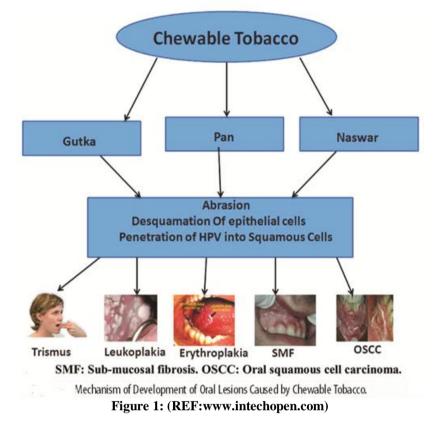
"Study of Ligand Based Virtual Screening Tools in Computer Aided Drug Designing For Oral Cancer"

Vijay Laxmi Saxena^{1,*} Shrasti Gupta¹, Shrashti Srivastava^{2,*}

Bioinformatics Infrastructure Facility Centre of D.B.T, Dept of Zoology, D.G (P.G.), College, Kanpur Bioinformatics Infrastructure Facility Centre of D.B.T, D.G (P.G.), College, Kanpur

Abstract: Insilico potential drug target identification involves chemical compounds for inhibiting or promoting chemical reactions in living organism computational methods are needed for screening through large database of these to identify a inhibitor for receptor Oral Multi-AGC Kinase was employed for docking. We investigated the detailed pharmacology and antitumour activity of the novel clinical drugs and natural ligand. It is associated with Oral Multi-AGC kinase protein. The various ZINC analogs on basis of 99%, 95%, 90% similarity for best docking results with protein for predicting a ZINC analog which can be identified under the category of becoming a potential drug candidate in future. The best mol dock score were for ZINC analog ZINC ID 72131268 for Irinotecan is -169.087 kcl/mol, ZINC ID 04166028 for Teniposide is -178.235 kcl/mol, ZINC ID 30731084 for Topotecan is -166.939 kcl/mol and ZINC ID 00899824 for Curcumin is -141.537 kcl/mol. The two parameter for toxicity properties i.e. Oral LD50 and Mutagenicity were calculated. Oral LD50 and Mutagenicity values are found.

Keywords: Computational methods screening, Database, Insilico, Drug target, Inhibitor, Receptor.


I. Introduction

Cancer of the oral cavity and pharynx is the first and third commonest cancer in Indian men and women, respectively. Where as in most areas at high risk for cancer of the oral cavity other than India (e.g., central and Eastern Europe, South America), the ratios between male and female incidence rates range between and 10, in India the male-to-female ratio is approximately 1 (e.g., Madras) or lower than 0.5 (Bangalore). Such very high incidence rates in Indian women reflect the persistent importance in India of paan chewing, a habit that is equally common in the 2 genders.(1)

Oral cancer most commonly occurs in middle-aged and older individuals, although a disturbing number of these malignancies is also being documented in younger adults in recent years from an epidemiological and clinic pathological perspective, "oral cancer" can be divided into three categories: Carcinomas of the oral cavity (Squamous-cell carcinoma of the tongue is the most common oral malignancy, accounting for 25-40% of all oral carcinomas. Characteristically, it appears as an indurated, nonhealing ulcer with elevated margins. Occasionally, the neoplasm may have a prominent exophytic as well as an endophytic growth pattern. Metastasis from the tongue toipsilateral lymph nodes of the neckis relatively common). Carcinomas of the lip Vermilion (Lip carcinomas account for 25-30% of all oral cancers. The slower growing, more common carcinoma of the lower lip has a better prognosis than upper-lip lesions. Lesions occur on the vermilion border and may appear as chronic nonhealing ulcers or exophytic lesions that are occasionally verrucous. Deeper invasion, clinically characterized by induration, occurs later in the course of the disease, and metastases to submental and submandibular lymph nodes are more likely with histologically less-differentiated lesions and more advanced lesions). Carcinomas arising in the oropharynx (The floor of the mouth is the second most common intraoral location for squamous-cell carcinomas, accounting for 15-20% of all cases. The usual appearance is a red or white, painless, nonhealing, indurated ulcer. Occasionally, the lesion may widely infiltrate the soft tissues of the floor of the mouth, causing decreased mobility of the tongue, characterized clinically by alteration of speech. Altered speech, persistent hoarseness or chronic cough with or without bloody sputum (hemoptysis) may indicate laryngeal metastasis or malignancy). Intraoral and oropharyngeal tumors are more common among men than women, with a male female ratio of over 2:1, However, the disparity in the malefemale ratio has become less pronounced over the past half century, probably because women have been more equally exposing themselves to known oral carcinogens such as tobacco and alcohol. Current research into chemotherapy and photodynamic therapy may provide additional modalities in the future. Verrucous carcinoma, a less common tumour, represents 4.5 - 9% of oral squamous-cell carcinomas. It typically presents as a slowly enlarging, gray or white, warty, exophytic growth on the buccal mucosa or gingiva of older men with an average age of 65 years at time of diagnosis. (2, 3)

