Effect of Varying Drying Temperature on the Antibacterial Activity of *Moringa oleifera* Leaf (Lam)

Ibrahim I. Hussein1*, Miriam Mamman2, Mansur Abdulrasheed3

1,2,3Department of Microbiology, Gombe State University P.M.B 127, Gombe State, Nigeria.

Abstract: The use of herbal and medicinal plant for traditional therapeutic measure and health care services began since pre-historical time and currently exploited especially in modern medicine. This study investigated the effects of different drying temperature on the antibacterial activity of ethanolic extract of *M. oleifera* leaf. Fresh leaves of *M. oleifera* were dried separately at varying temperature by sun drying, oven drying and air drying methods, grinded into powdered form and extracted with ethanol. The ethanolic extracts were used for antibacterial susceptibility test using agar disc diffusion method. All the three clinical bacterial isolates such as *E. coli*, *S. aureus* and *S. typhi* were susceptible to the ethanolic extract of *M. oleifera* leaf which signified its antibacterial potency. The air dried extract produced the highest zones of inhibition than the sun dried and oven dried ethanolic extract with 13 mm and 19 mm, 13 mm and 21 mm, 11 mm and 20 mm as the lowest and highest inhibition zones for *E. coli*, *S. aureus* and *S. typhi* respectively. This study inferred that drying temperature especially higher temperature has profound effects on the antibacterial activity of *M. oleifera* leaf as active component are depreciated.

Keywords: *M. oleifera* leaf, Drying temperature, Zone of inhibition, ethanolic extract, Antibacterial susceptibility, Clinical bacterial isolates.

I. **Introduction**

Medicinal plants have been used in traditional health care systems since pre-historic times and are still the most important health care source for the vast majority of the population around the world [1]. The use of herbal medicine has always been part of human culture, as some plants possess important therapeutic properties, which can be used to cure human and other animal diseases [2].

It has been reported that a substantial percentage (38%) of prescription contained one or more of the natural products of plant origin as the therapeutic agent [3]. Study of [4] had earlier pointed that more than 75% pure compounds derived from higher plants are used in herbal medicine but most of those applied in modern medicine are now produced synthetically. The reasons for the high patronage of herbal medicine are the high cost of very effective antibiotics and the problem of antibiotic resistance which is very common in developing countries [5].

In recent studies, extract of various parts of medicinal plants were found to have broad spectrum antimicrobial activities against pathogenic organisms ([6], [7], [8]). An instance is the *M. oleifera* plant; Nearly every part of this plant, including root, bark, gum, leaf, fruit (pods), flowers, seed, and seed oil have been used for various ailments in the indigenous medicine [9]. Recently, researches also indicated and emphasized on the active constituents for accepting its applicability in modern medicine.

Moringa oleifera is a highly valued plant, distributed in many countries of the tropics and subtropics. It has an impressive range of medicinal uses with high nutritional value. Different parts of this plant contain a profile of important minerals, and are a good source of protein, vitamins, β – carotene, amino acids and various phenolics [10]. Reference [11] reported that the idea that certain plants had healing potentials, indeed, they contain what would be characterized as antimicrobial principles was well accepted long before mankind discovered the existence of microbes. The healing property of these medicinal plants is usually linked with the presence of secondary metabolites and these differ from one plant to another [12]. Moringa plant provides a rich and rare combination of zeatin, quercetin, kaempferom and many other phytochemicals which have very important medicinal values [13], with both antibacterial and antifungal activities [14].

In this regards, *M. oleifera* plant parts are being employed for the treatment of different ailments in the indigenous system of medicine. [15] reported on the antimicrobial properties of *M. oleifera* against gram positive and gram negative microorganisms. Aside the antibacterial activity of *Moringa oleifera* plant, it also posses antifungal activity [16]. In addition, *M. oleifera* seeds possess water purifying powers by floculating gram positive and gram negative bacterial cells [17].

Countless studies proving the antimicrobial activities of *Moringa oleifera* leaf abound today, but relatively fewer studies emphatically verifies the effect of different drying temperature (during processing) on the antimicrobial activities of *Moringa oleifera* leaf; thus this study aimed at determining the effect of varying drying temperature

DOI: 10.9790/3008-10453943 www.iosrjournals.org 39 | Page
on the antibacterial activity of *Moringa oleifera* leaf (Lam) extract tested on some clinical bacterial isolates hence the study essentially consider full exploitation of the antimicrobial activities of *Moringa oleifera* especially in modern medicine.

