Invitro Antimicrobial Activity And Phytochemical Analysis Of Murraya Koenigii Leaf Extracts
Neethu S.Kumar¹, Neethu Simon¹, Santhoshkumar R²
¹Post Graduate Department And Research Centre Of Botany,
²Mahatma Gandhi College, Thiruvananthapuram, Kerala, India.

Abstract: Plants have been one of the important sources of medicines since the beginning of human civilization. There is a growing demand for plant based medicines, health products, pharmaceuticals, food supplements and cosmetics. Murraya koenigii commonly called curry leaf tree is a multipurpose tree and is a source one of the medicinal products. Different parts of M. koenigii are used in folkloric medicine for the treatment of various diseases. It is proved to possess significant wound healing capacity and shows antioxidant activity with high degree of radical-scavenging properties. This article intends to provide an overview of the chemical constituents present in the crude leaf extracts of M. koenigii with special emphasis on their pharmacological actions. Qualitative phytochemical screening was carried out using the crude leaf extracts in three different solvents such as water, alcohol and chloroform. Phytochemical analysis of the extracts revealed the presence of glycosides, alkaloids, oils, saponins and flavanoids. A comparative antimicrobial activity of dried leaf extracts of M. koenigii were evaluated against two gram negative bacterial strains namely Escherichia coli and Pseudomonas aeruginosa and two clinical fungal pathogens namely Candida albicans and Aspergillus niger by agar cup method. The leaf extracts of M. koenigii was found to have high antibacterial activity than anti fungal activity. The results suggest that the leaves are a rich source of valuable primary and secondary metabolites exhibiting the antimicrobial activity.

Key Words: Murraya koenigii, Phytochemical analysis, Antimicrobial, Agar cup method, Antimicrobial activity

I. Introduction
Since ancient times, people have been exploring the nature particularly plants in search of new drugs which has resulted in the use of large number of medicinal plants with curative properties to treat various diseases (Verpoorte,1998). According to WHO survey, 80% populations living in the developing countries rely exclusively on traditional medicine for their primary health care needs of which most involve the use of plant extracts (Sandhya et al., 2006) The studies of plants continue principally for the discovery of novel secondary metabolites or phytochemicals which are the non essential nutrients derived from plants exhibiting a number of protective functions for human consumers. Murraya koenigii, belonging to the family Rutaceae is a small evergreen tree native of India and found in Sri Lanka and other South Asian countries. Different parts of M. koenigii are used in folkloric medicine for the treatment of various diseases. It is proved to possess significant wound healing capacity (Anand et al., 2011). This plant is commonly called curry leaf tree. Murraya koenigii shows antioxidant activity with a high degree of radical-scavenging properties (Rao et al., 2006) Phytochemical screening is a method which exposes or reveals certain components or properties readily available in plants for bio-activity or ethno-medical applications. Plant based antimicrobials has enormous therapeutic potential as they can serve the purpose with lesser side effects that are often associated with synthetic antimicrobials (Iwu, 1999). Thus it is anticipated that phytochemicals with adequate antibacterial efficiency can be used for the treatment of bacterial infections (Balandrin, 1985). Antioxidants and antimicrobial properties of various extracts from many plants have recently been of great interest in both research and in food industry, because of their possible use as natural additives to replace synthetic antioxidants and antimicrobials with natural ones (Deba, 2008). Thus medicinal plants play an important role in the development of newer drugs because of their effectiveness, less side effects and relatively low cost when compared with synthetic drugs (Raj, 2011). The present study aims in exploring the phytochemical constituents, antibacterial and antifungal properties of the crude leaf extracts of Murraya koenigii.

II. Materials And Methods
Collection and extraction of plant materials
The fully matured fresh leaves of M. koenigii were collected from Kattakada area in Thiruvananthapuram district, kerala. The leaves were washed thoroughly, shade dried and finely powered. The dried powdered leaves were extracted with three different solvents such as water, acetone and chloroform. For aqueous extraction, ten grams of the powdered leaves were mixed with 100ml distilled water, boiled for about two hours and filtered. Whereas acetone and chloroform extracts were prepared by mixing ten grams of...
powdered leaf samples with 100ml of each solvent separately in mechanical shaker for 48 hours at room temperature. Extracts were then filtered, concentrated, dried and were stored in the refrigerator at 4°C for future use.

