

Corrosion Engineering In The Age Of Green Chemistry: Theoretical Insights And Future Innovations

Henry Chukwuemeka Olisakwe¹, Nwakamma Ninduwezuor-Ehiobu²,
Daniel Raphael Ejike Ewim³

Department Of Mechanical Engineering, Nnamdi Azikiwe University, Akwa, Nigeria
Entrust Solution Group, Canada
Centre For Engineering Education And Gender Studies, USA

Abstract

Background

The intersection of corrosion engineering and green chemistry presents an opportunity to integrate sustainability into corrosion prevention methods. Traditional mitigation strategies, such as coatings, inhibitors, and material selection, often depend on hazardous chemicals that pose significant environmental risks. With increasing regulatory pressures and societal demands for eco-friendly practices, there is a critical need to transition toward sustainable approaches that minimize environmental impact.

This review examines corrosion mechanisms across various environments and critiques conventional prevention strategies. It introduces green chemistry principles waste minimization, non-toxic chemical design, and resource efficiency as a framework for sustainable corrosion control. The paper highlights theoretical models that incorporate renewable materials, eco-friendly inhibitors, and energy-efficient processes. Emerging technologies, such as biodegradable coatings and bio-based polymers, are proposed as innovative solutions to traditional challenges. Technical, economic, and regulatory barriers to adoption are discussed, emphasizing the role of interdisciplinary collaboration and policy-driven incentives in overcoming these obstacles.

The integration of green chemistry principles into corrosion engineering represents a promising pathway to sustainable corrosion prevention. Future research should focus on developing artificial intelligence tools for designing advanced inhibitors and creating fully sustainable, corrosion-resistant alloys. The success of these efforts will depend on a combination of technological innovation, economic feasibility, and strong policy support, fostering a new era of environmentally responsible corrosion management.

Keywords: Green chemistry, Corrosion prevention, Sustainable materials, Eco-friendly coatings, Corrosion inhibitors

Date of Submission: 10-01-2026

Date of Acceptance: 20-01-2026

I. Background

Contextual Background

Corrosion is a pervasive challenge in various industries, from infrastructure and transportation to energy and manufacturing. As materials degrade due to chemical or electrochemical reactions with their environment, the implications are substantial, ranging from safety risks to significant economic losses (Bender et al., 2022). Global costs associated with corrosion amount to trillions of dollars annually, with approximately 3-4% of gross domestic products (GDPs) in industrialized nations lost due to corrosion-related damage and mitigation efforts. The environmental impact compounds this financial burden, as many corrosion control methods rely on hazardous chemicals and resource-intensive processes (Singh & Singh, 2020).

Traditionally, corrosion engineering has focused on preventing material degradation through the application of protective coatings, corrosion inhibitors, cathodic protection, and material selection. While these strategies have proven effective in extending the lifespan of materials, they often involve environmentally damaging practices (S. Zehra, M. Mobin, & R. Aslam, 2022b). Many corrosion inhibitors contain toxic compounds, such as heavy metals and volatile organic solvents, which pose risks to both human health and ecosystems. The search for alternative methods has led to a growing interest in sustainable, environmentally friendly approaches that align with green chemistry principles (HS Aljibori, Alamiery, & Kadhum, 2023).

Green chemistry is an innovative scientific discipline that seeks to minimize the environmental footprint of chemical processes, emphasizing the development of safer, more efficient, and less toxic chemical technologies (Andraos & Matlack, 2022). Since its inception in the 1990s, green chemistry has grown into a critical area of research and development across numerous fields, including pharmaceuticals, materials science, and chemical engineering. Its 12 core principles include the prevention of waste, the design of less hazardous chemical syntheses, the use of renewable feedstocks, and the reduction of derivative use (HS Aljibori et al., 2023).

Within the context of corrosion engineering, green chemistry provides a framework for rethinking traditional methods, pushing for the design of corrosion prevention techniques that are effective and sustainable. This entails finding ways to reduce or eliminate the use of hazardous chemicals, lower energy consumption, and utilize renewable resources, all while maintaining or enhancing the performance of corrosion protection systems. Applying the principles of green chemistry to corrosion engineering represents a critical step towards more sustainable industrial practices, with potential benefits for both economic and environmental outcomes (Marques & Machado, 2021).

Research Objectives

The aim of this paper is to explore theoretical advances in corrosion engineering through the lens of green chemistry, proposing new methods for sustainable corrosion prevention. Specifically, the study seeks to:

- Examine the current understanding of corrosion mechanisms and how green chemistry principles can be applied to mitigate these processes.
- Investigate the limitations of traditional corrosion control methods, highlighting their environmental and health impacts.
- Present innovative corrosion prevention strategies that align with the principles of green chemistry, focusing on the development of non-toxic inhibitors, eco-friendly coatings, and renewable materials.
- Propose a theoretical framework for sustainable corrosion engineering that integrates green chemistry principles with the latest advances in corrosion science.

By addressing these objectives, this study aims to contribute to the growing body of literature that seeks to bridge the gap between corrosion engineering and green chemistry. The research will highlight potential areas of synergy between the two fields and propose a roadmap for future innovations that can help industries reduce their environmental footprint while maintaining the integrity and longevity of their infrastructure.

Research Gap and Significance

Despite the growing awareness of sustainability in materials science, the application of green chemistry principles to corrosion engineering remains underexplored. While green corrosion inhibitors and coatings have gained some traction in recent years, there is still a lack of comprehensive theoretical frameworks that fully integrate the principles of green chemistry into corrosion prevention strategies. Additionally, many existing studies focus on isolated aspects of corrosion control without considering the broader context of sustainability, such as lifecycle impacts, resource efficiency, and the environmental toxicity of corrosion protection methods.

This paper seeks to fill this gap by offering a more holistic approach, examining corrosion prevention from the standpoint of performance and sustainability. By integrating theoretical insights from both corrosion science and green chemistry, the paper will propose new directions for corrosion engineering that align with the growing demand for environmentally friendly industrial practices. As industries face increasing pressure to reduce their carbon footprint and minimize hazardous waste, the importance of developing sustainable corrosion prevention methods cannot be overstated.

