect of chitosan on nasal absorption of salmon calcitonin in rats: comparison with hydroxypropyl- and dimethyl-β-cyclodextrins. Int J Pharm. 2003;257:15-22.
- [57]. Zaki NM, Mortada ND, Awad GA, AbdElHady SS. Rapid-onset intranasal delivery of metoclopramide hydrochloride Part II: Safety of various absorption enhancers and pharmacokinetic evaluation. Int J Pharm. 2006;327:97-103.
- [58]. Illum L. Nanoparticulate systems for nasal delivery of drugs: A real improvement over simple systems? J Pharm Sci. 2007;96:473-483.
- [59]. Giunchedi P, Juliano C, Gavini E, Cossu M, Sorrenti M. Formulation and in vivo evaluation of chlorhexidinebuccal tablets prepared using drug loaded chitosan microspheres. Eur J Pharm Biopharm. 2002;53:233-239.
- [60]. Maestrelli F, Zerrouk N, Chemto C, Mura P. Influence of chitosan and its glutamate and hydrochloride salts on naproxen dissolution rate and permeation across Caco-2 cells. Int J Pharm. 2004;271:257-267.
- [61]. Ravi Kumar MNV, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives. Chem Rev. 2004;104:6017-6084.
- [62]. Washington N, Steele RJ, Jackson SJ, Bush D, Mason J, Gill DA, Pitt K, Rawlins DA. Determination of baseline human nasal pH and the effect of intranasally administered buffers. Int J Pharm. 2003;198:139-146.
- [63]. Pujara CP, Shao Z, Duncan MR, Mitra AK. Effects of formulation variables on nasal epithelial cell integrity: Biochemical evaluations. Int J Pharm. 1995;114:197-203.doi:10.1016/0378-5173(94)00238-2
- [64]. TiyaboonchaiW, Chitosan nanoparticle: A Promising system for drug delivery, Naresuan University Journal, 2003, 11:51-66
- [65]. Kumar.M,Mukeshkumar,Misra,BabarAK,MishraPathak K ,intranasal nanoemulsion based brain targeting drug delivery system of resperidone, international journal of pharmaceutics 358(1-2):285-91 july 2008 DOI:10.1016/j.ijpharm2008.03.0295)
- [66]. VyasTK,BabbarAK,SinghS,MishraA,Intra nasal mucoadhesivemicroemulsion of clonazepam preliminary studies on brain targeting,J.Pharm.Sci 2006.54:570-580

- [67]. Vyaa TK, Babbar AK, AmbikanandanMisra,AK.Misra ,PuspaMisra intra nasal mucoadhesivemicroemulsion of zolmitriptan preliminary studies on brain targeting j,drug target ,2005,3(5),317-324
- [68]. Tushar k. vyas intranasal mucoadhesivemicroemulsions of clonazepam:preliminary studies on brain targeting , journal of pharmaceutical sciences, 2006, 95: 3.
- [69]. Hou, l.; zhou, j. p; zhang, z. q.; sun, l.preparation of lorazepam-loaded microemulsions for intranasal delivery and its pharmacokinetics volume 64, number 10, 1 october 2009, pp. 642-647(6) an international journal of pharmaceutical sciences
- [70]. Shafirbotner, amnon c. sintov et al intranasal delivery of two benzodiazepines, midazolam and diazepam, by a microemulsion system, pharmacology & pharmacy, 2011, 2, 180-188 doi:10.4236/pp.2011.23026
- [71]. Rakhichoudharyet alpreparation of nanoparticles loaded nasal gel of mirtazapine for t,reatment of depression,journal of advanced pharmaceutical sciences, vol.3/issue.2/2013
- [72]. VyaaTK,BabbarAK,R.K.Sharma,Shashisingh ,AmbikanandanMisra, preliminary brain targeting studies on intra nasal mucoadhesivemicroemulsion of sumatriptan ,aaps pharm sci tech 2006; 7 e1-e9doi :10.1208/pt070108
- [73]. EeskandariVarshosazJ, MinaiyanM, Tabbakhian M, Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model, Int j nanomedicine. 2011; 6: 363–371, doi: 10.2147/IJN.S15881