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Abstract:  
Background: Rotating machineries are widely used in a various type of industrial applications. For reliable 

working of mechanical system, fault diagnosis of rotating element is the most important and crucial task. Over 

the past decades, fault diagnosis of mechanical systems has progressed with the evolution of machinery in terms 

of complexity and scale. High scale machinery require health monitoring and fault diagnosis to guarantee their 

reliable performance. Research on fault diagnosis of rotary machines has grown rapidly in the recent years. 

Objective of this paper is to review the recent research trends in the field of rotating machinery fault diagnosis 

in terms of these aspects: vibration generation mechanism, fault mechanism, signal acquisition and signal 

processing and fault diagnostics, artificial neural network, support vector machine etc. 

Results: With the advent in technology and complexity in operation of machinery, it is found that Artificial 

Neural Network, Machine Learning techniques are very effective to ensure safe operation of machinery. 
Conclusion: With the increasing complexity of mechanical structures, it is increasingly important to monitor 

and diagnose the condition of rotating machinery.  In many cases, the vibration signal and shaft orbit are 

important features that reflect the state of mechanical equipment. Therefore, an efficient feature extraction and 

fault diagnosis method plays a significant role in the operation management and condition monitoring of 

mechanical equipment. 

Key Word: Deep learning, Fault diagnosis, Intelligent diagnostics, Rotating machinery, Signal 

processing, Support vector machines 
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I. Introduction 
Rotating machinery is one of the most important and critical components of many mechanical systems 

applied in modern industry, civilian and military applications such as sugar and process industry, pumps, 

compressors, steam turbines, wind turbines, machine tools, automobiles, industrial fan, aircraft engines, high 

speed train, aerospace, nuclear power plants, ship building, railways and many more. High load, high 
temperature, high and varying speed or inevitable fatigue are the key components for unexpected mechanical 

faults in the system. If the presence fault is not diagnosed at incipient stage then it may cause catastrophic 

failure which leads to breakdown of the system as a whole and loss of productivity. In view of this, it is very 

important to early diagnose the faults of the rotating machinery.  

Many techniques are used for the fault diagnosis (FD) to monitor the health conditions of the rotating 

machinery such as the Vibration-based FD [1], Sound based FD, Torque based FD, Acoustic Emission based FD 

[2], Thermal analysis with infrared imaging [3], wear abrasive method and rotating encoder-based FD [4] etc. 

The rotating elements of any machine have unique characteristic vibration profile that is also known as a 

vibration signature. This vibration signature is associated with specific failure mode. Change in the vibration 

profile is the basis for Vibration based Condition Monitoring. The rotating elements exhibit high harmonic 

oscillations when on the verge of failure. These characteristics have attracted the researchers to apply Vibration 
based condition monitoring in the field of machinery fault diagnostics. Rotating machinery consists of shaft, 

bearings, gear box, propeller and other rotating machine elements and these machine elements operate at high 

speed and under fatigue loading.  Failure of the elements leads to loss of productivity and breakdown and as 

such fault diagnosis of all this elements is essential.  Basic research direction of rotating machinery fault 

diagnosis is as shown in Fig. 1.  

The main objective of this paper is to review the journey in the technological advancements in the 

domain of fault diagnosis of rotating machinery from traditional methods to advance intelligent methods. To 

Start with, the vibration generation mechanism is explained for rotating components like shaft, rotor, bearings 

and gears with different types of faults in rotating Machinery. In the next section, sensor techniques with signal 

acquisition is explained to acquire signals/vibrations followed by signal processing techniques like Fourier 
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transform and Wavelet transform. Finally, fault diagnosis with traditional methods and with advanced or 

intelligent methods is discussed. In the last section, conclusion based on the review is presented. 

 

 
Fig. 1 Basic research direction of Rotating Machinery fault diagnosis [5] 

 

II. Vibration Generation Mechanism in Rotating Elements 
Rolling elements due to their constructional feature and other reasons act as a source of vibration. The 

various causes of vibration in rolling elements are: rolling surface irregularities and defects, varying compliance 

vibrations, shock pulses when lubrication layer is disrupted, excitation due to friction forces, rotor oscillation 

forces, and interaction with other components. Defects in rolling element bearings are broadly classified as 

distributed defects and local defects. Surface roughness, waviness, misaligned races and off-size rolling 

elements are the examples of distributed defects. In case of defects present on localized region, a pulse of very 
short duration is generated due to variation of contact stress at the defect. This gives rise to vibration. Localized 

defects include cracks, pits and spalls on the bearing surfaces. Defects in Rolling Element Bearings are inner 

case defect, outer case defect. The vibration behavior of a ball bearing having influence of localized defects on 

the outer race and inner race. [6-8] In the working process, the bearing may be damaged due to improper 

assembly, poor lubrication, water, and foreign body invasion, corrosion, overload, etc. [9].   