Cancer evolves in a series of distinct steps, each characterized by the sequential accumulation of additional genetic defects followed by clonal expansion.1 It has been long established that smoking, alcohol consumption, as well as tobacco chewing are risk factors linked to the development of oral cancer. Other

suspected aetiological factors include viruses such as human papilloma virus and Epstein barr virus, as well as Candida albicans, areca (betel nut) chewing, diets low in carotenoids and vitamin A and several measures of poor oral hygiene, including frequency of tooth brush use. (4)

Role of protein Oral Multi-AGC Kinase-

The class I phosphoinositide 3-kinases (PI3K) are key mediators of intracellular signaling between the membrane bound receptor tyrosine kinases (RTKs) and down stream effector molecules, which control many vital cellular functions ,including survival,growth, proliferation, and motility (8,9) Downstream of these PI3Ks lies a network of serine/threonine kinases, including several members of the AGC kinase family, such as AKT, also known as protein kinase B(PKB), phosphoinositide-dependent kinase 1 (PDK1),p70S6 kinase (p70S6K), p90 ribosomal S6 kinase (RSK),serum- and glucocorticoid-induced kinase (SGK), and Rho kinase (10,11). The PI3K-AKT axis of this signaling network is hyperactivated in multiple cancers through different mechanisms, including the deregulation of upstreamRTKs, for example, insulin-like growth factor-1 receptor(IGF-1R), and genetic alterations of PIK3CA, PTEN, or AKT genes,AKT1, 2, and 3 (8,9). Thus, pharmacologic inhibition of this pathway is an area of great therapeutic interest (12).

Several drugs targeting the PI3K-AKT pathway are currentlyin clinical development, including inhibitors of PI3K, AKT, and mTORC1/2 (12,13). However, inhibiting PI3K-AKTsignaling at a single node has shown relatively limitedclinical efficacy to date. There are several possible explanations for this. First, AKT inhibition has been shown torelieve feedback suppression of RTK expression and activity, which may attenuate antitumor activity (14). Second, PI3Kderegulation may promote cancer through both AKT- dependent and AKT-independent mechanisms, the latter involving the AGC kinases PDK1 and SGK (15). Third, inhibition of a single node such as PI3K or AKT may allow clinical resistance as reported for the selective BRAF inhibitor vemurafenib (15). Furthermore ,concurrent blockade of multiple components of the PI3K network may have greater therapeutic value than inhibition of any single target . Thus, the simultaneous inhibition feveral essential nodes of the PI3K signaling network may provide greater overall suppression of key pathways, with the potential for improved therapeutic efficacy across abroader range of cancer types with less opportunity forresistance to develop.(16)

Human Papillomavirus life cycle for Oral Cancer -

Papillomaviruses infect epithelial cells, and depend on epithelial differentiation for completion of their life cycle. The expression of viralgene products is closely regulated as the infected basal cell migrates towards

the epithelial surface. Expression of E6 and E7 in the lower epithelial layers drives cells into S-phase, which creates an environment that is conducive for viral genome replication and cell proliferation.

