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Abstract 
The motivation for this work is the development of a reliable alternative and laboratory relevant chaos 

diagrams for excited Duffing oscillators. A Gram Schmidt Orthogonal-based Lyapunov exponent was utilized to 

indicate points as well as regions characterized by periodic or chaotic motion for the harmonically excited 

Duffing oscillator. A graphical collection of chaotically behaving points called chaos diagram was developed 

for the choice drive parameter combinations on the plane (0.07≤ 𝜔 ≤1.5 and 0.07≤ 𝑃 ≤ 1.5). Specific cases 

that were studied include the three equilibria (-1,0), (0,0) and (1,0) as initial conditions and two damped levels 

0.168 and 0.0168. Different resolutions studied, give an average of 28.4% of parameter combination points that 

makes the system behave chaotically. In addition, the percentage of the parameter points behaving chaotically 

increases significantly with a decrease in the damp coefficient for each of the equilibrium positions. Initial 

condition (0,0) with damped coefficients 0.168 and 0.0168 resulted in 28.7% and 90.6 % chaotically behaving 

points respectively while initial condition (1,0) with damped coefficients 0.168 and 0.0168 produced 28.6% and 

88.9 % chaotically behaving points respectively. In addition, for initial condition (-1,0) with  damped 

coefficients 0.168 and 0.0168  percentage of chaotically behaving points are  29.5% and 88.9% respectively. 

The chaos diagram generated in this paper can be utilized in the lab to rapidly and accurately identify the 

driving parameter combination that causes the Duffing oscillator to behave chaotically or periodically under 

harmonic excitation. 
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I. Introduction 
Nature is fundamentally nonlinear, which explains why natural systems have such a wide range of 

capabilities[1]. Many engineering systems are motivated by nature's behavior, and research into developing 

appropriate methods to understand  nonlinear systems is being conducted. Stability is a crucial problem in 

nonlinear dynamical systems, as it is linked to the characteristics of a solution that has been perturbed. The 

system is stable if a perturbation has no noticeable effect on its response. Aside from that, the device is insecure. 

When contemplating the movement of a body, there are in three different scenarios of the body being in 

equilibrium namely; unstable, stable and neutral equilibrium. Stability establishes a link between a dynamical 

system's orbit or solution and its perturbation, which is characterized by an adjacent orbit with a different 

starting condition than the original. Lyapunov's stability definition describes a stable system as one in which two 

nearby orbits remain close to each other as time passes [2].The responses of nonlinear dynamical systems are 

extremely diverse. This can be thought of as a type of device independence that is linked to alternative 

behaviors. Chaos is one of these possibilities connected with variety and unpredictability. In a nutshell, chaos is 

defined as deterministic nonlinear systems that exhibit bounded random-like behavior and are sensitive to initial 

condition[3]. The terms "random" and "chaotic" motions must be distinguished here. The former is for problems 

when we don't have a thorough understanding of the input forces or only have statistical measurements of the 

parameters.The word chaotic refers to deterministic situations without any random or unexpected inputs or 

parameters. Chaotic system is characterized by a sensitive dependency on initial conditions, and has a range of 

responses including aperiodic, periodic and chaotic.Chaos is a nonscientific concept that has been around for a 
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long time, and it is frequently linked to a bodily condition or out-of-control human conduct. Turbulence is the 

epitome of chaotic occurrences in the physical sciences. The idea that the transition from ordered to disordered 

flow can be explained or predicted using relatively basic mathematical equations is at the heart of today's 

nonlinear dynamics thrill.Poincare was aware that classical physics equations may produce chaotic or 

unpredictable motions [4].Poincare had a crystal clear view of chaos (as we understand it today), but it wasn't 

until 1963, when Lorenz performed meteorology studies, that this idea returned to the scientific scenario[5]. The 

butterfly effect, which states that if a butterfly flaps its wings in China, it may trigger a hurricane in Brazil, was 

established through Lorenz's investigation [2].Despite the fact that [6], [7], [8], and [9]referred to such irregular 

behavior of nonlinear systems in their seminal works, a systematic analysis of chaos has only been carried out in 

the last two decades, aided by the vast computing power offered by modern computers and sophisticated graphic 

facilities [3].Non-linear oscillations are inextricably linked to the Duffing equation, often known as the Duffing 

oscillator. The Duffing oscillator is also thought to be a prototype for nonlinear dynamics systems. The Duffing-

type equation is a mathematical model of motion of a single-degree-of-freedom system with linear or nonlinear 

damping and nonlinear stiffness, such as a mass hanging on a parallel combination of a constant damping 