II. Literature Review

Corrosion Mechanisms

Corrosion is a natural process driven by thermodynamic principles, where materials, particularly metals, deteriorate due to reactions with their environment. The mechanisms through which corrosion occurs vary and depend on the specific environment to which the material is exposed. Aqueous, atmospheric, and electrochemical systems are the most common environments where corrosion occurs (Quadri, Akpan, Olasunkanmi, Fayemi, & Ebenso, 2022).

In aqueous environments, corrosion is typically driven by electrochemical reactions between the metal and the ions in the water. When metals like iron are exposed to water, they undergo oxidation, losing electrons and forming metal ions that react with oxygen to create oxides or hydroxides (Kadhim et al., 2021). This process, commonly called rusting, leads to material weakening and eventual failure if not controlled. Additionally, salts like chloride ions can accelerate the corrosion process in aqueous systems by disrupting the protective oxide layers on metals, making them more susceptible to attack (Banos, Burrows, & Scott, 2021).

In atmospheric environments, corrosion results from interactions between the material and moisture, oxygen, and pollutants in the air. Atmospheric corrosion is influenced by humidity levels, temperature variations, and corrosive gases such as sulfur dioxide (SO_2) and nitrogen oxides (NO_x) (Santa et al., 2022). For instance, metals like zinc form protective oxide layers in the presence of air, but this barrier can break down when exposed to high levels of pollutants. The wetting and drying cycle also plays a critical role in atmospheric corrosion, as it can enhance the formation of corrosive films on the material surface (Cai, Xu, Zhao, & Ma, 2020).

Galvanic corrosion can occur in electrochemical environments, particularly in systems where metals are in contact with dissimilar metals or conductive liquids. This form of corrosion arises when two metals with

different electrochemical potentials are in electrical contact in the presence of an electrolyte (Okonkwo et al., 2021). The more reactive metal (anode) corrodes faster, while the less reactive metal (cathode) is protected. This phenomenon is commonly observed in marine environments, where seawater acts as an electrolyte, accelerating the corrosion of structures like ship hulls, pipelines, and offshore platforms (Harsimran, Santosh, & Rakesh, 2021).

Traditional Corrosion Prevention Methods

Traditional corrosion prevention methods have been developed over the years to mitigate material degradation and extend the service life of structures and components. These methods can be broadly categorized into coatings, corrosion inhibitors, and material selection.

Coatings are one of the most widely used methods for corrosion control. They act as a physical barrier, isolating the material from corrosive agents in the environment. These coatings range from organic paints and polymer-based coatings to metallic coatings like zinc (galvanizing) (Kordas, 2022). For example, epoxy coatings are commonly applied in industries such as oil and gas to protect pipelines from corrosion. While coatings are highly effective in protecting surfaces, they have limitations, including potential environmental impacts from the use of volatile organic compounds (VOCs) during application (HS Aljibori et al., 2023).

Corrosion inhibitors are chemicals added to a corrosive environment to slow down or prevent the electrochemical reactions that cause corrosion. These inhibitors work by forming a protective film on the metal surface, reducing the metal's interaction with its environment. Commonly used inhibitors include chromates, phosphates, and organic amines. However, many traditional inhibitors, such as chromates, are toxic and pose significant environmental and health hazards. This has led to increasing regulatory pressures to phase out hazardous inhibitors and replace them with safer alternatives (Kaur, Daksh, & Saxena, 2022).

Material selection is another key strategy in corrosion prevention. This approach involves choosing materials inherently resistant to corrosion in specific environments. Stainless steel, for instance, contains chromium, which forms a passive oxide layer on the surface that protects the metal from further oxidation (Dhawan, Bhandari, Ruhi, Bisht, & Sambyal, 2020). Similarly, alloys such as aluminum and titanium are often chosen for their corrosion-resistant properties. While effective, this approach can be costly, particularly in industries requiring large-scale production, prompting the need for more cost-effective, sustainable solutions (Zehra et al., 2022b).

Principles of Green Chemistry

Green chemistry is a philosophy and framework for designing chemical products and processes that reduce or eliminate the use and generation of hazardous substances. Established in the 1990s, the 12 principles of green chemistry provide guidelines for developing sustainable and eco-friendly chemical technologies. These principles include:

- Waste prevention: Instead of managing waste after it is created, green chemistry focuses on designing processes that prevent waste generation.
- Atom economy: Chemical processes should maximize the incorporation of all starting materials into the final product, minimizing waste by-products.
- Designing safer chemicals: The goal is to create chemicals that fulfill their intended function while being non-toxic and environmentally benign.
- Energy efficiency: Green chemistry emphasizes using energy-efficient processes that minimize energy consumption, particularly those operating at ambient temperature and pressure.
- Renewable feedstocks: Wherever possible, renewable resources should be used instead of depleting raw materials.

In corrosion engineering, applying green chemistry principles means developing corrosion prevention methods that are both effective and environmentally sustainable. This could involve the use of non-toxic, biodegradable corrosion inhibitors, coatings derived from renewable materials, and energy-efficient processes for corrosion control (Hossain, Asaduzzaman Chowdhury, & Kchaou, 2021).

Intersection of Corrosion Engineering and Green Chemistry

Integrating green chemistry principles into corrosion engineering has led to significant advancements in developing sustainable corrosion prevention technologies. One area of growing interest is the development of green corrosion inhibitors. These inhibitors are designed to be non-toxic, biodegradable, and derived from natural sources. For instance, plant extracts containing tannins, alkaloids, and flavonoids have shown promising results as eco-friendly corrosion inhibitors for metals in various environments. Research has demonstrated that these compounds can effectively form protective films on metal surfaces, reducing the rate of corrosion without introducing harmful chemicals into the environment (Husna, Elraies, Shuhili, & Elryes, 2022).

Another key innovation at the intersection of corrosion engineering and green chemistry is the development of eco-friendly coatings (Thakur & Kumar, 2024). These coatings are formulated using renewable or bio-based materials, such as polymers derived from plant oils or polysaccharides. In addition to being environmentally friendly, these coatings can be designed to be self-healing, meaning they can repair minor damages to the coating layer, thereby extending the material's lifespan and reducing the need for maintenance (Yadav et al., 2021).