Genome amplification, which is necessary for the production of infectious virions, is prevented until the levels of viral replication protein arise, and depends on the co-expression of several viral proteins. Virus capsid proteins are expressed in cells that also express E4 as the infected

cell enters the upper epithelial layers. The timing of these events varies depending on the infecting papillomavirus, and in the case of the high-risk human papilloma viruses (HPVs), on the severity of neoplasia. Viruses that are evolutionarily related, such as HPV1 and canine oral

papillomavirus (COPV), generally organize their productive cycle in a similar way, despite infecting different hosts and epithelial sites. In some instances, such as following HPV16 infection of the cervix or cottontail rabbit papillomavirus (CRPV) infection of domestic rabbits papillomaviruses can undergo abortive infections in which the productive cycle of the virus is not completed. As with other DNA tumourviruses, such abortive infections can predispose to cancer.(17)

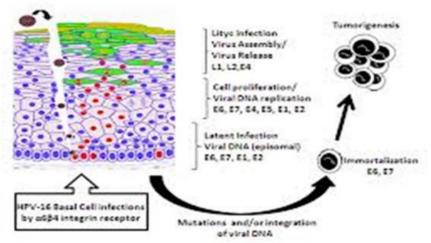


Figure2: (REF:Human Papilloma Virus - role in precancerous and cancerous oral. jpma.org.pk)

II. Methodology

Retrieval of the target protein

The amino acid sequence of protein Oral Multi-AGC Kinase PDB ID 4AXA was retrieved from RCSB (http://www.rcsb.org) FASTA sequence of Oral Multi-AGC Kinase Protein structures obtained from RCSB, PDB ID 4AXA of protein Oral Multi-AGC Kinase has 351 residues of amino acids in length.

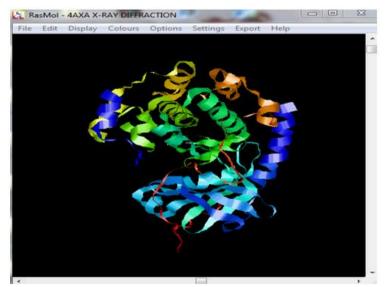


Figure 3:- Image of PDB ID 4AXA of protein Oral Multi-AGC Kinase .GEFTINIB and HISTONE DEATYLASE compound still in clinical trials and natural ligand CURCUMIN and drugs IRINOTECAN, TENIPOSIDE, TOPOTECAN, AMIFOSTINE, BISPHOSPHONATE selected into the ligands binding site detected by ACTIVE SITE PREDICTION www.scfbio-iitd.res.in/dock/ActiveSite.jsp

MOLEGRO VIRTUAL DOCKER was then used to perform virtual screening on the PDB ID 4AXA of protein Oral Multi-AGC Kinase using a screening set from the ZINC DATABASE (http://zinc.docking.org/) that contained 90%,95%,99% molecules for each of the inhibitors, the compounds in clinical trials and the natural ligands.

Preparations of the target protein and screening set

Compound set were prepared from the ZINC DATABASE in January 2013 based on two criteria: firstly, compounds were selected according to their (99%, 95%, 90%) similarity with the drugs, compounds for clinical trials and natural ligands selected and secondly, excluding compounds with multiple components. Eventually a set of structures was obtained that consisted of 700 compounds.

To reduce the complexity and running time of the computational program, the compounds were separated into number of different sets according to the extent of similarity on basis of percentage.

MOLEGRO VIRTUAL DOCKER then docked each compound in the screening set against this binding cavity and ranked each compound by the docked energy of the docked conformation.

The docked conformation of the selected compounds from ZINC DATABASE with the lowest scoring value was compared with docking values of the drugs, clinical trial compounds and the natural ligands selected and along with this the molecular recognition of the protein was also investigated to determine the constraints of the ligand during the virtual screening.

III. Result Analysis And Discussion

Recent progress in bioinformatics has brought about with it many protein structures for virtual screening as drug targets. **Cellular toxicity** further complicates biological activity assays as well as bioinformatics. Here, in taking the devise as less resourced demanding for screening process, given emphasis on computational approaches that are solely based on the structures of a pictorial region of the target.Oral Multi-AGC kinase protein.Then we performed virtual screening on a set of medical drugs because we recognized that using medical drugs could potentially minimize cellular toxicity.

The inhibitors of Oral Multi-AGC kinase protein were having high toxicity and side effects so, the computer aided insilico drug target for selection of potent inhibitors for Oral Cancer protein was performed. The basis of selection of a potent inhibitors for Oral Multi-AGC kinase protein was to select a particular ZINC analog (Which is similar to the drugs and natural ligands up to 99%, 95%, 90% in structure with lesser toxicity and much higher stability with receptor as compared of drug and natural Ligands, after the comparison of the docking result of ZINC analog with the respective drugs and natural ligands, Irinotecan, Teniposide, Topotecan and Curcumin gave the best docking result among all.

