Structural Health Monitoring Of Crude Oil Reservoir at the
Forcados Terminal, Nigeria

R. Ehigiator – Iruge¹, O.M. Ehigiator²,
¹GeoSystems and Environmental Engineering, 140 2nd East Circular Road, Benin city
²Senior lecturer Faculty of Basic Science, Benson-Idahosa University, Benin City, Nigeria.

Abstract: In oil and Gas Companies, the safety of reservoir and their contents is of interest not only to the
owners and operators but also to the public. This is as a result of the fact that if reservoirs were to fail and their
content which is crude oil spilled into the environment, water will be polluted, biotic and aquatic lives will be
affected. In the case of Nigeria the economy will be adversely affected. Most frequently used reservoir for crude
oil storage in Nigeria are vertical cylindrical and of circular cross section. We present here methods and results
of three epochs of geodetic inspection and the necessary computations that will reveal the character of the
reservoir in Forcados, Nigeria.

Keywords: Tank, Oil Level, Radial Displacement, Ovality, Roof grap.

I. Introduction

As a result of serious environmental hazards resulting from reservoir failures there is need to carryout
periodic monitoring of the reservoir. Above surface vertical cylindrical reservoir used in Oil and gas industries
are constructed of steel and over the years many of the structures have corroded and leaked petroleum products
into the soils thus contaminating ground water and the environment.

Leaking reservoir can be a source of groundwater problem as the petroleum which they carry contains
toxic compounds including benzene, toluene, xylene and ethylene dibromide. These compounds are thought to
cause cancer, and pose a number of health risks including nervous system damage, reproductive problem and
immune system depression. The soils and geological condition at the structure locations can also affect ground
water contamination.

II. Crude Oil Storage Tanks At The Forcados Terminal

Reservoirs at the Forcados terminal were constructed between 1967 and 1970. There are at the
moment 10 crude oil storage reservoir each about 22m in height and diameter 76.2m (Fig. 1).

The structural integrity of these reservoirs has been of major concern to both local community and
environmentalists. Although API 653 remain the industry standard relative to reservoir inspection and
maintenance, the frequency of testing and inspection can also be affected by various state and local regulations
[1].

The schedule of this inspection process depend on a number of factors which include [2] the age, their
proximity to groundwater, the leak records, the date of the last integrity test, the construction material used, the
product stored, soil condition etc.

Reservoir at Forcados farm is bounded with a bound walls which measuring 250m by 150m and at a
height of 12m. The bound walls are to accommodate and contain any spill that may result from failure of any of
the reservoir.

Figure 1: Reservoir at the Terminal
III. Structural Health Monitoring

Reservoir used by oil Companies in Nigeria are cylindrical in shape. As a result of age, non-uniform settlement of the foundation, geological conditions loading and offloading, crude oil temperature, primary and secondary settlement of sediments results in radial deformation or out of roundness of the reservoir. This results in the binding of the floating roof or in cone-roof tanks displacement. Out of roundness may result in the upper shell course buckling. Shell out of roundness may result in gaps between reservoir shell and their hydrocarbon emission into the environment occurred. As a safety measure, each reservoir needs to be monitored periodically.

In this study, the monitoring conducted is geodetic measurement and include:
- Ovality measurement including establishment of controls for ovality checks
- Roof gap measurement to ascertain the integrity of the floating roof
- Verticality checks
- Reservoir Height determination.

IV. Ovality Survey

These surveys were carried out from geodetic control points; monitoring stations were established close and around the reservoir to form well-conditioned triangles for intersection fix. The studs were then coordinated by angular intersection methods from these monitoring stations using total station instrument.

The stud coordinates were then computed using the intersection formula [3].

\[
E_s = \frac{E_A \cot B + E_B \cot A + N_A - N_B}{\cot A + \cot B} \tag{1}
\]

\[
N_s = \frac{N_A \cot B + N_B \cot A + E_A - E_B}{\cot A + \cot B} \tag{2}
\]

Where

- \(E_s, N_s\) – Easting and Northing of monitoring point (Stud)
- \(E_A, N_A\) – Easting and Northing coordinates of points \(A\) and \(B\) respectively. Angles \(A\) and \(B\) are the base angles of the intersecting lines.