The use of nanomaterials has also emerged as a promising area of research. Nanomaterials can enhance the protective properties of coatings and inhibitors while reducing the amount of material needed. For example, nano-sized particles of zinc oxide or titanium dioxide can be incorporated into coatings to improve their durability and resistance to corrosion. When combined with green chemistry principles, nanotechnology offers the potential to develop highly efficient, sustainable corrosion prevention systems (Idumah, Obele, Emmanuel, & Hassan, 2020).

Several studies have explored the use of biopolymers and natural fibers in creating corrosion-resistant composites. For example, incorporating chitosan, a biopolymer derived from chitin, into coatings has shown to provide corrosion protection while being biodegradable and environmentally safe. Additionally, researchers are investigating the use of lignin, a natural polymer found in wood, as a corrosion inhibitor for metals exposed to aqueous environments (Christina, Subbiah, Arulraj, Krishnan, & Sathishkumar, 2023). Despite these advances, challenges remain in fully integrating green chemistry into corrosion engineering. One of the primary hurdles is achieving the same level of performance as traditional methods while maintaining cost-effectiveness and scalability. However, the growing body of research at the intersection of these two fields presents numerous opportunities for innovation, particularly in developing materials and methods that are both effective and sustainable (Idumah et al., 2020).

III. Methods

Corrosion from a Green Chemistry Perspective

To establish a comprehensive understanding of corrosion processes through the lens of green chemistry, it is essential to reframe material degradation mechanisms in a manner that aligns with environmental sustainability. Corrosion is fundamentally an electrochemical process, involving the transfer of electrons from a metal (oxidation) to its environment (reduction). Traditionally, corrosion engineering has focused on inhibiting this process through chemically inert materials or altering environmental conditions. However, these strategies often involve the use of harmful substances or energy-intensive processes, which contradict the principles of green chemistry.

Applying green chemistry principles to corrosion processes makes it possible to design solutions that minimize environmental harm while enhancing corrosion resistance. A green chemistry-based framework for corrosion would integrate the following key elements:

- **Waste Prevention:** Preventing the wasteful consumption of materials is critical. This can be achieved by designing corrosion inhibitors that are both effective and biodegradable, ensuring that they do not accumulate in the environment or contribute to pollution.
- **Design for Degradation:** Any materials or chemicals used in corrosion protection should be designed to break down into non-toxic by-products once their functional life ends. This avoids long-term environmental impact.
- **Non-toxic Materials:** The core principle here is to replace hazardous materials traditionally used in corrosion prevention, such as heavy metals and organic solvents, with non-toxic alternatives derived from renewable sources or non-hazardous chemicals.
- **Energy Efficiency:** Corrosion processes and prevention methods should be optimized to operate at ambient temperatures and pressures, thereby reducing the need for energy-intensive treatments such as cathodic protection, which often involves high energy consumption in industrial applications.

By integrating these elements, this framework emphasizes the alignment of corrosion engineering with green chemistry's 12 principles (e.g., waste prevention, safer chemical design, and energy efficiency), allowing for a holistic approach to corrosion control that minimizes environmental impacts while preserving material integrity.

Sustainability in Corrosion Engineering

Sustainability in corrosion engineering represents a departure from traditional approaches that prioritize short-term performance without regard for environmental and economic costs. Sustainable corrosion engineering is concerned with preventing material degradation and optimizing the lifecycle of materials, reducing resource consumption, and minimizing hazardous emissions. This requires a multifaceted approach that incorporates renewable materials, energy-efficient processes, and non-toxic inhibitors.

Renewable Materials

The use of renewable materials in corrosion prevention is a fundamental component of sustainability. These materials should be derived from natural, abundant, and renewable sources, such as plant-based polymers or bio-based composites (Sfameni, Rando, & Plutino, 2023). For example, polymers derived from chitosan, a biopolymer extracted from shrimp shells, have been shown to exhibit corrosion-inhibiting properties when applied as coatings on metal surfaces. Additionally, biopolymers like polylactic acid (PLA) and cellulose derivatives are being explored for their potential in eco-friendly coating formulations (Khan, Irfan, Djavanroodi, & Asad, 2022).

One key advantage of renewable materials is their capacity to degrade into environmentally benign by-products at the end of their service life. This feature contrasts sharply with traditional coatings, which often contain persistent synthetic chemicals that accumulate in the environment. Furthermore, renewable materials are typically less resource-intensive to produce, aligning with the broader goals of sustainable industrial practices.

Energy-Efficient Processes

Energy efficiency is critical in sustainable corrosion engineering, as many conventional corrosion prevention methods, such as electrochemical treatments and high-temperature coatings, are energy-intensive. Sustainable corrosion engineering aims to develop low-energy processes that minimize the carbon footprint of corrosion control efforts (Bender et al., 2022).

One promising direction is the use of ambient-cure coatings, which can be applied and cured at room temperature, eliminating the need for energy-intensive heat treatments. Similarly, electroless plating processes that do not require an external power source offer an energy-efficient alternative to traditional electroplating methods. These processes are based on chemical reactions between the substrate and the solution, allowing for the deposition of protective coatings without the high energy demands associated with electrical inputs. In addition to improving energy efficiency, sustainable corrosion engineering must also consider the lifecycle energy consumption of corrosion prevention technologies, from production to application and eventual disposal. This cradle-to-grave approach ensures that the energy footprint of the entire system remains as low as possible (HS Aljibori et al., 2023).

Non-Toxic Inhibitors

A major area of focus in sustainable corrosion engineering is the development of non-toxic corrosion inhibitors. Traditional inhibitors often rely on hazardous compounds such as chromates, which are effective but pose severe environmental and health risks. A sustainable approach demands the design of inhibitors that are effective, safe for human use, and non-persistent in the environment (Pour-Ali & Hejazi, 2022).

Recent research has explored the use of natural extracts, such as those derived from plants, as environmentally friendly corrosion inhibitors. For instance, plant extracts' tannins, alkaloids, and flavonoids have shown potential as corrosion inhibitors for metals in acidic environments. These compounds act by adsorbing onto the metal surface, forming a protective barrier preventing further corrosion. Moreover, they are biodegradable and do not pose long-term environmental risks (Randis et al., 2023). The challenge lies in optimizing the performance of these natural inhibitors to match or exceed that of traditional synthetic compounds. This may require combining natural compounds with advanced techniques such as nanotechnology to enhance their protective properties.