Phytochemical analysis

The prepared plant extracts were analysed for the presence of alkaloids, glycosides, saponins, proteins, aminoacids, fixed oils, phenolic compounds, tannins, flavonoids, gum and mucilages etc (Raaman N, 2006).

Preparation of plant extract for antimicrobial screening

For antimicrobial screening the concentrated, dried and powdered ethanol leaf extract was dissolved in 10 % dimethyl sulfoxide (DMSO) and were stored at 4°C for further use.

Test Organisms

Antibacterial activity was carried out against two selected gram negative pathogens (such as *Escherichia coli* and *Pseudomonas aeroginosa*) whereas antifungal against two clinical fungal isolates such as *Candida albicans* and *Aspergillus niger*. The strains used for the present study were obtained from Biogenix Research centre, Valiyavila, Thiruvananthapuram. In order to access the biological significance and ability of the plant part, the minimal inhibitory activity was determined by Agar cup method.

Antibacterial activity

Petri plates containing 20ml of Muller Hinton medium were seeded each with 24hr old culture of bacterial strains such as *E.coli* and *P. aeroginosa*. Wells of approximately 10mm diameter were bored using a well cutter and 25 μl , 50 μl and 100μl of the extracts were added to the wells from a stock concentration of 0.1g/1ml. The plates were then incubated at 37°C for 24 hours. Antibacterial activity was assayed by measuring the diameter of the inhibition zone in millimeters formed around the wells (NCCLS, 1993). Gentamycin (standard antibacterial agent, concentration: 20mg / ml) was used as a positive control.

Antifungal activity

Antifungal activity was also determined by Agar cup method. Potato Dextrose agar plates were prepared and overnight grown isolates of fungi such as *Candida albicans* and *Aspergillus niger* were swabbed. Wells of approximately 10mm diameter were bored using a well cutter and extracts of 25 μl, 50 μl and 100 μl concentrations were added and the zones of inhibition were measured after overnight incubation which were then compared with that of standard antibiotics. Clotrimazole was used as a positive control.

III. Results And Discussion

Phytochemical analysis

Table 1 represent the various phytochemical constituents present in the leaf extracts of *M. koenigii*. The phytochemical studies of all the three extracts conclude that acetone and water extracts of leaf samples had more positive results for glycosides, oils, saponins and flavonoids.

Table 1: Phytochemical analysis of Murraya koenigii leaf extracts

<table>
<thead>
<tr>
<th>Phytochemicals</th>
<th>Glycosides</th>
<th>Phytosterols</th>
<th>Alkaloids</th>
<th>Oils</th>
<th>Saponins</th>
<th>Phenols</th>
<th>Flavonoids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Acetone</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Chloroform</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Preliminary phytochemical analysis revealed the presence of six compounds (Table 1) viz. flavonoids, glycosides, oils, saponins, phenolics, gum and mucilage. With acetone and chloroform extracts flavonoids, glycosides, oils and saponins were present. Traditionally saponins have been extensively used as detergents, pesticides as well as mollucidides, in addition to their industrial application such as foaming, surface active agents etc and also found to have beneficial health effects (Arunasalam, 2004). Flavonoids isolated from aqueous extract of *M. koenigii* exhibits antimicrobial activity. The plant is reported to contain glycosides, alkaloids, saponins, flavonoids, tannins, carbohydrates, phenolic compounds and phytosterols by previous workers.

Antibacterial activity
Antibacterial activity of *M. koenigii* (leaf ethanol extract with DMSO) was assayed invitro by agar cup method against clinical isolates of *E.coli* and *P.aeroginosa*. The given table shows the microbial growth inhibition of ethanolic leaf extracts of *Murraya koenigii*. Among the varying concentration of leaf extracts, higher concentration exhibited maximum antibacterial activity against the two isolates. Table 2 shows the zone of inhibition formed by the extracts against the bacterial strains on Muller Hinton agar.