S.No	Inhibitors Name	Zinc Analogs (Id)	MolDock Score	Compounds selected	
1.	Geftinib	ZINC22056257	-134.312		
2.	Irinotecan	ZINC72131268	-169.087	ZINC72131268	
3.	Teniposide	ZINC04166028	-178.235	ZINC04166028	
4.	Bisphosphonate	ZINC19632883_1	-61.8548		
5.	Topotecan	ZINC30731084	-166.939	ZINC30731084	
6.	Amifostine	ZINC34856648	-98.2773		
7.	Curcumin	ZINC00899824	-141.537	ZINC00899824	

Analysis Pdb Id 4AXA Of Oral Multi-AGC Kinase

Analysis Of Selected Compounds Compound 1

Compound I

Inhibitor :- Irinotecan

Zinc ID:- ZINC ID 72131268

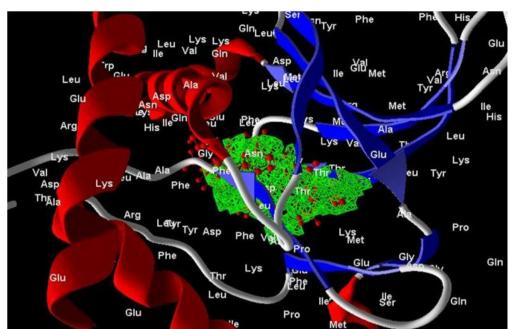


Fig :- 4 Docking image of PDB Id 4AXAOf protein OralMulti-AGC Kinase andZINCID 72131268, Moldock score-169.087Kcal/mol .Amino Acid residues at ligand binding site are Asn, Thr ,Asn ,Gly, Phe

Compound 2

- Inhibitor :- Teniposide
- **Zinc ID:-** ZINC ID 04166028

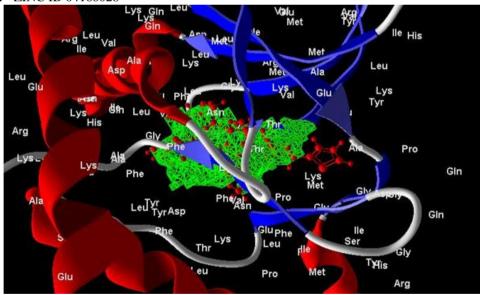


Fig 5:- Docking image of PDB ID 4AXA Of protein OralMulti-AGC Kinase and ZINC ID 04166028.Moldock score-178.235Kcal/mo . Amino Acid residues at ligand binding site areAsn, Thr ,Asn ,Gly, Phe

Compound 3

- Inhibitor :-Curcumin
- ➤ Zinc ID:- ZINC ID00899824

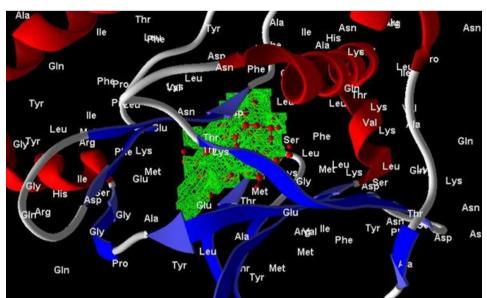


Fig 6:- Docking image of PDB ID 4AXA Of protein Oral Multi-AGC Kinase and ZINC ID 00899824. Moldock score-141.537 Kcal/mol. Amino Acid residues at ligand binding site are Asp, Thr ,Asp Lys, Phe ,Glu

COMPOUND 4

- Inhibitor :- Topotecan
- Zinc ID:- ZINC ID 30731084

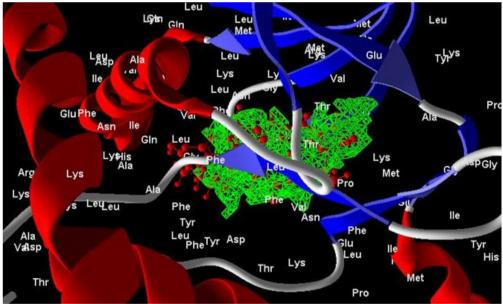


Fig 7:- Docking image of PDB ID 4AXA Of protein Oral Multi-AGC Kinase andZINC ID 30731084.Moldock score-166.939Kcal/mol. Amino Acid residues at ligand binding site areThr, Leu, Phe, Val, Gly

Toxicity Prediction

Extent of the toxic effects of the drugs and the natural ligands were predicted using the software T.E.S.T (Toxicity Estimation Software Tool)(http://www.epa.gov/nrmrl/std/qsar/qsar.html).