New Theoretical Approaches

Advancing sustainable corrosion prevention requires the development of new theoretical models and approaches that integrate green chemistry principles with cutting-edge science. These approaches include the molecular design of eco-friendly inhibitors, renewable coating systems, and novel nanotechnology applications.

Molecular Design of Eco-Friendly Inhibitors

One promising theoretical approach is the molecular design of eco-friendly corrosion inhibitors. Using computational chemistry and molecular modeling techniques, researchers can design inhibitors tailored to specific corrosion environments, optimizing their adsorption properties and protection mechanisms. This method involves manipulating the molecular structure of inhibitors to enhance their interaction with the metal surface, ensuring that the protective film formed is both durable and non-toxic. For example, altering the functional groups on a molecule makes it possible to increase its affinity for a metal surface, thereby improving its corrosion-inhibiting efficiency. These molecular design strategies can also ensure that the resulting inhibitors are biodegradable and non-hazardous, making them suitable for use in environmentally sensitive areas such as marine ecosystems (Ebenso et al., 2021).

Renewable Coating Systems

Another emerging approach is the development of renewable coating systems. These systems focus on creating protective coatings from renewable resources, such as bio-based polymers, that offer durability and environmental sustainability. Self-healing coatings, which can autonomously repair minor damages, represent a significant advance in this area. These coatings are often designed with embedded microcapsules containing healing agents that are released upon damage, effectively restoring the integrity of the coating without the need for external intervention.

Moreover, layer-by-layer assembly is a promising technique for creating highly controlled, multifunctional coatings. This method allows for the sequential deposition of thin layers of renewable materials, creating a stratified structure that can enhance both the mechanical and corrosion-resistant properties of the coating. The ability to fine-tune the composition and structure of these layers enables the development of coatings tailored to specific corrosion environments, ensuring long-lasting protection with minimal environmental impact (Guzmán, Ortega, & Rubio, 2022).

Nanotechnology in Sustainable Corrosion Prevention

Nanotechnology has opened up new avenues for sustainable corrosion prevention by enabling the development of coatings and inhibitors with enhanced performance. Nanoparticles can be incorporated into coatings to improve their mechanical strength, corrosion resistance, and barrier properties. For instance, zinc oxide nanoparticles are widely used in coatings due to their ability to provide excellent UV protection and antibacterial properties and their corrosion-resistant capabilities (HS Aljibori et al., 2023).

Furthermore, nanotechnology can improve the distribution and adhesion of eco-friendly inhibitors on metal surfaces. For example, nanostructured films can optimize the interaction between the inhibitor and the metal substrate, ensuring that the protective layer remains intact even under harsh environmental conditions. The use of nanomaterials in sustainable corrosion prevention is still in its early stages, but the potential for reducing material consumption and enhancing performance makes it a promising area for future research.

IV. Result

Eco-Friendly Coatings and Inhibitors

Traditional coatings and corrosion inhibitors have long been effective in preventing corrosion, but many rely on hazardous chemicals that pose environmental risks. The shift towards sustainability has led to development biodegradable and non-toxic coatings and inhibitors that align with green chemistry principles.

- **Biodegradable Coatings:** Research has focused on developing coatings that are effective in protecting materials from corrosion and degrade safely at the end of their useful life. One example is using bio-based polymers like polylactic acid (PLA) and polyhydroxyalkanoates (PHA) derived from renewable resources such as plant oils and microbial fermentation. These materials provide a physical barrier to prevent corrosion while offering the added benefit of environmental degradability. Additionally, they can be functionalized with corrosion inhibitors to enhance their performance (Naser, Deiab, & Darras, 2021).
- **Non-Toxic Inhibitors:** The development of non-toxic, biodegradable corrosion inhibitors has gained considerable attention. Plant-based extracts, including tannins, alkaloids, and flavonoids, have emerged as promising alternatives to traditional synthetic inhibitors. These natural compounds form a protective layer on metal surfaces, reducing the electrochemical reactions that cause corrosion. Research has shown that plant extracts from green tea, pomegranate, and henna can effectively inhibit corrosion in acidic environments. These natural inhibitors are particularly appealing because they offer high corrosion resistance without the environmental drawbacks of synthetic chemicals like chromates or phosphates (AlSheikh et al., 2020).

Incorporating these eco-friendly coatings and inhibitors into industrial processes is critical for sustainable corrosion prevention. However, challenges remain in terms of scalability, performance optimization, and cost-effectiveness, which continue to drive further research and development in this field.

Green Materials in Corrosion Engineering

Green materials are at the forefront of innovation in corrosion engineering. These materials, including bio-based polymers, self-healing materials, and nanomaterials, provide sustainable alternatives to conventional corrosion protection methods.

- **Bio-Based Polymers:** The use of bio-based polymers, such as chitosan (derived from shrimp shells) and cellulose derivatives (obtained from plant matter), has shown great promise as eco-friendly corrosion prevention materials. These polymers can be used as coatings or incorporated into composite materials to enhance their corrosion resistance. Chitosan, for example, has excellent film-forming properties and can act as a barrier to moisture and oxygen, which are key contributors to corrosion. Its biodegradability and low toxicity make it ideal for sustainable applications in water treatment and marine engineering industries (Azmana et al., 2021).

- **Self-Healing Materials:** Self-healing materials represent an exciting development in corrosion protection. These materials can autonomously repair damages caused by environmental factors or mechanical stress, prolonging the life of coatings and reducing the need for maintenance. Researchers have developed coatings that incorporate microcapsules containing healing agents, which are released when the coating is damaged. This process restores the protective barrier and prevents further corrosion. Self-healing materials are particularly advantageous in harsh environments, such as offshore oil rigs and bridges, where regular maintenance is challenging (Altuna & Hoppe, 2021).
- **Nanomaterials:** The integration of nanomaterials into corrosion-resistant coatings is another promising avenue. Nanoparticles, such as zinc oxide (ZnO), silicon dioxide (SiO₂), and titanium dioxide (TiO₂), can be added to coatings to improve their mechanical strength, UV resistance, and barrier properties. These nanoparticles can also enhance the adhesion of the coating to the substrate, ensuring better protection against corrosion. Furthermore, their high surface area allows for better dispersion in the coating matrix, leading to improved performance. The use of nanomaterials aligns with green chemistry principles by reducing the amount of material needed for effective corrosion protection (Ramezanpour, Ramezanzadeh, & Mohammadloo, 2024).