The reservoir diameter can then be computed from coordinates of opposite studs using the equation (3).

\[
d = \sqrt{(X_i - X_k)^2 + (Y_i - Y_k)^2} \tag{3}
\]

Where

- \(d\) is the reservoir diameter, \(X\) and \(Y\) are Easting and Northing of opposite studs, \(i\) and \(k\) as presented in Table 1.

<table>
<thead>
<tr>
<th>Studs</th>
<th>EASTING(m)</th>
<th>NORTHING(m)</th>
<th>DIAMETER(m)</th>
<th>RESIDUALS(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STU1</td>
<td>324845.63</td>
<td>148619.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STU9</td>
<td>324834.43</td>
<td>148543.4</td>
<td>76.432894</td>
<td>0.0283827</td>
</tr>
<tr>
<td>STU16</td>
<td>324830.79</td>
<td>148618.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STU8</td>
<td>324848.53</td>
<td>148543.97</td>
<td>76.495553</td>
<td>0.0910415</td>
</tr>
<tr>
<td>STU2</td>
<td>324859.7</td>
<td>148613.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STU10</td>
<td>324820.35</td>
<td>148548.38</td>
<td>76.333557</td>
<td>-0.1118916</td>
</tr>
<tr>
<td>STU4</td>
<td>324877</td>
<td>148590.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STU12</td>
<td>324802.81</td>
<td>148571.89</td>
<td>76.379888</td>
<td>0.0910415</td>
</tr>
<tr>
<td>STU3</td>
<td>324871.06</td>
<td>148603.08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: RESERVOIR DIAMETER
The coordinate of the centre of the reservoir is given as

\[(X_c - Y_c)^2 = \left(\frac{d}{2}\right)^2 - (X_i - Y_i)^2\] \hspace{5cm} (4)

Where

\(X_c\) and \(Y_c\) are the coordinates of the centre, \(X_i\) and \(Y_i\) are coordinates of the studs.

Figure (2) is the reservoir ovality computed using equations (1) and (2) respectively, while figure (3) is the diameter.

\[
\begin{array}{|c|c|c|c|}
\hline
\text{STUD11} & 324809.22 & 148558.39 & 76.29262 & -0.0246228 \\
\hline
\text{STUD5} & 324877.54 & 148575.14 & & \\
\hline
\text{STUD13} & 324802.08 & 148586.8 & 76.364426 & -0.0400851 \\
\hline
\text{STUD7} & 324862.19 & 148550.16 & & \\
\hline
\text{STUD15} & 324817.24 & 148612.06 & 76.499612 & 0.0330286 \\
\hline
\text{STUD6} & 324872.37 & 148561.1 & & \\
\hline
\text{STUD14} & 324807.11 & 148600.9 & 76.43754 & 0.0951009 \\
\hline
\text{Average} & & & 76.40511 & \\
\hline
\end{array}
\]

The coordinate of the centre of the reservoir is given as

\[d = \sqrt{\frac{Y + 2X}{2}}\]

\[2Y = \sqrt{\frac{X + 2X}{2}}\]

\[d = \frac{\sqrt{X + 2X}}{2}\]

\[X_c = \frac{\sqrt{X + 2X}}{2} - X_i\]

\[Y_c = \frac{\sqrt{X + 2X}}{2} - Y_i\]

\[\text{V. Determining Of The Tank Wall Distortion}\]

Each point on the perimeter of cross section of reservoir must fulfill the equation of circle as given in equation (4) above. By using the resulted values of radius \(r\) and coordinates of center \((X_c, Y_c)\), the distortion of each monitoring point can be determined by using the following formula [4]:

\[
\text{Distortion} = \sqrt{(X - X_c)^2 + (Y - Y_c)^2} - r
\]
By determining the distortion of each point on the circular cross section of the reservoir, the actual deformed shape of the reservoir can be determined as presented in table 2.