<table>
<thead>
<tr>
<th>Test organisms</th>
<th>Zone of inhibition in mm</th>
<th>Positive Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration of leaf extracts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>E. Coli</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. aeroginosa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>20</td>
</tr>
</tbody>
</table>

The sequence of antibacterial activity of leaf extract against *E.coli* exhibited no activity in 25µl but produced a 11mm and 17mm zones of inhibition in 50µl and 100µl concentrations respectively (Table 2). With respect to *P.aeroginosa* the plant extract had shown no activity in both 25µl and 50µl concentrations but produced a 15mm inhibition zone in 100µl concentration (Table 2). Thus antibacterial activity was expressed at varying degrees with the difference in concentration. Higher concentration of the leaf extract shows highest antibacterial activity. The result obtained might be considered sufficient for further studies for isolation and identification of active principle and for the evaluation of possible antimicrobial activity of other extracts from other parts of *Murraya koenigii*. Earlier works done by Cosentino et al., also states that the extracts from other parts of *M. koenigii* are used against microbial infections due to the presence of secondary metabolites in them such as phenols, essential oils, terpenoids, alkaloids and flavanoids. This was later on supported by Kotkar et al., in 2001 and reported that flavanoids expose strong antibacterial activity.

Antifungal activity

In order to access the biological significance and ability of the plant extract, antifungal activity of *M. koenigii* (leaf ethanol extract with DMSO) was assayed invitro by agar cup method against two clinical fungal isolates viz. *Candida albicans* and *Aspergillus niger*. The given table shows antifungal activity of the plant species.

<table>
<thead>
<tr>
<th>Test organisms</th>
<th>Zone of inhibition in mm</th>
<th>Positive Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration of leaf extracts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>C. albicans</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>A. niger</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

The sequence of antifungal activity of leaf extract against *C. albicans* and *A. niger* exhibited no activity in both 25µl and 50µl concentrations but produced a 11mm zone of inhibition each in 100µl concentrations respectively (Table 3). The present study reveals that the ethanol leaf extracts of *M. koenigii* were more active against the clinical bacterial pathogens viz. *E.coli* and *P.aeroginosa*. Anti fungal activity were found to be very negligible when compared to bacterial activity. In literature it has been reported that the antibacterial activity is due to the presence of different chemical agents in the leaf extract including essential oils, flavanoids, terpenoids and other components which are classified as active antimicrobial compounds. The results of the study supports to a certain degree, the use of traditional medicinal plants in human and animal disease therapy and reinforce the concept of ethno botanical approach in screening plants as potential sources of bioactive substances (Valsaraj 1997). The aqueous extract generally exhibits a high degree of antibacterial activity which seems to confirm the traditional therapeutic claims of this plant (Perumalsamy ,1998)

IV. Summary And Conclusion

Medicinal plants were the potent source of human health due to the presence of active phytochemical compounds that are responsible for its various pharmacological activities. On the basis of the results obtained, the present work conclude that the leaves of *M. koenigii* are rich in phytochemical constituents even though the phytochemical screening of the leaf extracts of samples had shown variation in their phytochemical constituents with the presence and or absence of some components. Most components were present in aqueous extracts of leaves. The presence of various secondary metabolites such as glycosides, phytosterols, alkaloids, oils, sapponins, phenols and flavanoids were believed to exhibit the antibiotic properties of *M. koenigii* leaves and confirmed their antimicrobial efficacy against selected pathogens.

The present work highlights the possible use of *M. koenigii* leaf extracts as a source of antioxidants and as antibacterial agents that can be used to prevent enteric diseases. The study reveals that the results of

DOI: 10.9790/3008-1102021720
in vitro antimicrobial activity and phytochemical analysis of murraya koenigii leaf extracts

extraction yield, total phenol and flavonoid compounds and bioactivity tests varied depending upon the type of solvent being used. The leaves of *M. koenigii* contain a considerable quantity of phenol-flavonoid compounds which were considered to be the major contributor for their antioxidant and antibacterial activities. Hence it can be concluded that the leaves of *M. koenigii* would direct to the establishment of some compounds that could be used to invent new and more potent anti microbial drugs of natural origin. Therefore future research should be addressed on the application of using *M. koenigii* leaves as natural remedied and to protect against infectious diseases.

References