Electrochemical Techniques

Electrochemical methods, such as cathodic protection, have been used for decades to prevent corrosion in various industries. However, traditional electrochemical techniques often rely on toxic chemicals and significant energy consumption. Innovations in this area are focused on minimizing the environmental impact of electrochemical methods while maintaining their effectiveness.

One emerging approach is the development of sacrificial anodes made from more environmentally benign materials. Traditionally, metals such as zinc and aluminum have been used in sacrificial anodes, but research is now exploring the use of magnesium-based anodes, which offer similar protection while reducing environmental hazards. Magnesium is more readily recyclable, and its corrosion by-products are less harmful to ecosystems (Hakim Aljibori, Al-Amiry, & Isahak, 2024).

Another innovation is the use of electrochemical inhibitors that align with green chemistry principles. These inhibitors are designed to be non-toxic and can be used in place of harmful chemicals traditionally used in cathodic protection systems. For example, organic corrosion inhibitors based on plant extracts can be used in electrochemical applications to reduce the need for synthetic chemicals while still providing effective corrosion resistance. Moreover, the application of low-energy electrochemical processes is being explored. For example, new technologies aim to reduce the energy requirements for electroplating by optimizing the electrolyte composition and reaction conditions. These methods help lower the carbon footprint associated with corrosion protection (Zehra et al., 2022b).

V. Discussions

Technical and Economic Barriers

One of the primary challenges in adopting green chemistry-based solutions in corrosion engineering is the technical difficulty of achieving the same level of performance as traditional methods. While promising in laboratory tests, many eco-friendly coatings and inhibitors may not provide the same durability and resistance in real-world environments, particularly in harsh industrial conditions such as high salinity, extreme temperatures, or high-pressure environments. For example, while plant-based inhibitors show potential, their performance in acidic environments or deep-sea applications is still under scrutiny, and further testing is required to ensure that these inhibitors can withstand such extreme conditions over long periods.

Another significant issue is cost. Although green materials are becoming more available, they are often more expensive to produce compared to their conventional counterparts. This cost disparity can make it difficult for industries to justify switching to sustainable corrosion prevention methods, particularly in sectors such as construction, oil and gas, and marine engineering, where profit margins can be narrow and the cost of corrosion prevention constitutes a substantial portion of operational budgets. Moreover, the scalability of green materials presents another obstacle, as producing bio-based polymers or renewable coatings at the scale required for industrial use is still a technical and logistical challenge.

There is also the challenge of integration with existing technologies. Many industries have entrenched practices and infrastructure that rely on traditional corrosion prevention methods, such as electrochemical techniques that use hazardous chemicals. Transitioning to green chemistry solutions would require significant investments in new equipment and retraining of personnel, further increasing costs and slowing down adoption.

Regulatory and Standardization Issues

The regulatory landscape is crucial in adopting green chemistry methods in corrosion engineering. Currently, environmental regulations in many countries are encouraging the move away from harmful chemicals, such as chromates and lead-based coatings, which are known to have toxic effects on both the environment and

human health. While this regulatory pressure is pushing industries to seek greener alternatives, there is still a lack of clear standards governing the development and use of eco-friendly corrosion inhibitors and coatings (Cruz et al., 2022).

For instance, international standards for corrosion prevention, such as those set by the International Organization for Standardization (ISO) and National Association of Corrosion Engineers (NACE), primarily focus on the performance metrics of corrosion protection methods (e.g., longevity, resistance to mechanical damage) without providing clear guidelines on environmental sustainability. This lack of standardization hinders the adoption of green materials, as industries are often reluctant to invest in new technologies that are not yet fully endorsed by regulatory bodies or proven to meet performance criteria under standardized testing protocols (S. Zehra, M. Mobin, & J. Aslam, 2022a).

Additionally, regulatory approvals for new green chemistry-based products can be slow and costly, particularly when demonstrating their safety and efficacy in various real-world applications. This regulatory lag can discourage innovation, as companies may be hesitant to invest in the development of new materials that could take years to receive approval.

Knowledge Gaps

Another major limitation to the widespread adoption of green chemistry in corrosion engineering is the lack of comprehensive research on several key topics. While there has been considerable progress in developing bio-based polymers, eco-friendly coatings, and plant-derived inhibitors, many of these solutions are still in their infancy, with limited understanding of their long-term performance in various industrial environments. For example, long-term durability testing of biodegradable coatings in marine and industrial environments is still limited, and more research is needed to assess how these materials perform over extended periods in real-world applications. Similarly, there are knowledge gaps regarding the mechanisms by which natural inhibitors function at the molecular level, which limits the ability to optimize their effectiveness for different metals and corrosion environments (Al Jahdaly et al., 2022).

There is also a need for greater interdisciplinary collaboration between corrosion engineers, materials scientists, chemists, and environmental researchers to develop new theoretical models that integrate green chemistry principles with the complex electrochemical processes involved in corrosion. Without this collaboration, it will be difficult to develop the holistic, integrated solutions necessary to realize the full potential of green chemistry in corrosion prevention (Verma et al., 2024).

Future Directions and Innovations

The Role of Interdisciplinary Collaboration

Interdisciplinary collaboration between chemists, materials scientists, and corrosion engineers is essential to accelerating innovation in sustainable corrosion prevention. Chemists, particularly those specializing in green chemistry, can design environmentally friendly corrosion inhibitors and coatings by applying principles like atom economy and non-toxic chemical synthesis. Their expertise in understanding molecular structures can help create effective and biodegradable inhibitors.

At the same time, materials scientists play a crucial role in developing new substrates and composites that can withstand corrosive environments while adhering to sustainability goals. This includes the exploration of nanomaterials, biopolymers, and self-healing materials that could extend the life cycle of corrosion-resistant structures. Meanwhile, corrosion engineers are vital in assessing the practical application of these materials, ensuring that they perform reliably in real-world industrial settings. For example, they can evaluate how green inhibitors or coatings interact with different metals and environmental conditions, such as high salinity or temperature extremes.