For rotating element gears, vibration can be thought of as a ratio of the forces acting on the gear to its 

dynamic stiffness. The backlash, error of the gear transmission, the unbalanced inertia mass, the time varying 

mesh stiffness of tooth faces and the time varying support stiffness of geared system, change the ratio, i.e. 

Vibration which characteristics can reflect symptoms of a lot of faults or defects. The location in the spectrum of 

all the gear related frequencies requires the knowledge of a minimum amount of gearbox data. These data are 

the rotating speed of the input shaft or the output shaft and the number of teeth of the different gears. In this way 

there will be no doubt in the identification of the gear frequencies and their sidebands. Characteristic spectrum 
of a gear assembly in good condition is shown in Fig. 2. The frequencies associated directly with a gear 

assembly are as follows: 

 Gear mesh frequency (GMF): It is characteristic of each gear assembly and appears in the frequency 

spectrum regardless of the condition of the gears. Its amplitude depends significantly on the load at the 

time of reading. It is calculated according to the following formula where; Z is the number of teeth and 

RPM is the rotating speed of the gear. 

                          (1) 

 

  

 Gear mesh frequency side bands: these are frequencies equidistant from the gear mesh frequency. These 
sidebands correspond to the rotating frequency of the pinion and the gear. They are very important in the 

diagnosis of the gear assembly, since they indicate if the gear or the pinion are in bad condition. 

 Hunting tooth frequency (HTF) to calculate it the number of assembly phases (Na) must be calculated in 

advance as described in the following section. Indicates the frequency with which a tooth of the gear 

engages with the same tooth of the pinion. In case of damage to one tooth of the gear and another of the 

pinion, the maximum vibration will occur when both faults come into contact. This frequency is very low 

so it is difficult to locate in the frequency spectrum, being detected more easily in the time waveform. 

                               (2) 
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 Assembly phase frequency (APF): indicates that as a result of wear, the space between teeth and the teeth 

profile has changed. 

                       (3) 

 Gear natural frequencies: when some kind of gear deterioration develops the natural frequencies of the 

gears can be excited. 

 Ghost or phantom frequencies: correspond to a relatively rare defect that shows up as a frequency typically 

higher than the GMF but not directly related to the geometry of the gear. It is due to manufacturing errors 

that are driven by vibration from the manufacturing drive train and can be typically traced to the number of 

teeth and speed of the cutter machine. 

 

 
Fig. 2 Characteristic spectrum of a gear assembly in good condition 

 

Some other causes are due to the effects of nonlinear factors such as gear machining errors, installation 

errors, external load changes, meshing impact and gear tooth defects. For gear tooth defects like broken tooth, 

cracked tooth, wear in flank surface is of three types: abrasive wear, squeezing and pitting [10], cracks in flank, 

root cracks, pitting and spalling of gear tooth [11]. By measuring and analyzing the machine’s vibration, it is 

possible to determine both the nature and severity of the defect, and hence predict the machine’s failure. The 

vibration signal of a rotating component carries the signature of the fault in the system, and early fault detection 

of the system is possible by analyzing the vibration signal using different signal processing techniques. 

 

III. Feature Extraction Techniques 
During vibration-based condition monitoring of rotating machinery, data is in the form of vibration 

signals. From the rotating components vibration signals are acquired by using data acquisition system. The 

sensor is used to get the input. Triaxial accelerometer is normally used to measure vibration signals from all the 

three direction. Accelerometer is mounted on the bearing housing. Different steps of feature extraction 

procedure are as shown in Fig. 3. 