II. Materials And Methods

2.1 Collection of Plant Materials

The leaves of *Moringa oleifera* known as *Moringa oleifera* Lam were neatly collected from Kumo, Akko Local Government Area of Gombe State Nigeria and taken to the laboratory for processing and extraction.

2.1.1 Drying and Processing of *Moringa oleifera* leaves

The leaves of *Moringa oleifera* collected were washed with clean water then dried using different drying methods (applying varying drying temperature) such as; oven drying, sun drying and air-drying. In Sun drying method; the leaves of *Moringa oleifera* were dried under the sun for three days at the average day temperature of 33°C. For the air-drying method employed; *M. oleifera* leaves were dried at average room temperature of 24°C for about 12 to 14 days. While in oven drying method; *M. oleifera* leaves were dried in the oven only for 24 hours at the temperature of 50°C. Afterward, the dried *M. oleifera* leaves were crushed into powdered form using mortar and pestle then stored for extraction.

2.1.2 Extraction of *M. oleifera* Leaves extract

100 gram of powdered *M. oleifera* leaf was soaked in 1000 mL ethanol for five days at room temperature with shaking at various intervals; the resulting mixture was then filtered using muslin cloth then filter paper. The filtrate was evaporated to dryness at 40°C to 50°C on burner resulting to ethanolic extracts of *Moringa oleifera* leaves.

2.2 Bacterial Isolates and Collection

Three clinical bacterial isolates namely: *Escherichia coli, Staphylococcus aureus* and *Salmonella typhi* were used in this study. Stock culture in an agar slant of these bacterial isolates were obtained from Specialist Hospital Gombe, Gombe State and subjected to proper identification and confirmatory test.

2.2.1 Identification & Confirmation of Test Organisms

Bacterial isolates such as *E. coli, Staphylococcus aureus* and *Salmonella typhi* were identified by employing Gram staining procedure and microscopy, and further confirmed using confirmatory biochemical tests including Catalase test, Coagulase test, Motility test, Indole test, Urease test, Oxidase test, Citrate test, KIA test, LDC test and H₂S production test as described by [18].

2.2.2 Sub-culturing and Purification of Test Organisms

Stock culture of the clinical bacterial isolates of *E. coli, S. aureus* and *Salmonella typhi* were sub-cultured on nutrient agar and incubated at 37°C for 24 hours. From the sub-cultured plate, a single of colony of each bacterial isolate was picked with a sterile inoculating loop and pure culture of these test organisms were obtained by streak plating method, then incubated at 37°C for 24 hours. Pure culture each of these test organisms were used for main analysis.

2.2.3 Standardization of Inoculum

A loopful of the colony of *E. coli, S. aureus* and *Salmonella typhi* from the pure culture plates were picked using sterile wire loop and emulsified in 2 to 3 mL nutrient broth then incubated overnight at 37°C for 24 hours. For *S. aureus*, ten folds serial dilution was achieved to (10⁻⁰) dilution while hundred dilutions (10⁻¹) for enterobacteriacea (*Salmonella and E. coli*); then turbidity was compared with 0.5 McFarland’s standard [18].

2.3 Preparation of Disc and Concentrations of *M. Oleifera* Leaves Extracts

2.3.1 Concentration in mg/mL

Different concentrations were prepared from the crude ethanolic extract of *M. oleifera* leaf by weighing the actual concentration/quantity (in milligram) and dissolved completely in one milliliter (1 mL) of distilled water. Various concentrations of ethanolic extract of *M. oleifera* prepared include 30 mg/mL, 50 mg/mL, 70 mg/mL, 100 mg/mL, and 150 mg/mL.

2.3.2 Disc Preparation

Discs used for sensitivity were punched from Whatman No. 1 filter paper and sterilized in Bijou bottle by autoclaving at 121°C for 15 minutes, then various concentrations (30 mg/mL, 50 mg/mL, 70 mg/mL, 100 mg/mL and 150 mg/mL) of ethanolic extract of *M. oleifera* leaf prepared were impregnated in the sterilized
Effect of Varying Drying Temperature on the Antibacterial Activity of Moringa Oleifera Leaf (Lam)

discs by wholly submerging the disc in differently prepared concentrations of M. oleifera extract contained in bijou bottle while disc soaked in distilled water was used as negative control disc.