One area of interdisciplinary collaboration that holds promise is the design of hybrid materials, where chemists and materials scientists work together to combine the best properties of multiple materials, such as high corrosion resistance, low toxicity, and environmental degradability. Collaboration also fosters the exchange of ideas across fields, helping to bridge knowledge gaps and inspire innovative approaches to complex problems.

Potential Breakthroughs

The future of green corrosion prevention may be shaped by artificial intelligence (AI) and machine learning, which are already applied in materials science and chemical engineering. AI could be used to design corrosion inhibitors, enabling researchers to rapidly screen thousands of potential compounds to identify those with the most promising characteristics. For example, AI algorithms can predict which molecules will adhere best to metal surfaces or which compounds are most likely to degrade safely in the environment. This approach reduces the need for extensive trial-and-error testing and accelerates the discovery process.

Another potential breakthrough is the development of sustainable, corrosion-resistant alloys. While highly resistant to corrosion, current alloys often rely on rare or toxic metals such as chromium and nickel. By

applying green chemistry principles, materials scientists could design alloys that utilize more abundant, less harmful elements while still maintaining the strength and durability required for industrial use. These fully sustainable alloys could revolutionize the construction, automotive, and marine engineering sectors, where corrosion resistance is critical.

Furthermore, biotechnology may play an increasingly important role in developing bio-inspired solutions to corrosion. Researchers are exploring the use of microorganisms that can form protective biofilms on metal surfaces, effectively shielding them from corrosion. These biofilms, inspired by natural processes, could be engineered to be both protective and biodegradable, offering a completely green solution to corrosion prevention.

Policy and Industry Initiatives

For green chemistry to become the standard in corrosion engineering, policy frameworks and industry-led initiatives must promote its adoption. Governments can play a pivotal role by implementing regulations that phase out harmful chemicals, such as heavy metals and volatile organic compounds (VOCs), used in traditional corrosion prevention methods. For instance, the European Union's REACH regulation restricts the use of hazardous substances in industrial processes, encouraging companies to seek greener alternatives. Expanding similar frameworks globally would create incentives for industries to adopt green corrosion inhibitors and coatings.

Moreover, the introduction of tax incentives and subsidies for companies that invest in green corrosion prevention technologies could accelerate the shift toward sustainable practices. Such financial incentives would help offset the initial costs associated with adopting new materials and technologies, making them more accessible to industries with tight budgets.

Industry-led initiatives are also critical. Companies that pioneer green corrosion technologies can create standards and best practices that encourage wider adoption. For example, forming consortia between major players in industries like oil and gas, construction, and marine engineering can facilitate sharing of knowledge and resources to promote sustainable practices. These consortia could also work with academic institutions to conduct large-scale field trials and establish standardized testing procedures for new green corrosion prevention methods.

Additionally, sustainability reporting frameworks, such as those guided by the Global Reporting Initiative (GRI) or Sustainability Accounting Standards Board (SASB), can drive the industry to adopt green corrosion practices. Companies increasingly recognize the value of demonstrating environmental stewardship to stakeholders, and including green corrosion technologies in their sustainability reports can further incentivize adoption.

VI. Conclusion

One of the key insights of this paper is the need for corrosion engineering to transition from reliance on traditional, often toxic, corrosion prevention methods toward solutions aligned with the principles of green chemistry. Historically, corrosion prevention has involved using coatings, inhibitors, and materials that are either harmful to the environment or difficult to recycle. While effective methods such as cathodic protection or chromate-based coatings pose environmental hazards, governments increasingly regulate them worldwide.

Exploring corrosion mechanisms in various environments made it clear that green chemistry offers a viable path forward. Corrosion engineers can incorporate sustainable principles to mitigate material degradation without relying on hazardous substances, whether in aqueous, atmospheric, or electrochemical environments. This paper highlighted recent advances in developing eco-friendly coatings and biodegradable inhibitors, which protect against corrosion and minimize harm to ecosystems. This marks a shift from conventional prevention methods toward those that are more resource-efficient, non-toxic, and renewable.

Furthermore, the theoretical framework discussed in this paper lays the groundwork for future innovation. Integrating green chemistry into corrosion science requires a deeper understanding of how sustainable practices can be optimized to suit specific industries, such as marine, oil and gas, and construction. This understanding is crucial for the development of advanced materials that offer superior corrosion resistance while adhering to green principles such as atom economy, non-toxic material design, and waste minimization.

The theoretical contributions of this paper are significant in their implications for both corrosion engineering and green chemistry. First, the paper establishes a new framework for approaching corrosion, where sustainability is placed at the forefront of material protection strategies. This framework advances the scientific understanding of corrosion processes and redefines how engineers approach material selection and corrosion prevention techniques in industrial settings.

Key theoretical advances include the concept of renewable inhibitors and sustainable alloys, which represent a shift away from the traditional reliance on finite resources such as rare metals or petrochemicals. By applying principles of green chemistry, researchers can now develop materials that are effective in preventing corrosion and align with broader sustainability goals. For instance, the emergence of self-healing materials and

biopolymer-based coatings offers promising new directions for the field, allowing for longer-lasting and environmentally friendly corrosion protection. Moreover, this paper highlights the potential for molecular-level design in the development of new inhibitors and coatings. Researchers can develop customized, biodegradable solutions that outperform traditional methods by understanding the specific interactions between inhibitors and metal surfaces. These advances open up possibilities for industries to adopt more specialized and sustainable solutions, particularly in high-risk environments where corrosion poses both environmental and financial challenges.

This theoretical shift in corrosion engineering is deeply intertwined with the core tenets of green chemistry, positioning corrosion science not merely as a defensive discipline that protects materials, but as a proactive field that contributes to environmental sustainability. As such, this paper contributes to an evolving paradigm that sees corrosion engineering as central to developing cleaner, more responsible industrial practices.