 
Fig. 3 Feature extraction Procedure 

 
The purpose of feature extraction is reduction in the dimensionality of the vibration data presented for 

inspection without distorting the original contents of data. Different measurement techniques based on vibration 

and acoustics are used for detecting the defects in a rotating element. In addition to the experimental methods, 

the analytical methods are also used by the researchers which yield reasonably accurate results to predict the 
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dynamic behavior of rotating elements. Apart from the experimental methods, researchers have also effectively 

used analytical methods to understand the vibration generation source for safe working of machines. Tandon 

and Choudhury [12] have developed an analytical model to predict the vibration frequencies of rolling element 
bearing and the amplitude of frequency components due to the presence of localized defects on different 

elements of a bearing. White [13] in his paper has pointed out that pulse can take into account severity, extent 

and age of the damage for modelling the bearing vibrations. McFadden and Smith [14] extended their earlier 

model to describe the vibration produced by multiple defects. The influence of multiple defects was explained 

by the reinforcement and cancellation of spectral lines because of differing phase angles. Su and Lin [15] 

extended the vibration model developed by McFadden and Smith [14] to describe the bearing vibration under 

diverse loading. They have reported the need of time domain analysis along with frequency domain to reliably 

monitor a running bearing. Patel et al. [16] have developed a dynamic model of a ball bearing in the presence of 

single and multiple defects on the races.  

Vibration based condition monitoring methods are time- domain, frequency - domain and time-

frequency analysis wavelet-based methods (Fig. 4). Frequency-domain analysis of the signal acquired from the 
rotating elements is the most widely used approach for health assessment. Fourier transform is a classical tool 

for converting data into a form that is useful for analyzing frequencies. When a defect gets struck by its mating 

elements, a pulse of short duration is produced and the natural frequencies of bearing elements are excited.  

 

 

 

 

 

 

 

 

 

 
Fig. 4 Feature extraction techniques 

 
Using expressions for characteristic defect frequency, location of a fault is detected based on peaks obtained in 

the spectrum. These frequencies depend on the bearing characteristics and are calculated according to the 

relations as shown below: 

The shaft rotational frequency (fs) which is equal to the speed of shaft is given by 

 

fs = (N/60)         (4) 

 

The outer race defect frequency (fod) is given by 

 

    
 

 
 
 

  
     

 

  
       

        (5) 
 

The inner race defect frequency (fid) or the ball pass frequency of the inner race is given by 
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 The ball defect frequency (fbd) or ball spin frequency is given by 

 

     
  

 
 
 

  
     

 

  
 
 

      
                       (7) 

 

 

Where 

  = contact angle 

dm = pitch diameter 

z = no. of balls 

N = rotational speed of shaft in rpm 

 

These bearing characteristic frequencies are approximate as they will be affected by slipping of the elements 

within the bearing and spinning of the races on the shaft or in the housing.  
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The time-domain analysis is based on acquiring a time waveform of vibration and analysing for 

extracting various parameters such as root-mean-square, crest factor, skewness, cepstrum, mean, standard 

deviation, kurtosis etc. These parameters have been employed for the detection of faults in rotating elements. It 
is reported that crest factor and kurtosis are very sensitive to faults in the bearing. Frequency-domain and time-

domain methods are applied independently or in conjunction to each other. The time domain parameters are 

defined in the following paragraph. 

 

Root Mean Square (RMS) 

The RMS value of the vibration signal can be used for primary health investigation of the machine. For a 

discrete vibration signal x with mean µ, RMS is given by 

                                                                    
 

 
         

       (8) 

It is reported that RMS level increases with increase in fault severity level [17]. 
Peak Level 

Peak level is an indicative of occurrences of impacts. For low-level fault, peak level is good indicator. 

 

Crest Factor 

The crest factor is a measure of spikiness of signal. It is good indicator of faults in rolling element bearings. It is 

the ratio of peak value to the RMS value. Crest factor above 6 indicates the faulty condition of bearing. The 

crest factor initially increases with the level of fault and decreases with the increase in fault severity after a 

particular level. The crest factor is the best candidate for robustness (consistent parameter over time) [18].  

 

Skewness 

Skewness is a measure of asymmetry around its mean. It describes asymmetry from the normal 

distribution in a set of statistical data. It is the third moment of the time signal, normalized with respect to the 
cube of standard deviation.  The Skewness value can be positive or negative. Negative skew indicates that the 

tail on the left side of the probability density function is longer than the right side. Conversely, positive skew 

indicates that the tail on the right side is longer than the left side. A zero value of skew indicate that the tails on 

both sides of the mean balance out.  