dashpot and a nonlinear restoring force, activated by a harmonic force[10]. Non-linear oscillations offer a wide 

range of important and interesting applications[11], which is not surprising, given that the traditional methods 

for tackling such non-linear problems are well-known today, and that in non-linear oscillations, new and very 

abstract mathematical tools develop in a natural way. Chaos in Duffing type nonlinear oscillators has gotten a 

lot of attention [12]. The term "chaotic" identifies a set of motions in deterministic physical and mathematical 

systems whose temporal history is heavily influenced by initial conditions [4].The Lyapunov exponent, which is 

a measure of the system's sensitivity to beginning circumstances, is the most precise approach to quantify 

chaos.[5],[13],[14] demonstrated that under certain initial conditions, a nonlinear harmonically stimulated 

system (e.g a Duffing oscillator) will behave chaotically or periodically. The combination of the drive 

parameters determines the stochastic behavior. There have been chaotic diagrams created from prior studies 

using other tools, but none employing the Gram Schimdt orthogonal based Lyapunov exponent. Using a Gram 

Schimdt orthogonal based Lyapunov exponent numerical technique, this article aims to fill such gap in the 

literature. 

 

II. Methodology 
The project research method involves computer simulation. The programming language that was used to carry 

out the simulation was Python programming language on a laptop with the following properties: processor 

(Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz   2.50 GHz), RAM (4GB) and 64-bit operating system. 

The desired resultswere achieved in the following process; 

 Solving the transformed Duffing equation using Runge kutta fourth order scheme for a constant time 

step to give the displacement and velocity for each time step. 

  The displacement obtained from the non-linear  Duffing using  Runge Kutta fourth order subroutine 

was then used to evaluate the linear system of the lyapunov coordinates for each time step. 

 The coordinates of the Lyapunov coordinates obtained was orthonormalized after a specified number of 

steps using  Gram-schmidt Orthonomalization method. 

 The magnitude of the orthogonal lyapunov vectors was used to evaluate the Lyapunov exponent. The 

rate of divergence of two neighboring trajectories is measured by the Lyapunov exponent. A positive value of 

Lyapunov exponent depicts chaos while a negative lyapunov exponent indicates no chaos. 

 A chaos diagram is developed for each of the points for  the parameter combinations (force amplitude 

and damping frequency) 

2.1 DUFFING OSCILLATOR 

Duffing's conventional equation is as follows:: 

𝑥 + 𝛿𝑥 + 𝛼𝑥 + 𝛽𝑥3 = 𝑃𝑜 sin 𝜔𝑡       (1) 

Where δ is the damping coefficient, α and β are stiffness (restoring) coefficients,𝑃𝑜 is the coefficient of 

excitation, ω is the frequency of excitation and t is the time[15]. 

From equation (1), a normalized governing equation for the dynamic behavior of a harmonically excited 

Duffing system was developed (2). 

𝑥1 + 𝛿𝑥1 −
𝑥1

2
(1 − 𝑥1

2) = 𝑃𝑜 sin 𝜔𝑡       (2) 

Let  𝑥1 and 𝑥2 be displacement and velocity respectively. Then, equation (2) transformed to a pair of first order 

differential equation as given in equations (3) and (4). 

𝑥1 = 𝑥2=𝑓1           (3) 

𝑥2 = 𝑃𝑜 cos 𝜔𝑡 − (𝛿𝑥1 −
𝑥1

2
(1 − 𝑥1

2)) = 𝑓2      (4) 
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2.2 RUNGE KUTTA FOURTH ORDER SCHEME 

Equations (3) and (4) were simulated using Runge Kutta fourth order scheme for a constant time step (h)as 

given in equations 5-9. Worthy of note is that there are different coefficients utilized in Runge Kutta fourth 

order which is not limited to equation 5-9 alone [13]. 

𝐾1 = 𝑓(𝑥𝑖 , 𝑦𝑖)           (5) 

𝐾2 = 𝑓(𝑥𝑖 +
ℎ

2
, 𝑦𝑖 +

ℎ𝐾1

2
)         (6) 

𝐾3 = 𝑓(𝑥𝑖 +
ℎ

2
, 𝑦𝑖 +

ℎ𝐾2

2
)         (7) 

𝐾4 = 𝑓(𝑥𝑖 + ℎ, 𝑦𝑖 + ℎ𝐾3)         (8) 

𝑦𝑖+1 = 𝑦𝑖 +
ℎ

6
(𝐾1 + 2 𝐾2 + 𝐾3 + 𝐾4)       (9) 