While the theoretical advances and emerging innovations discussed in this paper are promising, they must be matched by continued research and investment to realize their potential fully. The global industrial sector is vast and diverse, and the specific challenges posed by corrosion vary significantly across environments and applications. Therefore, a one-size-fits-all approach to sustainable corrosion prevention is neither feasible nor desirable. Instead, the field requires targeted research that focuses on developing solutions tailored to the unique needs of different industries. First, increased collaboration between academic researchers, industrial engineers, and policymakers is necessary to drive innovation. This paper has shown that interdisciplinary work is essential for developing the next generation of green corrosion technologies. Chemists, materials scientists, and engineers must continue to work together, ensuring that theoretical developments are translated into practical applications that meet industry demands while adhering to green chemistry principles.

Second, there is a clear need for governmental and industrial investment in green corrosion technologies. As the regulatory environment becomes increasingly restrictive with regard to toxic materials, industries will face mounting pressure to adopt sustainable practices. However, the shift to green corrosion prevention will require financial support, both in the form of government incentives for adopting eco-friendly technologies and industry-led funding for research and development. Initiatives such as tax credits for green technologies or public-private partnerships focused on sustainable material science could provide the necessary impetus for change. Finally, the paper underscores the importance of education and awareness in adopting sustainable corrosion methods. Engineers and industry leaders must be informed about the latest advancements in green chemistry and corrosion science to make informed decisions. Academic institutions, professional associations, and governmental agencies all have roles to play in promoting awareness of sustainable corrosion prevention practices through training programs, conferences, and industry guidelines.

Abbreviations

GDPs – Gross Domestic Products

VOCs – Volatile Organic Compounds

NACE – National Association of Corrosion Engineers

ZnO – Zinc Oxide

SiO₂ – Silicon Dioxide

TiO₂ – Titanium Dioxide

REACH – Registration, Evaluation, Authorisation, and Restriction of Chemicals (European Union regulation)

GRI – Global Reporting Initiative

SASB – Sustainability Accounting Standards Board

Acknowledgements

Authors are thankful to collaborators and family

Author contributions

All authors read and approved the final manuscript.

Funding

No funding

Data availability

Not applicable

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interest.