 

Kurtosis 

Dyer and Stewart [19] proposed the use of the fourth normalized central statistical moment kurtosis for 

defect diagnosis of bearings. Kurtosis can be defined as the standardized fourth population moment about the 

mean. The amplitude distribution of a defect free bearing is generally assumed to be Gaussian. Kurtosis is a 

measure of the peakedness of a signal and vibration signal will contain impulsive transient events during the 

onset of degradation. A normal distribution has a kurtosis of 3. Kurtosis value exceeding 3 indicates degradation 
of a bearing. Kurtosis is given by 

 

 

                            
 

 
   

   

 
 
 

 
    (9) 

 
Cepstrum 

Cepstrum is anagram of spectrum. Cepstrum is obtained by taking Fourier transform of the logarithm of the 

mean square density as shown in Fig. 5.  

 
Fig. 5 Cepstrum of a signal 

 

Cepstrum is a function of independent variable quefrency having the dimensions of time. The 

advantage of using cepstral analysis is that the periodic harmonics can be detected even when they are covered 

within a high noise level [20]. Shakya et al. [18] have investigated the influence of a defect and its severity 

using time domain, frequency domain and time-frequency domain parameters. The comparison among these 

parameters was based on the robustness, sensitivity to damage change and early detection of the faults. In some 

studies, it is observed that both the approaches based on frequency and time domain are used together for 

drawing conclusions on fault diagnosis. Frequency domain and time domain methods have some shortcomings. 
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Frequency domain approach is suitable for analysis of vibration signals that are produced by some periodic 

process. The vibration signal emitted by a rotating element can be considered as cyclo-stationary rather than 

periodic. Fourier transform has limited success when the signal is buried in background noise. Additionally, the 
measured vibration signal can also change because of fluctuating load condition.  

As such the focus of the research work is on examining advanced signal processing method such as 

wavelet transform in the domain of rotating element fault diagnostics. In the following paragraphs, a 

comprehensive review is presented on the application of wavelet transform in the field of fault diagnostics in 

rotating machinery. 

 

IV. Wavelet Transform for Fault Diagnosis 
Many studies in the past focused on finding solutions for the shortcomings of conventional frequency 

and time domain techniques. As such the methods based on wavelet transform are attempted by researchers for 
reliable monitoring of bearings, gears, structures etc. [21-24]. Wavelet theory has emerged as a signal 

processing tool in many fields and has many distinct merits. It was first put forward by Morlet in 1984. 

Wavelets are mathematical functions that cut up data into different frequency components and each component 

is studied with a resolution matched to its scale by multi- resolution analysis [25]. Wavelet transform is a linear 

transform and uses a series of oscillating functions with different frequencies as window functions to scan and 

translate the signal. They are suitable for analyzing physical situations where the signal contains discontinuities 

and sharp spikes. The commonly used wavelet algorithms are continuous wavelet transform (CWT), discrete 

wavelet transform (DWT) and wavelet packet transform (WPT). Peng and Chu [26] have presented a detailed 

review on the application of wavelet transform in machine condition monitoring and fault diagnostics. Several 

main aspects were discussed such as the time-frequency analysis of signals, the fault feature extraction, the 

singularity detection of signals, the denoising and extraction of weak signals, the compression of vibration 
signals and system identification etc. Wavelets are successfully applied in machine fault diagnostics for its many 

distinct advantages and are suitable for the analysis of non-stationary signals and for fluctuating load conditions 

[21]. The ability of wavelet transform in time-frequency analysis makes wavelet suitable for the transient 

process analysis. When the defect on one of the elements of rolling bearing gets struck by the mating elements, 

the vibration signal contains jump points that are often singularity points. These singularity points such as peaks 

or discontinuities carry important information of the signal.  

 

Continuous Wavelet Transform 

The continuous wavelet transform is the inner product of x (t) with translate and dilate of a wavelet ψ. ψ is 

wavelet translated by b and dilated by a.  
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where ψ*(t) stands for the complex conjugation of ψ (t). 