The two properties of the drugs and the natural compounds were calculated i.e. Predicted Oral rat LD50 and the mutagenicity properties.

C N-	Table 2:-	Predicted oral rat	LD50 for drug	ands Individual predictions		
S.No		rreaiction results	Prediction results Experimental			Predicted value -
	Molecule	End point	value	Predicted value	Method	Log10 (mol/kg)
1.	inoiceate	Oral rat LD ₅₀ -	vulue	Treated value	Hierarchical	Logio (moring)
		Log10(mol/kg)	N/A	2.78	clustering	2.73
		0 0			FDA	3.25
	and the					
	· · · · · · · · · · · · · · · · · · ·					
	1.	Oral rat LD ₅₀	N/A			
	GEFTINIB	mg/kg		742.92	Nearest neighbor	2.36
2.		Oral rat LD ₅₀ -		27/1		
		Log10(mol/kg)	N/A	N/A	Hierarchical	N/A
					clustering	
			N/A	N/A	FDA	N/A
	H O O O O O O O O O O O O O O O O O O O	Oral rat LD50mg/kg	IN/A	11/24	IDA	11/71
	•	Of all fat ED 501116/ Kg			Nearest neighbor	N/A
	AMIFOSTINE					
3.		Oral rat LD ₅₀ -	N/A	N/A	Hierarchical	N/A
		Log10(mol/kg)			clustering	
	0,	8 8 8 8			6	
	Se '					
	S- 0+	Oral rat LD ₅₀	N/A	N/A	FDA	N/A
	2	mg/kg				
	2					
	<u> </u>					
					Nearest neighbor	N/A
	IRINOTECAN					
4.		Oral rat LD ₅₀ -	N/A	3.49	Hierarchical	2.62
		Log10(mol/kg)			clustering	
			27/1	10 (10		2.50
	· /	Oral and LD and Are	N/A	136.60	FDA	3.58
	>_<	Oral rat LD ₅₀ mg/kg			Nearest neighbor	4.27
	\rightarrow					
	<u>`</u>					
	TOPOTECAN					
5.		Oral rat LD ₅₀ -		1		
	_ ~	Log10(mol/kg)	N/A	N/A	Hierarchical	N/A
					clustering	
	ě de la construction de la const					
	"o _ 0					
	0	Oral rat LD ₅₀ mg/kg	N/A	N/A	FDA	N/A
	~~~~	mg/Kg	11/13	11/23		11/11
	· · ·				Nearest neighbor	1.63
					ivearest neighbor	1.05
	TENIPOSIDE					
6.		Oral rat LD ₅₀ -	N/A	2.56	Hierarchical	2.63
		Log10(mol/kg)			clustering	
					FDA	2.45

Table 2:-Predicted oral rat LD50 for drugs and natural ligands

	curcumin	Oral rat LD ₅₀ mg/kg	N/A	1015.00	Nearest ighbor	2.60
7.	H-Q 0 0	Oral rat LD ₅₀ - Log10(mol/kg)	N/A	N/A	Hierarchical clustering	N/A
	D-H	Oral rat LD ₅₀ mg/kg	N/A	N/A	FDA	2.56
	BISPHOSPHONATE				Nearest neighbor	N/A
8.		Oral rat LD ₅₀ - Log10(mol/kg)	N/A	2.21	Hierarchical clustering	N/A
	Histone deactylase	Oral rat LD ₅₀ mg/kg	N/A	2445.66	FDA Nearest neighbor	2.36 2.06

# Table 3:-Mutagenicity properties for drugs and natural ligands

Table 5:-Nutagementy properties for drugs and natural ligands							
		Prediction results			Individual predictions		
						Predicted	
						value -	
			Experiment	Predicted	Method	Log10	
S.No	Molecule	End point	al value	value		(mol/kg)	
1.		•				<u> </u>	
	1	Mutagenicity			Hierarchica		
		value	N/A	0.43	1 clustering	0.65	
					FDA	-0.03	
	× •	Mutagenicity		Mutagenicity	Nearest		
	GEFTINIB	result	N/A	Negative	neighbor	0.67	
2.		Mutagenicity	N/A	N/A	Hierarchica	0.07	
2.	3	value	14/14	1 1 / 2 1	l clustering	N/A	
	R Store of the sto	value			refusiering	14/21	
	0				FDA	N/A	
		Mutagenicity	N/A	N/A	Nearest	N/A	
	AMIFOSTINE	result	1N/A	1 <b>\</b> / <b>A</b>	neighbor	1N/A	
2			N/A	N/A	Hierarchica	N/A	
3.		Mutagenicity	IN/A	IN/A		IN/A	
	<b>15</b> 5	value			l clustering		
	25						
	· 🖓 🚥						
	3						
	5						
		Mutagenicity	N/A	N/A	FDA	N/A	
	IDDIOTECAN	result			Nearest		
	IRINOTECAN				neighbor	N/A	