2.3 STUDIED CASE PARAMETER DETAILS 

A case under investigation was defined as a parameter point in the parameter space.Different 

resolutionswas examined for different excitation frequency (𝜔) and force amplitude (𝑃𝑜) combinations with the 

drive parameters range given as 0.07≤ 𝜔 ≤1.5 and 0.07≤ 𝑃𝑜 ≤ 1.5  respectively as well as two damping levels ( 

𝛾 = 0.168and γ= 0.0168). The simulation time step was fixed at h= 𝑇𝑝/500 for 𝑇𝑝=2𝜋/ω and the initial 

conditions for displacement and velocity for studied cases are (0, 0),(1,0),(-1,0).Due to the problem of long 

computation time the simulation was executed for 10 steady cycles (i.e 10𝑇𝑝  to 20𝑇𝑝 ).𝑇𝑝  and h are period and 

time step respectively whileother parameter used in subsequent sections are𝑁𝑠𝑡𝑎𝑟𝑡 = Numbers of runaway cycles, 

𝑁𝑒𝑛𝑑  = Total number of cycles for the entire simulation. 

 

2.4 JACOBIAN 

The initial partial derivatives of the same function with respect to each of the variables in each row make up the 

Jacobian, which is defined for a finite number of functions with the same number of variables. The Jacobian 

matrix, or simply Jacobian, is a matrix used to convert surface and volume integrals from one coordinate system 

to the next. [16].  

The displacement obtained from the non-linear Duffing using Runge Kutta fourth order subroutine was utilized 

by the Jacobian operation on equations  (3) and (4) as shown in equation (10)[17]  used to evaluate the linear 

system of the Lyapunov coordinates for each time step. 

The functions 𝑓1  𝑎𝑛𝑑 𝑓2 are as provided in equations 3 and 4. 

 

𝐽 =  

𝜕𝑓1

𝜕𝑥1

𝜕𝑓1

𝜕𝑥2

𝜕𝑓2

𝜕𝑥1

𝜕𝑓2

𝜕𝑥2

 = 
0                      1

0.5 − 1.5𝑥1
2 −𝛿

         (10) 

 

 

A pair of first order equation is derived with the Jacobian  

 
𝜏 1
𝜏 2

 = 𝐽  
𝜏1

𝜏2
  =  

0                      1

0.5 − 1.5𝑥2 −𝛿
  

𝜏1

𝜏2
        (11) 

 

Equation (11) was evaluated using Runge Kutta fourth order as explained in section (2.2) 

 

2.5 GRAM SCHMIDT ORTHONORMALIZATON 

The Gram-Schmidt method works by removing orthogonal projections from vectors in a sequential manner. One 

of the most important applications of the inner product is the projection operator, which we will now define. 

A projection operator is defined by 

𝑝𝑟𝑜𝑗𝑢 (v) =
 𝑢,𝑣 

 𝑢,𝑢 
𝑢 

The inner product of the vectors u and v is denoted by  𝑢, 𝑣  . This operator orthogonally projects the vector v 

onto the line spanned by vector u. We define 𝑝𝑟𝑜𝑗0(v) =0, if u = 0, i.e., the projection map 𝑝𝑟𝑜𝑗0 is the zero 

map, sending every vector to the zero vector. 18] 

The Gram–Schmidt procedure then goes like this:: 

𝑢1 = 𝑣1       𝑒1 =
𝑢1

 𝑢1 
 

𝑢2 = 𝑣2 − 𝑝𝑟𝑜𝑗𝑢1
(𝑣2)     𝑒2 =

𝑢2

 𝑢2 
 

𝑢3 = 𝑣3 − 𝑝𝑟𝑜𝑗𝑢1
(𝑣3) − 𝑝𝑟𝑜𝑗𝑢2

(𝑣3)  𝑒3 =
𝑢3

 𝑢3 
 

https://en.wikipedia.org/wiki/Projection_(linear_algebra)
https://en.wikipedia.org/wiki/Operator_(mathematics)
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𝑢4 = 𝑣4 − 𝑝𝑟𝑜𝑗𝑢1
(𝑣4) − 𝑝𝑟𝑜𝑗𝑢2

(𝑣4) − 𝑝𝑟𝑜𝑗𝑢3
(𝑣4)𝑒3 =

𝑢3

 𝑢3 
. 

…..                ….. 

…..         …... 

…..         …... 

𝑢𝑘 = 𝑣𝑘 −  𝑝𝑟𝑜𝑗𝑢𝑗
(𝑣𝑘)𝑘−1

𝑗=1       𝑒𝑘 =
𝑢𝑘

 𝑢𝑘 
. 