Above is CWT of function x € L2(R) w.r.t. wavelet ψ evaluated at translation b and dilation a. Eq. (8) indicates 
that the wavelet analysis is a time-frequency analysis, or a time-scaled analysis. The analysing function or 

windowing function ψ must satisfy certain admissibility conditions to be considered for wavelet analysis. The 

dilation parameter a and translation parameter b are also referred as the scaling and shifting parameters. By 

changing the value of dilation parameter a, the portion of the function in the vicinity of t = b can be examined in 

different resolutions (referred as multi-resolution analysis). By changing the value of translation parameter b, 

the function around the point t = b can be examined by the wavelet window piece by piece. It is possible to 

reconstruct the original function from its wavelet transform. The inversion formula is given by: 
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Using above equations [27], the original signal can be reconstructed without any loss of data. Scaling parameter 

a is positive real and translation parameter b is positive or negative. At high frequencies, the wavelet reaches at a 

high time resolution but a low frequency resolution, whereas, at low frequencies, high-frequency resolution and 

low time resolution can be obtained. Djebala et al. [28] have proposed wavelet multiresolution analysis 

technique for identifying faults in rolling element bearings. Using kurtosis as evaluation metric, parameters such 
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as the level number, the decomposition optimal vector, the sampling rate and the wavelet family were decided. 

For impulsive faults like rubbing, continuous wavelet transform (CWT) gives an effective method for fault 

analysis and detection [29]. A technique based on minimum Shannon entropy was applied by Castro et al. [30] 
through continuous wavelet transform for obtaining optimal shape forms of the Gabor wavelet for analysing 

vibrations of antifriction bearings. It is reported that wrong selection of the shape factor of Gabor function 

results in loss of resolution on a time-frequency basis. 

 

Discrete Wavelet Transform 

The continuous wavelet transform (CWT) is defined at all points in the plane and corresponds to a 

redundant (extra) representation of the information present in the function. This redundancy requires a large 

amount of computation time. Instead of continuously varying the parameters, the signal may be analysed with a 

small number of scales with varying number of translations at each scale. The discrete wavelet transform may 

be viewed as a “discretization” of the CWT through sampling specific wavelet coefficients. A critical sampling 

of the CWT given by Eq. (9) is obtained via a = 2-j and b=k2-j, where j and k are integers representing the set of 
discrete dilations and translations respectively. Upon this substitution, discrete wavelet transform (DWT) is 

obtained and is given by: 

dtkttxkjW
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        (12) 
The term critical sampling denotes the minimum number of coefficients sampled from continuous 

wavelet transform to ensure that all the information present in the original function is retained by the wavelet 

coefficients [31]. The discrete wavelet transform computes the wavelet coefficients at discrete intervals (integer 

power of two) of time and scales. In discrete wavelet transform, the signal is decomposed into a tree structure of 

low and high pass filters. Each step transforms the low pass filter into further lower and higher frequency 

components as shown in Fig. 6. 

 
Fig. 6 DWT decomposition tree of three-level [32] 

 

The frequency band of each filter depends on the decomposition level. The high frequency components 

are not analysed further. The low pass filter produces approximation coefficients and high pass filter produces 

detail coefficients. For example, if Nt =Total length of signal, j=DWT decomposition level, Fs=Sampling 

frequency, then each vector contains Nt/2j coefficients. Approximation corresponds to Frequency band [0, 

Fs/2j+1] while detail covers the frequency range [Fs/2j+1, Fs/2j]. 

At any decomposition level, the signal can be expressed as the sum of approximation and detail coefficients as 

follows: 

)( jiDAS
ij

       (13) 
where Aj = Approximation coefficients at jth level  

          Di = Detail coefficients 

Based on discrete wavelet transform explained, Prabhakar et al. [33] analyzed vibration signals of ball bearing 

having single and multiple point defects on inner race, outer race and the combined faults. Using Daubechies 4 

(Db4) mother wavelet, the vibration signals were decomposed up to a level of four. In order to obtain the useful 

information from raw data, db02 and db08 wavelets were adopted to decompose the vibration signal acquired 

from the bearing,   

De-noising technique based on wavelet analysis was applied to decomposed the denoised signals up to 7th level 
by wavelet packet transform (WPT) and 128 wavelet packet node energy coefficients were obtained. [34]  
 

Wavelet Packet Transform 

The wavelet packet transform (WPT) is a generalization of the wavelet transform. There are many studies on 

bearing fault diagnosis using wavelet packet transform [32, 35-37]. Wavelet packet transform (WPT) 
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decomposes not only the approximation coefficients but also the detail coefficients. In Fig. 7, an example of a 

wavelet packet decomposition tree to a level of three is illustrated. The sampling rate of the signal is assumed to 

be 24 kHz. The frequency sub-band at each node of the wavelet packet tree is shown. A split on detail 
coefficients leads to change in basis set and these basis sets are called wavelet packets. Wavelet packets are a 

collection of functions given by [35]: 
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Above function is generated from the following sequence of functions: 
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where h and g are the quadrature mirror filters, W0(t) and W1(t) are the scaling function and basic wavelet 

respectively. The wavelet packet        Wn (          is a localized function of unit energy with scale 2j, 
translation 2jk and an oscillation parameter of n. Time scale domain signal energy show the similarity between 

signal and wavelet which is selected. Total energy can be obtained by: 
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      (17) 
where n=No. of samples of the signal 