4.       Mutagenicity value       N/A       0.49       Hierarchica lclustering       0.13         TOPOTECAN       Mutagenicity result       N/A       Mutagenicity N/A       Mutagenicity N/A       FDA       0.69         5.       Mutagenicity result       N/A       N/A       N/A       Mutagenicity N/A       N/A         6.       Mutagenicity result       N/A       N/A       N/A       Hierarchica lclustering N/A         6.       Mutagenicity result       N/A       N/A       N/A       N/A         6.       Mutagenicity result       0.00       0.09       Hierarchica lclustering lcluster	-	1					
Image: constraint constrain	4.	55		N/A	0.49		0.13
TOPOTECAN       Image: Constraint of the second secon				N/A		FDA	0.69
Mutagenicity valueN/AN/AHierarchica l clusteringN/AMutagenicity resultMutagenicity resultN/AN/AMearest neighborN/A6.Mutagenicity value0.000.09Hierarchica l clustering0.006.Mutagenicity value0.000.09Hierarchica l clustering0.137.Mutagenicity resultMutagenicity valueMutagenicity NegativeMutagenicity NegativeN/A7.Mutagenicity resultN/AN/AN/AN/A8.Mutagenicity valueN/AN/AN/AN/A8.Mutagenicity valueN/AN/AN/AN/AMutagenicity valueN/A0.88Hierarchica l clusteringN/A8.Mutagenicity valueN/AN/AN/AN/AMutagenicity valueN/AN/AN/AN/A8.Mutagenicity resultN/AN/AN/AN/AMutagenicity valueN/AN/AN/AN/AMutagenicity resultN/AN/AN/AN/AMutagenicity resultN/AN/AN/AN/AMutagenicity resultN/AN/AN/AN/AMutagenicity resultN/AN/AN/AN/AMutagenicity resultN/AN/AN/AN/AMutagenicity resultN/AN/AN/AN/AMutagenicity resultN/A<		TOPOTECAN			Negative		0.67
TENIPOSIDE     result     N/A     N/A     N/A       TENIPOSIDE     result     N/A     N/A     N/A       Mutagenicity value     Mutagenicity nesult     0.00     0.09     Hierarchica l clustering     0.13       Mutagenicity value     Mutagenicity nesult     Mutagenicity Negative     Mutagenicity Negative     FDA     0.12       CURCUMIN     Mutagenicity value     N/A     N/A     N/A     Hierarchica l clustering     0.00       T     Mutagenicity value     Mutagenicity value     N/A     N/A     N/A     Hierarchica l clustering     0.12       T     Mutagenicity value     N/A     N/A     N/A     Hierarchica l clustering     N/A       BISPHOSPHONAT E     Mutagenicity value     N/A     N/A     N/A     FDA     1.08       8.     Mutagenicity value     N/A     N/A     O.88     Hierarchica l clustering     0.56       HISTONE     Mutagenicity value     N/A     N/A     Mutagenicity N/A     N/A     PDA     1.40	5.			N/A	N/A		N/A
TENIPOSIDEImage: constraint of the sector of th				N/A	NI/A	FDA	N/A
Mutagenicity value0.000.09Hierarchica l clustering0.13Mutagenicity resultMutagenicity NegativeMutagenicity NegativeFDA0.12CURCUMINN/AN/AN/AN/AN/AMutagenicity valueMutagenicity valueN/AN/AHierarchica neighbor0.00Mutagenicity valueN/AN/AN/AHierarchica l clusteringN/ABISPHOSPHONAT EMutagenicity valueN/AN/AFDA1.088.Mutagenicity valueN/A0.88Hierarchica l clustering0.568.Mutagenicity resultN/A0.88Hierarchica l clustering1.40Mutagenicity valueN/AN/ANearest neighbor0.569.Mutagenicity resultN/AMutagenicity N/A0.67		TENIPOSIDE		IN/A			0.00