2.4 Antibacterial Susceptibility Testing: Agar Disc Diffusion Method

Agar disc diffusion methods described by [19] was used to test the antibacterial activity of ethanolic extract of M. oleifera leaf on the three clinical isolates (E. coli, Staphylococcus aureus and Salmonella typhi). From the standardized inoculum, the test organisms were inoculated using sterile swab stick by spread plating on Mueller Hinton agar plates. The prepared sensitivity discs impregnated with different concentrations (30 mg/mL, 50 mg/mL, 70 mg/mL, 100 mg/mL and 150 mg/mL) of the ethanolic extract of Moringa oleifera leaf were picked using a sterile forceps and then dropped on the inoculated plates; also equivalent quantity of distilled water impregnated in the disc termed blank disc (0 mg/mL) was used as negative control. The plates were incubated at 37°C for 24 hours. Clear inhibition zones around the discs denoting antimicrobial activity of Moringa oleifera leaf extract were observed and measured. The results were compared to see the effect of drying temperature on antibacterial activity of M. oleifera leaves extracts. The diameter zones of inhibition (DZI) were measured in millimeter using a meter rule.

III. Results And Discussion

The leaves of M. oleifera dried separately at different temperature (oven-dried, sun-dried and air-dried) and the ethanolic extract of M. oleifera leaves were tested on some clinical bacteria isolates producing zones of inhibition which signifies susceptibility of the test organisms to the extract.

Table 1 Morphology and Biochemical properties of clinical bacterial isolates used:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>ara</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>S. aureus</td>
<td>cc</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>S. typhi</td>
<td>ara</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 relates the Gram reaction, microscopic examination/shapes and biochemical properties of the three bacterial isolates used in this study. These tests results confirmed isolates used for antibacterial sensitivity test.

The ethanolic extract of Moringa oleifera leaf has a varying degree of antibacterial activity on the tested bacterial isolates for E. coli producing lowest inhibition zones of 11 mm at 30 mg/mL concentration for sun dried and oven dried extract of Moringa oleifera leaf; and highest inhibition zones of 19 mm at 150 mg/mL concentration was produced by both sun dried and air dried extracts.

In table 2, the antibacterial activity of ethanolic extract of Moringa oleifera on S. aureus also varies for different drying temperature as 10.5 mm was the lowest zone of inhibition at the lowest concentration of 30 mg/mL for sun dried extract while the air dried extract produced highest zone of inhibition at 21 mm at 150 mg/mL concentration of same ethanolic plant extracts. Also the antibacterial activity of ethanolic extract of Moringa oleifera leaf on Salmonella typhi produced 10 mm at 30 mg/mL concentration as the lowest inhibition zone for both oven dried and sun dried extract while the air dried extract produced the highest zone of inhibition of 20 mm at 150 mg/mL of the extract of Moringa oleifera leaf.

Table 2 Antibacterial susceptibility of E. coli, S. aureus and S. typhi of different concentrations of ethanolic extract of Moringa oleifera leaf.

<table>
<thead>
<tr>
<th>Drying temperature</th>
<th>Zones of inhibition (mm) for different concentrations (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E. coli</td>
</tr>
<tr>
<td>Oven dried at 50°C</td>
<td>30</td>
</tr>
<tr>
<td>Sun dried at 33°C</td>
<td>11</td>
</tr>
<tr>
<td>Air dried at 24°C</td>
<td>13</td>
</tr>
</tbody>
</table>

In this study, the antibacterial activity of ethanolic extract of Moringa oleifera leaf tested on different clinical bacteria isolates including E. coli, S. aureus and S. typhi produced different zones of inhibition; this is
Effect of Varying Drying Temperature on the Antibacterial Activity of Moringa Oleifera Leaf (Lam)

highly indicative that the plant Moringaoleifera has reasonable antibacterial activity against these test organisms. This corroborate with the work of [20] who confirmed the presence of the common phytochemical constituent’s like saponins, tannin, phenol and alkaloids in M. oleifera plant. The Moringa plant provides a rich and rare combination of zeatin, quercetin, kaempferom and many other phytochemicals which have very important medicinal values [13].