An appropriate wavelet selected as the base wavelet, must have maximum amount of energy of the wavelet 

coefficients. Learned and Willsky [37] have presented investigations on the feasibility of applying the wavelet 

packet transform for the detection and classification of transient signals buried in background noise. The method 

aimed at obtaining the smallest number of features for reliable classification of transient signals. Ekici et al. [38] 

adopted wavelet packet transform for decomposing simulated signals of transmission lines. The signals were 

decomposed to a level of three and the energy and entropy of wavelet coefficients were calculated for each 

faulty current and voltage waveform. 

 
Fig. 7 Wavelet packet tree to a level of three 

 

Wavelet Based Signal Denoising 

For early fault detection, denoising and extraction of weak signals is important since the features are 

masked in noise. The noise is stochastic signal with broadband frequencies causing overlap with the frequency 

components of interest. Wavelet based denoising methods aim at increasing signal-to-noise ratio (SNR) by 
removing noise in the signals and highlighting the signals of interest. An orthogonal wavelet transform can 

compress the “energy” of the signal in a relatively small number of big coefficients, while the energy of the 

white noise will be dispersed throughout the transform with relatively small coefficients [39]. Wavelet threshold 

denoising has been widely used and it was first proposed by Donoho [40]. Wavelet decomposition of a signal is 

analogous to the use of filters that act as averaging filters producing approximations and others that produce 

details. If these details are small, they may be omitted without affecting main features of the signal. The 

underlying model for the noisy signal is of the form: 

][][][
1

nNnxnS        (18) 
The objective of wavelet de-noising is to suppress the additive noise N1[n] from a signal S[n] in three steps: 
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1. Signal decomposition: Signal S[n] is decomposed into j level of wavelet transform and coefficients are 

calculated. 

2. Thresholding: Then the threshold is selected and the detail parts through wavelet transform are compared 
with the threshold and the detail parts are set to zero if less than the threshold. 

3. Signal reconstruction: Finally the signal is reconstructed using the original approximation coefficients of 

level j and modified detail coefficients. 

Generally there are two kinds of threshold functions viz., hard thresholding function and soft thresholding 

function. These are examples of shrinkage rules. The form of universal hard threshold function is: 

                                                        S =   
            
             

          

                                          (19) 

In hard thresholding, the coefficients whose absolute values are lower than the threshold are set to zero. 

The form of universal soft threshold function is: 

                                                        S=  
                   
                          
                     

                                     (20) 

Soft thresholding is an extension of hard thresholding by first setting to zero the coefficients whose absolute 

values are lower than the threshold and then shrinking the nonzero coefficients towards zero. However, the 

denoising methods based on conventional thresholding rules have certain shortcomings. Some of the researchers 

have devised a de-noising method based on improved thresholding techniques. Yi et al. [41] have discussed de-

noising performance of discrete wavelet transform (DWT) using sigmoid function-based thresholding technique 

by several processing parameters such as the type of wavelet, level of decomposition, thresholding method and 

threshold selection rules. Evaluation of performance of this method was done with denoising attributes such as 

signal-to-noise ratio (SNR) and the root-mean-square-error (RMSE). Lin et al. [42] introduced a specific 

thresholding rule which incorporates prior information of the probability density function (pdf) of the impulse 

based on the maximum likelihood estimation (MLE) technique for mechanical fault detection. Morlet wavelet 

was used as the base wavelet in de-noising. Selection of appropriate base wavelet is one of the key steps in de-
noising a signal. In the last section this issue is discussed in detail. Qiu et al. [43] have compared the 

performance of wavelet decomposition-based de-noising and wavelet filter-based de-noising methods for 

analysis of defective rolling element bearings. They found wavelet filter-based method suitable for weak and 

impulse-like signatures and wavelet decomposition de-noising method to perform satisfactorily for smooth 

signals. The signal denoising results for both simulated signals and the experimental data were presented. For 

optimizing the shape factor of a Morlet wavelet, a criteria based on minimal Shannon entropy was used in the 