Table 2: RESERVOIR № 2 DISTORTION

<table>
<thead>
<tr>
<th>Monitoring point on the tank surface</th>
<th>Distortion, mm</th>
<th>Year 2003</th>
<th>Year 2004</th>
<th>Year 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUD 6</td>
<td>-18.25</td>
<td>-11.65</td>
<td>6.13</td>
<td></td>
</tr>
<tr>
<td>STUD 16</td>
<td>36.78</td>
<td>6.38</td>
<td>133.65</td>
<td></td>
</tr>
<tr>
<td>STUD 7</td>
<td>29.63</td>
<td>-18.86</td>
<td>8.19</td>
<td></td>
</tr>
<tr>
<td>STUD 17</td>
<td>48.19</td>
<td>30.45</td>
<td>89.34</td>
<td></td>
</tr>
<tr>
<td>STUD 8</td>
<td>-53.20</td>
<td>-42.15</td>
<td>-10.24</td>
<td></td>
</tr>
<tr>
<td>STUD 18</td>
<td>40.87</td>
<td>34.96</td>
<td>82.98</td>
<td></td>
</tr>
<tr>
<td>STUD 9</td>
<td>-26.65</td>
<td>-21.56</td>
<td>4.31</td>
<td></td>
</tr>
<tr>
<td>STUD 19</td>
<td>11.36</td>
<td>12.59</td>
<td>51.48</td>
<td></td>
</tr>
<tr>
<td>STUD 10</td>
<td>-45.02</td>
<td>-44.77</td>
<td>-9.73</td>
<td></td>
</tr>
<tr>
<td>STUD 20</td>
<td>9.14</td>
<td>15.94</td>
<td>45.28</td>
<td></td>
</tr>
<tr>
<td>STUD 11</td>
<td>-39.99</td>
<td>-49.72</td>
<td>-5.39</td>
<td></td>
</tr>
<tr>
<td>STUD 1</td>
<td>4.77</td>
<td>17.93</td>
<td>46.16</td>
<td></td>
</tr>
<tr>
<td>STUD 12</td>
<td>-6.18</td>
<td>-24.58</td>
<td>74.20</td>
<td></td>
</tr>
<tr>
<td>STUD 2</td>
<td>11.51</td>
<td>40.39</td>
<td>61.14</td>
<td></td>
</tr>
<tr>
<td>STUD 13</td>
<td>9.80</td>
<td>4.94</td>
<td>17.96</td>
<td></td>
</tr>
<tr>
<td>STUD 3</td>
<td>9.13</td>
<td>-6.21</td>
<td>8.31</td>
<td></td>
</tr>
<tr>
<td>STUD 14</td>
<td>12.72</td>
<td>12.79</td>
<td>55.71</td>
<td></td>
</tr>
<tr>
<td>STUD 4</td>
<td>-44.04</td>
<td>-35.87</td>
<td>-14.35</td>
<td></td>
</tr>
<tr>
<td>STUD 15</td>
<td>32.98</td>
<td>9.11</td>
<td>110.73</td>
<td></td>
</tr>
<tr>
<td>STUD 5</td>
<td>-32.78</td>
<td>-16.41</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>Maximum distortion value, mm</td>
<td>48.185</td>
<td>40.3929</td>
<td>133.6495</td>
<td></td>
</tr>
<tr>
<td>Minimum distortion value, m</td>
<td>-53.2006</td>
<td>-49.7179</td>
<td>-14.3502</td>
<td></td>
</tr>
</tbody>
</table>

Note that the sign (+) in table indicate larger radius hence the reservoir is said to have expansion. The sign (-) indicate smaller radius hence the tank is said to contracting.

From the resulting data, the actual deformed shape of the circular cross section can be drawn easily. We present the deformation shape of reservoir №. 2 distortions using the data above and the nominal diameter in fig (4).
By the same way, the actual deformed shape of any circular cross section of any reservoir can be drawn.