 

 

Fig 2.1 .First two steps of Gram-Schmidt process(William, 2015) 

 

2.6 LYAPUNOV EXPONENT 

Lyapunov exponents are related to the expanding and contracting nature of distinct orientations in 

phase space.According to [19], a continuous technique is straightforward and dependable for computing the 

complete or partial Lyapunov spectrum associated with a dynamical system specified by a set of differential 

equations.The relationship between the original D-sphere and the D-ellipsoid is used to evaluate the divergence 

of two adjacent orbits as shown in fig (2.2)[2]. 

 

 
Fig 2.2  Lyapunov exponent(Savi, 2017) 

 

This variation may be expressed by: 

𝑑 𝑡 = 𝑑0𝑏
𝜆𝑡  

Where d(t), b, λ is the diameter, reference basis, Lyapunov exponent respectively. Hence, the Lyapunov 

spectrum can be given by: 

𝜆 =
1

𝑡
log𝑏

𝑑(𝑡)

𝑑0
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III. Result And Discussion 
3.1 VALIDATION OF CODE USING PUBLISHED PHASE PLOTS AND POINCARE RESULTS 

Comparison was done for the phase plane trajectory and Poincaré sections under harmonic excitation. The phase 

plane trajectory and Poincare patterns compare excellently well with those reported by [5] for the five cases as 

shown in the figures 3.1-3.5. 

Note: Initial condition of (𝑥1 ,𝑥2) =(0,0),𝛾 = 0.168 and 𝜔 = 1 are common to figures 3.1-3.4. While (𝑥1 , 𝑥2) = 

(0,0) and 𝛾 = 0.0168, 𝜔 = 1  applies to figure 3.5. 

 

 
Figure 3.1: Phase plot and it corresponding Poincare for case-1 at (𝑷𝒐=0.177) 

 

 
Figure 3.2: Phase plot and it corresponding Poincare for case-2 at (𝑷𝒐=0.178) 

 

 
Figure 3.3: Phase plot and it corresponding Poincare for case-3 at (𝑷𝒐=0.197) 
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Figure 3.4: Phase plot and it corresponding Poincare for case-4 at (𝑷𝒐=0.21) 

 

 
Figure 3.5: Phase plot and it corresponding Poincare for case-5 at (𝑷𝒐 =0.19, 𝜸 = 𝟎. 𝟎168) 

 

3.2 VALIDATION OF CODES FOR ESTIMATING LYAPUNOV EXPONENTS IN 

COMPARISON TO PUBLISHED PHASE PLOT AND POINCARE RESULTS  

The initial conditions used in the simulation to get the result in Table(3.1) as required in the code is given below  

Initial displacement and velocity (𝑥1 ,𝑥2) = (0, 0) 

Initial conditions for Lyapunov coordinates (𝑙𝑥0,𝑙𝑦0),𝑙𝑥1,𝑙𝑦1)= (1,0), (0,1) 

𝑁𝑠𝑡𝑎𝑟𝑡 , 𝑁𝑒𝑛𝑑 = 200, 2000 

𝑁𝑠𝑙𝑖𝑐𝑒 per period of forcing frequency = 100 

𝑁𝑐𝑜𝑢𝑛𝑡  = 10 

 

Table 3.1 
CASES DESCRIPTION LYAPUNOV 

EXPONENT 1 

LYAPUNOV 

EXPONENT 2 

Remarks 

1 1 periodic motion -0.003 -0.165 Periodic 

2 2 periodic motion -0.007 -0.161 Periodic 

3 4 periodic motion -0.084 -0.084 Periodic 

4 Chaotic motion 0.102 -0.270 Chaotic 

5 Chaotic motion 0.143 -0.160 Chaotic 

 

Comparing the remark with the corresponding cases with their counterpart Figure 3.1-3.5, the method of  

Lyapunov exponents characterization agrees to the phase plot and Poincare  map as reported by [5]. 

 

3.3 DEVELOPMENT OF CHAOS DIAGRAM 

Drive parameters used in developing the chaos diagram are given as (0.07<𝑃𝑜<1.5), (0.07< 𝜔<1.5), (𝑥1 ,𝑥2) = 

(0,0) or(1,0) or (-1,0) , 𝛾 =0.168 and 0.0168. 
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3.3.1 Choice of cycles to carry out simulation 

The simulation that gave the result in Table 3.2 has the following drive parameters and initial conditions 

1. 0.07<𝑃𝑜<1.5 

2. 0.07< 𝜔<1.5 

3. (𝑥1 ,𝑥2) = (0,0) 

4. Initial condition for Lyapunov coordinates (1,0),(0,1) 

5. h = 𝑇𝑝 /500 

 