References

- [1]. Al Jahdaly, B. A., Maghraby, Y. R., Ibrahim, A. H., Shouier, K. R., Alturki, A. M., & El-Shabasy, R. M. (2022). Role Of Green Chemistry In Sustainable Corrosion Inhibition: A Review On Recent Developments. *Materials Today Sustainability*, 20, 100242.
- [2]. Aljibori, H., Al-Amiry, A., & Isahak, W. N. R. (2024). Advancements In Corrosion Prevention Techniques. *Journal Of Bio-And Triboro-Corrosion*, 10(4), 78.
- [3]. Aljibori, H., Alamiery, A., & Kadhum, A. (2023). Advances In Corrosion Protection Coatings: A Comprehensive Review. *Int. J. Corros. Scale Inhib.*, 12(4), 1476-1520.
- [4]. Alsheikh, H. M. A., Sultan, I., Kumar, V., Rather, I. A., Al-Sheikh, H., Tasleem Jan, A., & Haq, Q. M. R. (2020). Plant-Based Phytochemicals As Possible Alternative To Antibiotics In Combating Bacterial Drug Resistance. *Antibiotics*, 9(8), 480.
- [5]. Altuna, F. I., & Hoppe, C. E. (2021). Self-Healing Polymer Coatings. *Self-Healing Smart Materials And Allied Applications*, 1-37.
- [6]. Andraos, J., & Matlack, A. S. (2022). *Introduction To Green Chemistry*: CRC Press.
- [7]. Azman, M., Mahmood, S., Hilles, A. R., Rahman, A., Arifin, M. A. B., & Ahmed, S. (2021). A Review On Chitosan And Chitosan-Based Bionanocomposites: Promising Material For Combating Global Issues And Its Applications. *International Journal Of Biological Macromolecules*, 185, 832-848.
- [8]. Banos, A., Burrows, R., & Scott, T. (2021). A Review Of The Mechanisms, Reaction Products And Parameters Affecting Uranium Corrosion In Water. *Coordination Chemistry Reviews*, 439, 213899.
- [9]. Bender, R., Féron, D., Mills, D., Ritter, S., Bäßler, R., Bettge, D., . . . Hack, T. (2022). Corrosion Challenges Towards A Sustainable Society. *Materials And Corrosion*, 73(11), 1730-1751.
- [10]. Cai, Y., Xu, Y., Zhao, Y., & Ma, X. (2020). Atmospheric Corrosion Prediction: A Review. *Corrosion Reviews*, 38(4), 299-321.
- [11]. Christina, K., Subbiah, K., Arulraj, P., Krishnan, S. K., & Sathishkumar, P. (2023). A Sustainable And Eco-Friendly Approach For Environmental And Energy Management Using Biopolymers Chitosan, Lignin And Cellulose—A Review. *International Journal Of Biological Macromolecules*, 128550.
- [12]. Cruz, J. P. B., Veruz, E. G., Aoki, I. V., Schleider, A. M., De Souza, G. F. M., Vaz, G. L., . . . Martins, M. R. (2022). Uniform Corrosion Assessment In Oil And Gas Pipelines Using Corrosion Prediction Models—Part 1: Models Performance And Limitations For Operational Field Cases. *Process Safety And Environmental Protection*, 167, 500-515.
- [13]. Dhawan, S. K., Bhandari, H., Ruhi, G., Bisht, B. M. S., & Sambyal, P. (2020). *Corrosion Preventive Materials And Corrosion Testing*: CRC Press.
- [14]. Ebenso, E. E., Verma, C., Olasunkanmi, L. O., Akpan, E. D., Verma, D. K., Lgaz, H., . . . Quraishi, M. A. (2021). Molecular Modelling Of Compounds Used For Corrosion Inhibition Studies: A Review. *Physical Chemistry Chemical Physics*, 23(36), 19987-20027.
- [15]. Guzmán, E., Ortega, F., & Rubio, R. G. (2022). Layer-By-Layer Materials For The Fabrication Of Devices With Electrochemical Applications. *Energies*, 15(9), 3399.
- [16]. Harsimran, S., Santosh, K., & Rakesh, K. (2021). Overview Of Corrosion And Its Control: A Critical Review. *Proc. Eng. Sci.*, 3(1), 13-24.
- [17]. Hossain, N., Asaduzzaman Chowdhury, M., & Kchaou, M. (2021). An Overview Of Green Corrosion Inhibitors For Sustainable And Environment Friendly Industrial Development. *Journal Of Adhesion Science And Technology*, 35(7), 673-690.
- [18]. Husna, U. Z., Elraies, K. A., Shuhili, J. A. B., & Elryes, A. A. (2022). A Review: The Utilization Potency Of Biopolymer As An Eco-Friendly Scale Inhibitors. *Journal Of Petroleum Exploration And Production Technology*, 12(4), 1075-1094.
- [19]. Idumah, C. I., Obele, C. M., Emmanuel, E. O., & Hassan, A. (2020). Recently Emerging Nanotechnological Advancements In Polymer Nanocomposite Coatings For Anti-Corrosion, Anti-Fouling And Self-Healing. *Surfaces And Interfaces*, 21, 100734.
- [20]. Kadhim, A., Betti, N., Al-Bahrani, H., Al-Ghezi, M., Gaaz, T., Kadhum, A., & Alamiery, A. (2021). A Mini Review On Corrosion, Inhibitors And Mechanism Types Of Mild Steel Inhibition In An Acidic Environment. *International Journal Of Corrosion And Scale Inhibition*, 10(3), 861-884.
- [21]. Kaur, J., Daksh, N., & Saxena, A. (2022). Corrosion Inhibition Applications Of Natural And Eco-Friendly Corrosion Inhibitors On Steel In The Acidic Environment: An Overview. *Arabian Journal For Science And Engineering*, 47(1), 57-74.
- [22]. Khan, M. A. A., Irfan, O. M., Djavanroodi, F., & Asad, M. (2022). Development Of Sustainable Inhibitors For Corrosion Control. *Sustainability*, 14(15), 9502.
- [23]. Kordas, G. (2022). Corrosion Barrier Coatings: Progress And Perspectives Of The Chemical Route. *Corrosion And Materials Degradation*, 3(3), 376-413.
- [24]. Marques, C. A., & Machado, A. A. (2021). An Integrated Vision Of The Green Chemistry Evolution Along 25 Years. *Foundations Of Chemistry*, 23(3), 299-328.
- [25]. Naser, A. Z., Deiab, I., & Darras, B. M. (2021). Poly (Lactic Acid)(PLA) And Polyhydroxyalkanoates (Phas), Green Alternatives To Petroleum-Based Plastics: A Review. *RSC Advances*, 11(28), 17151-17196.
- [26]. Okonkwo, B. O., Ming, H., Meng, F., Wang, J., Xu, X., & Han, E.-H. (2021). Galvanic Corrosion Study Between Low Alloy Steel A508 And 309/308 L Stainless Steel Dissimilar Metals: A Case Study Of The Effects Of Oxide Film And Exposure Time. *Journal Of Nuclear Materials*, 548, 152853.
- [27]. Pour-Ali, S., & Hejazi, S. (2022). Tiazofurin Drug As A New And Non-Toxic Corrosion Inhibitor For Mild Steel In HCl Solution: Experimental And Quantum Chemical Investigations. *Journal Of Molecular Liquids*, 354, 118886.
- [28]. Quadri, T. W., Akpan, E. D., Olasunkanmi, L. O., Fayemi, O. E., & Ebenso, E. E. (2022). Fundamentals Of Corrosion Chemistry. In *Environmentally Sustainable Corrosion Inhibitors* (Pp. 25-45): Elsevier.
- [29]. Ramezanpour, J., Ramezanzadeh, B., & Mohammadloo, H. E. (2024). Smart Corrosion Resistance Coatings Based On Hybrid Nanomaterials: The Recent Advancements And Achievements. In *Nano-Hybrid Smart Coatings: Advancements In Industrial Efficiency And Corrosion Resistance* (Pp. 139-184): ACS Publications.
- [30]. Randis, R., Darmadi, D. B., Gapsari, F., Sonief, A. A. A., Akpan, E. D., & Ebenso, E. E. (2023). The Potential Of Nanocomposite-Based Coatings For Corrosion Protection Of Metals: A Review. *Journal Of Molecular Liquids*, 390, 123067.
- [31]. Santa, A. C., Tamayo, J. A., Correa, C. D., Gómez, M. A., Castaño, J. G., & Baena, L. M. (2022). Atmospheric Corrosion Maps As A Tool For Designing And Maintaining Building Materials: A Review. *Helijon*, 8(9).

- [32]. Sfameni, S., Rando, G., & Plutino, M. R. (2023). Sustainable Secondary-Raw Materials, Natural Substances And Eco-Friendly Nanomaterial-Based Approaches For Improved Surface Performances: An Overview Of What They Are And How They Work. *International Journal Of Molecular Sciences*, 24(6), 5472.
- [33]. Singh, A. K., & Singh, A. K. (2020). Microbial Induced Corrosion And Industrial Economy. *Microbially Induced Corrosion And Its Mitigation*, 45-55.
- [34]. Thakur, A., & Kumar, A. (2024). Sustainability, Safety, And Applications Of Nanomaterials-Based Corrosion Inhibitors: IGI Global.
- [35]. Verma, C., Chauhan, D. S., Aslam, R., Banerjee, P., Aslam, J., Quadri, T. W., . . . Dubey, S. (2024). Principles And Theories Of Green Chemistry For Corrosion Science And Engineering: Design And Application. *Green Chemistry*, 26(8), 4270-4357.
- [36]. Yadav, M., Goel, G., Hatton, F. L., Bhagat, M., Mehta, S. K., Mishra, R. K., & Bhojak, N. (2021). A Review On Biomass-Derived Materials And Their Applications As Corrosion Inhibitors, Catalysts, Food And Drug Delivery Agents. *Current Research In Green And Sustainable Chemistry*, 4, 100153.
- [37]. Zehra, S., Mobin, M., & Aslam, J. (2022a). An Overview Of The Corrosion Chemistry. *Environmentally Sustainable Corrosion Inhibitors*, 3-23.
- [38]. Zehra, S., Mobin, M., & Aslam, R. (2022b). Corrosion Prevention And Protection Methods. In *Eco-Friendly Corrosion Inhibitors* (Pp. 13-26): Elsevier.