Previous studies ([21], [20],[13]) have demonstrated the presence of active antimicrobial components in M. oleifera plant. It is worthy to state that these active components of Moringaoleifera leaf are importantly responsible for its antimicrobial potency; as [20] inferred that the presence of these constituents has been reported to account for the exertion of antimicrobial activity by M. oleifera plants.

In a recent study by [22] aqueous extracts of Moringaoleifera was found to be inhibitory against many pathogenic bacteria, including Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa in dose dependent manner. Moringaoleifera extract was also found to be inhibitory against Mycobacterium phlei and B. subtilis. The leaf extract was found to be effective in checking growth of fungi Basidiobolushaptosporus and Basidiobolusranarums.

Also according to [21], tannins and phenolic compounds have been found to inhibit bacterial and fungal growth and also capable of protecting certain plants against infection. Emphasizing on the medicinal effect of the active ingredients of M. oleifera, Tannins have also been reported to have antidiarrheal, homeostatic and antihemorrhagial activity [23].

From table 2, fig. 1, 2 and 3, it is mostly evident that the zones of inhibition produced by the ethanolic extract of Moringaoleifera is proportional to the dose concentration of the extract of M. oleifera leaf used in this study; this importantly implies that the zones of inhibitions which indicates the susceptibility of the test organismsto M. oleifera leaf extract increases as the concentration of the ethanolic extract of Moringaoleifera leaf increases. This phenomenon is reasonable and conform to the study of [24].

On a general note, this work (fig. 1, 2 and 3) reveals that the air dried ethanolic extract of M. oleifera has higher antibacterial activity on E. coli, S. aureus and S. typhi than the sun dried and oven dried samples, this may be best attributed to the low drying temperature (24°C) of the air-drying method employed in the drying of M. oleifera leaves as compared with oven-drying temperature (50°C) and sun drying temperature (33°C) considered higher than the former. The work of [25] relates that the extract of Moringaoleifera is more effective under low temperature, or moderate temperature conditions. Also [26] revealed that at high temperature, the activity is lost, which pointed that the antibacterial compounds might be some protein which may result in membrane permeabilization resulting from binding of cationic proteins to the negatively charged membrane surface and subsequent pore-formation; with increase of temperature, these proteins might be degraded.

It is imperative to state that the essence of drying of medicinal plant leaves is to expel water, subsequently concentrating the active ingredients in the leaf. The findings of this work reveal that higher drying temperatures otherwise termed processing temperature of Moringaoleifera leaf have effect on its active ingredients and the antibacterial potency of Moringaoleifera leaf extract. This is base on the facts of [26], who stated that although processing temperature may have effects on the antibacterial activity of M. oleifera extracts also supported by the study of [25].

IV. Conclusion

Several studies including this have demonstrated antimicrobial activity M. oleifera leaf extract on some bacteria isolates revealing positive results and inferences. Based on the findings of this study, higher or excessively high-drying or processing temperature of M. oleifera leaf have depreciative effect on antibacterial potency/activity of such medicinal plant.

V. Recommendations

It is recommended that temperature should be importantly considered when drying or processing most medicinal plant like M.oleifera leaf and more research should be done to ascertain the appropriate drying temperature and suitable processing method for any herbal plant intended for therapeutic use to avoid excessive loss of important and active phyto ingredients.

Acknowledgement

We wish to acknowledge the Vice Chancellor of Gombe State University, Professor Ibrahim M. Umar for providing an enabling research environment and encouraging researches especially in the field of science. Also commend Microbiology Laboratory Technologist, Mallam Sani Ibrahim for his efforts and assistance in the course of this work, Hafsat Lawalandy Maryam I. H. for sourcing relevant research journals thus ensuring the success of this work. Lastly, we must acknowledge our colleague Mr. Raj Kumar Prajapatiin the Biological Science Department of Gombe State University for his tireless assistance in publishing this study.
Effect of Varying Drying Temperature on the Antibacterial Activity of Moringa Oleifera Leaf (Lam)

References

DOI: 10.9790/3008-10453943 www.iorsjournals.org 43 | Page