Mutagenicity resultMutagenicity NegativeMutagenicity NegativeFDA0.12CURCUMINMutagenicity valueN/AN/ANearest neighbor0.007.Mutagenicity valueN/AN/AN/AHierarchica l clusteringN/ABISPHOSPHONAT EMutagenicity resultN/AN/AN/AFDA1.088.Mutagenicity valueN/AN/A0.88Hierarchica l clusteringN/A8.Mutagenicity resultN/AN/A0.88Hierarchica l clustering0.561Mutagenicity valueN/AN/A0.88Hierarchica l clustering0.561Mutagenicity valueN/AN/A0.671.40	6.			0.00	0.09		0.13
CORCOMINMutagenicity valueN/Aneighbor7.Mutagenicity valueN/AN/AHierarchica 1 clusteringN/ABISPHOSPHONAT EMutagenicity resultN/AN/AFDA1.088.Mutagenicity valueN/A0.88Hierarchica 1 clusteringN/A6.Mutagenicity resultN/A0.88Hierarchica 1 clustering0.568.Mutagenicity valueN/A0.88Hierarchica 1 clustering0.561Mutagenicity valueN/A0.88Hierarchica 1 clustering0.561Mutagenicity resultN/AMutagenicity N/AN/A0.67						FDA	0.12
N/A     I clustering     N/A       BISPHOSPHONAT     Mutagenicity     N/A     N/A     FDA     1.08       BISPHOSPHONAT     Mutagenicity     N/A     N/A     N/A     N/A       8.     Mutagenicity     N/A     0.88     Hierarchica     0.56       Mutagenicity     N/A     N/A     0.88     Hierarchica     0.56       I clustering     Mutagenicity     N/A     0.88     Hierarchica     0.56       Mutagenicity     N/A     N/A     Mutagenicity     N/A       HISTONE     Mutagenicity     N/A     Mutagenicity     0.67		CURCUMIN				neighbor	0.00
E     result     Image: Constraint of the sector of	7.			N/A	N/A		N/A
Image: state in the state				N/A	N/A		
value     l clustering       I clustering     1.40       Mutagenicity result     N/A     Mutagenicity Negative       HISTONE     Image: Note of the second							N/A
Mutagenicity result     N/A     Mutagenicity Negative     Nearest neighbor     0.67       HISTONE     Image: Comparison of the second s	8.			N/A	0.88		0.56
result     Negative     Nearest neighbor     0.67       HISTONE     Image: Comparison of the second se		of of	Mutagenicity	N/A	Mutagenicity		1.40
							0.67

# IV. Conclusion

Docking was performed of PDB ID 4AXA of Oral Multi-AGC kinase protein among known inhibitors Irinotecan ,Teniposide , Topotecan , Curcumin has shown, quite good docking scores for PDB ID 4AXA of protein Oral Multi-AGC kinase protein Inhibitors of lower docking score were used for similarity search from ZINC database. Obtained molecules were further screened to find more potent inhibitor of Oral Multi-AGC kinase.

Among all the screened analog ZINC ID 72131268 for Irinotecan, ZINC ID 04166028 for Teniposide, ZINC ID 30731084 for Topotecan, ZINC ID 00899824 for Curcumin has given the best docking scores i.e. - 169.087 kcl/mol, -178.235 kcl/mol, -166.939 kcl/mol, -141.537 kcl/mol based on the obtained data these molecules could be used for development of a potent inhibitor of PDB ID 4AXA of Oral Multi-AGC kinase protein.

Thus the receptor PDB ID 4AXA is considered to be more active participant in Oral cancer, therefore it can positively be used for development of potent inhibitor for treatment of Antitumor activity in Oral cancer.

#### Reference

- [1]. Brad W.Neville, DDS;TerryA.Day, MD, FACS.Oral Cancer and Precancerous Lesions.CACancer J Clin 2002;52;195-215
- [2]. Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J ClinOncol 2010;28:1075–83.