VI. Determining the height of circular oil tanks

The instrument is placed at distance from the monitored structure that permits the instrument to observe the highest and lowest point of the reservoir. The horizontal distance from the instrument to the reservoir is measured by using Total station.

By using the measured vertical angles γ_1, γ_2 and the horizontal distance D, the height H can be measured by applying the formula (6):

$$H = D \left(\tan \gamma_1 + \tan \gamma_2 \right)$$ \hspace{1cm} (6)

The measure slope distance S_i must be reduced to horizontal distance (D) using equation (7) below

$$D = s_i \sin \gamma_i$$ \hspace{1cm} (7)

VII. Verticality Surveys

Method of verticality measurement using reflectorless total station is presented below.

Figure 6: The geometry of determination the inclination of circular engineering structures with constant diameter

The total station is positioned near the structure at distance (S) from its base, where it can sight the full height of the monitored structure. The inclined distance and vertical angles from the instrument to each
horizontal section which are distributed at specified heights along the tank height must be measured. In our study, reservoir verticality of studs location in the North, East, South and west of the reservoir where determined. At any section (i) along the height of structure, the inclination Δ_i can be determined as following: [7]

$$\Delta_i = D_i \cos \gamma_i - D_0 \cos \gamma_0$$

Horizontal distance (D) can be determined using equation (7)

Inclined angle $\tan(\phi) = \frac{\Delta_i}{H_i}$

Where L_0 – the inclined distance from the instrument to the Tank base; L_i – the inclined distance from instrument to section i; γ_0, γ_i – vertical angle at base and section i respectively. There is vertical deflection if Δ is greater than $\pm 0.002H$. H may be segmented height or the full height of the structure. Table 2 is the reservoir inclination and figure (7) is cross section of reservoir under study at two Oil reservoir levels.

<table>
<thead>
<tr>
<th>STUDS</th>
<th>TANK2</th>
<th>O/L 19m</th>
<th>O/L 10m</th>
<th>O/L 19m</th>
<th>Inclination</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUD8</td>
<td>$0^\circ 20' 38''$</td>
<td>$-0^\circ 01' 59''$</td>
<td>0.132</td>
<td>-0.013</td>
<td>No tilt</td>
<td></td>
</tr>
<tr>
<td>STUD4</td>
<td>-$0^\circ 03' 48''$</td>
<td>-$0^\circ 11' 13''$</td>
<td>-0.024</td>
<td>-0.072</td>
<td>Tilted</td>
<td></td>
</tr>
<tr>
<td>STUD1 6</td>
<td>-$0^\circ 01' 16''$</td>
<td>-$0^\circ 04' 53''$</td>
<td>-0.008</td>
<td>-0.031</td>
<td>No tilt</td>
<td></td>
</tr>
<tr>
<td>STUD1 2</td>
<td>$0^\circ 20' 10''$</td>
<td>$0^\circ 07' 36''$</td>
<td>0.129</td>
<td>0.049</td>
<td>Tilted</td>
<td></td>
</tr>
</tbody>
</table>

Figure 7: Cross – section of verticality check

VIII. Roof Gap Measurement

To measure the roof gap, the circumference of the tank was sub divided into equal interval using diametrically opposite studs. Measurements are taken between the studs with the aid of a calibrated metric tape and hence diameter of the tank was physically measured.

IX. Conclusions

The history of tank disaster throughout the world reveals that problems often arise undetected due to inaccurate evaluation of both foundation and structural defects. The soil, water and concrete at the foundation bed are materials of different properties. The level of interaction cannot be underestimated. Although the interaction is not spontaneous, the solvent property of water can undermine the configuration of the soils upon which the structure rests.

Monitoring and inspection of crude oil reservoir will ensure continuous safety of the structure so as to avoid the danger arising from environmental degradation as a resulting from structural failure. Monitoring of the tanks should be carried out more frequently for early detection of symptoms and deficiencies and remedial measures taken as quickly as possible.
References