Table 3.2 
S/N 𝑵𝒔𝒕𝒂𝒓𝒕 𝑵𝒆𝒏𝒅 Time(s) Percentage of 

chaotically behaving 

points for the given 

parameter combination 

1 10 20 1148 28.8 

2 10 25 1582 28.2 

3 10 30 2020 27.8 

4 10 40 2798 27.3 

 

Due to the constraint of long computation time used in a as shown in Table 3.2 with no qualitative difference in 

the chaos for the𝑁𝑠𝑡𝑎𝑟𝑡 and𝑁𝑒𝑛𝑑  combination, the choice of 𝑁𝑠𝑡𝑎𝑟𝑡  and 𝑁𝑒𝑛𝑑  used for the simulation to develop 

the chaos diagram are 10 and 25 respectively. 

 

3.3.2 Choice of the resolution for the chaos diagram 

The simulation that gave the result in Table 3.3 has the following drive parameters and initial conditions 

1. (𝑥1 ,𝑥2) = (0,0) 

2. Initial condition for Lyapunov coordinates (1,0),(0,1) 

3. h = 𝑇𝑝 /500 

4. 𝑁𝑠𝑡𝑎𝑟𝑡  , 𝑁𝑒𝑛𝑑  = 10,25 

 

Table 3.3 
Force amplitude Excitation frequency Resolution Damping coefficient Percentage of 

chaotically behaving 

points for the given 

parameter combination 

0.07<𝑃𝑜<1.5 
 

0.07< 𝜔<1.5 
 

26 × 26 0.168 29 

0.07<𝑃𝑜<1.5 
 

0.07< 𝜔<1.5 
 

51 × 51 0.168 28.2 

0.07<𝑃𝑜<1.5 
 

0.07< 𝜔<1.5 
 

101 × 101 0.168 28.2 

0.07<𝑃𝑜<1.5 
 

0.07< 𝜔<1.5 
 

201 × 201 0.168 28.1 

 

The percentage of the chaotic points for the different resolutions as shown in table 3.3 has no qualitative 

difference with a resolution of 26 × 26 as an exception which is coarse. Hence any of the resolution can be used 

to develop the chaos diagram. In this report the choice of resolution is 101 × 101 to have a well resolved chaos 

diagram. 

3.3.3 Chaos diagram 

The chaos diagrams developed below has the following drive parameters and initial conditions common to them 

while the initial conditions and damping coefficient varies as shown in each of the figure below. 

Similar parameters; 

1. 0.07<𝑃𝑜<1.5 

2. 0.07< 𝜔<1.5 

3. Initial condition for Lyapunov coordinates (1,0),(0,1) 

4. Time step (h) = 𝑇𝑝 /500 

5. Resolution= 101 × 101 
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Figure 3.7: (𝑥1 ,𝑥2) = (0, 0), 𝛾= 0.168 

 
Figure 3.8: (𝑥1 ,𝑥2) = (0, 0), 𝛾= 0.0168 

 

As reported by [20]when adaptive time steps were used, an optimum fractal disk dimension technique 

was used to characterize the produced weird attractor. Multiple trajectories of a harmonically excited Duffing 

oscillator are computed simultaneously using Runge-Kutta fourth and fifth order algorithms from relatively 

close initial conditions. Another study [14] used the fall to tolerance of absolute deviation between two 

independently sought solutions of the governing equation to classify Duffing oscillator excitation frequencies 

and amplitude parameter point as chaotic or not. In these two studies, a chaos diagram with the same parameter 

combination that gave the chaos diagram obtained in Figures 3.7 and 3.8 were developed. Therefore, the  current 

chaos diagrams agrees with that reported in the two referenced studies thereby validating the tool Gram-Schmidt 

Orthogonal based Lyapunov exponent used in developing the chaos diagrams. 
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IV. Conclusion 
In this study, chaos diagram for a harmonically excited Duffing oscillator has been developed with 

Gram-Schmidt orthonormalized Lyapunov exponent for the given drive parameters and the comparison of the 

chaos diagrams obtained conforms to that obtained in other published literature for the specific drive parameter 

combination which implies that the tool used is a reliable numerical tool in indicating the chaotic behavior of the 

deterministic Duffing oscillator. It can also be inferred that the three equilibrium positions for the oscillator has 

no significant qualitative and quantitative effect on the percentage of chaos for the same damping 

coefficient.The chaos diagram can be used as a chart in the lab to rapidly identify the drive parameter 

combination that will cause the system (Duffing oscillator) to act chaotically or periodically under harmonic 

excitation. 
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