- [3]. Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, SerraV, et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell2011;19:58–71.
- [4]. Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 2009;9:550-62.
- [5]. FaliS.Mehta, M.B.Gupta, J.J.Pindborg, R.B. Bhonsle, P.N. Jalnawalla, & P.N. Sinor. An intervention study of oral cancer and precancer in rural Indian population: a preliminary report. Bullenten of the World Healtj organization 60(3):1982.
- [6]. Fan QW, Knight ZA, Goldenberg DD, Yu W, Mostov KE, Stokoe D, et al.A dual PI3 ,kinase/mTOR inhibitor reveals emergent efficacy in glioma.Cancer Cell 2006;9:341–9.
- [7]. John Doorbar. The Papillomavirus life cycle. Doi:10.1016/j.jcv.2004.12006.
- [8]. Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 2009;8:627-44.
- [9]. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream.Cell 2007;129:1261-74.
- [10]. MJ McCullough, CSFarah. The role of alcohol in oral carcinogenesis with particular refrence to alcohol-containing mouthwashes. Australian Dental journal 2008; 53 ; doi:10.1111/J.1834-7819.2008.00070.x
- [11]. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, et al. Melanomasacquire resistance to B-RAF(V600E) inhibition by RTK or N-RASupregulation. Nature 2010;468:973–7.
- [12]. PrabhaBalram,HemaSridhar,ThangarajanRajkumar,SalvatoreVaccarella,RolandoHerreoAmbakumarNandakumar,Kandaswamy,Rav ichandran, KunnambathRamdas, RengaswamySankaranarayanan,VendhanGajalakshmi,NubiaMuzon and Silvia Francechi. Oral Cancer In Southern India The Influence Of Smoking, Drinking, Paan-Chewing, And Oral Cancer Hygiene. Int.J. Cancer 98, 440-445 (2002) DOI 10.1002/ijc.10200
- [13]. Pearce LR, Komander D, Alessi DR. The nuts and bolts of AGC proteinkinases. Nat Rev Mol Cell Biol 2010;11:9-22.
- [14]. REF: www.brightonimplantclinic.co.uk
- [15]. REF:www.intechopen.com
- [16]. REF: Detecting Oral Cancer: A New Technique and Case Reports
- [17]. REF: Human Papilloma Virus role in precancerous and cancerous oral.
- [18]. jpma.org.pk
- [19]. Sayed M. Mirbod, Stephen I. Ahing, Tobacco-Associated Lesions of the Oral Cavity:Part II. Malignanat Lesions. Juin 2000 Vol. 66,
   [20]. Shrasti Gupta, Vijay LaxmiSaxena and VartikaSaxena Comparative Analysis Between the Protein MCP-1 and Neurotrophins
- Involved in Alopecia Areata. ISSN : 0975-833X
- [21]. Timothy A. Yap, Mike I. Walton, Kayla M. Grimshaw. AT13148 Is a Novel, Oral Multi-AGC Kinase Inhibitor with potent pharmacodynamic and Antitumor Activity. Clin Cancer Res 2012;18:3912-3923. Published Online First July 15,2012DR. ALINA KRIVITSKY AND DR.ALEXANDRE-AMIRAALAM http://implantperiocenter.com/periodontal-services/oral-cancer-exam
- [22]. Vasudevan KM, Barbie DA, Davies MA, Rabinovsky R, McNear CJ, KimJJ, et al. AKT-independent signaling downstream of oncogenicPIK3CA mutations in human cancer. Cancer Cell 2009;16:21–32.
- [23]. Written by John C. Kois, DMD, MSD, and Edmond Truelove, DDS, MSD Saturday, 30 September 2006 19:00 --- Detecting Oral Cancer: A New Technique and Case Reportss
- [24]. Yap TA, Garrett MD, Walton MI, Raynaud F, de Bono JS, Workman P. Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. CurrOpinPharmacol 2008;8:393–412.