study. It is observed from earlier studies that energy and entropy are the decisive metrics for base wavelet 

selection. The distribution of vibration signal energy with scale is different for the normal rolling element 

bearing and the rolling element bearing with outer race or inner race fault [44]. Accordingly for bearing with 

defects, amplitude in the scale-wavelet spectra will differ from normal bearing. As such by comparing the scale-

wavelet power spectrum, it is possible to distinguish between defect free and defective bearings and the position 

of the defect also.  
Different studies for fault analysis related to structures, power systems and mechanical systems have made 

use of Shannon entropy as an important parameter [23, 45-47]. It is defined as uncertainty of a random event or 

the amount of information. Shannon entropy of wavelet coefficients is given as 

( ) plog∑ p=nS
i2

m

1=i
ientropy

   (21) 

where n = scale number, m = number of wavelet coefficients and pi is the energy probability distribution of the 

wavelet coefficients and is defined as 

     
E(n)

x(n)
=p

2

i

                (22) 
Information entropy is an information measurement which is used to locate a system under certain 

conditions. It is a measurement to unknown degree of a sequence and it can be used to estimate the complexity 

of random signal. An ordered process could be thought of as a periodic mono-frequency signal (a signal with a 

narrow band spectrum). A signal generated by a totally random process can be considered as representing a very 

disordered behavior. An appropriate wavelet is the base wavelet which minimizes the Shannon entropy of the 
corresponding wavelet coefficients. Ren and Sun [23] extended the wavelet transform to Shannon entropy for 

detecting structural damage from measured vibration signals. It is reported that the wavelet entropy-based index 

is a good measure of damage features and sensitive to structural local damage. Along with energy and entropy 

being used as wavelet selection metrics, as pointed out earlier; de-noising process also involves selection of base 
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wavelet. As such de-noising performance attributes such as peak signal-to-noise ratio (PSNR), mean square 

error (MSE) and maximum error can also be investigated for base wavelet selection.   

PSNR measures the ratio between the maximum possible power of a signal and the power of corrupting noise. It 
defines the purity of the output signal. It is given by, 

( ) MSE/Maxlog20=PSNR i10       (23) 

where Maxi is the maximum possible value of signal and MSE represents mean square error. A higher value of 

PSNR is good because it means that the ratio of signal to noise is higher. 

The mean square error (MSE) between a signal X and an approximation Y is the squared norm of the difference 

divided by the number of elements in the signal. MSE is given by 
 

    
 

 
         

             (24) 

 

A lower value of MSE means lesser error. 

Maximum error (MAXERR) is the maximum absolute squared deviation of the data X from the approximation 

Y. A denoising scheme having high PSNR, lower MSE and lower MAXERR between a signal and its 

approximation can be recognized as a better one.  

Even though wavelet transforms have been increasingly used by many researchers for machinery fault 

diagnostics, the industrial applications have still not gained momentum and acceptability. The lesser prominence 

is mainly due to few reasons. The results obtained from wavelet transform need exploring many ramifications 

because often results are not straight forward. Numerous functions can be used as the wavelet basis referred 
throughout the thesis as mother wavelet. Functions satisfying some conditions can be designed and used as 

mother wavelets. Library of mother wavelets is huge and there are no unique standard guidelines for selecting 

the wavelet basis when multiple metrics of wavelet selection exists. In some studies, wavelet basis is adopted 

based on popularity and in others attempts have been made to address this problem using some quantitative 

selection criteria. Prabhakar et al. [28] have dealt with the detection of single and multiple ball bearing race 

faults by applying discrete wavelet transform. The vibration signals were decomposed up to four level using 

Daubechies 4 mother wavelet. Lin et al. [42] have proposed a method for wavelet threshold de-noising 

employing Morlet wavelet. Chebil et al. [48] have presented wavelet based analysis technique using discrete 

wavelet transform and the discrete wavelet packet transform using mother wavelets from Daubechies and 

Symlets family for the diagnosis of faults in rotating machinery. 

 Theoretically, even though the choice of the mother wavelet for various applications has remained ad 

hoc and arbitrary; it is important and critical in practice. The best mother wavelet for the situation results in 
perfect reconstruction and provides good localization in time and frequency. The coefficients of the wavelet 

transform represent how well the signal being analysed matches the base wavelet. As discussed earlier different 

quantitative criteria for selecting the base wavelet reported in earlier studies are maximum energy, minimum 

Shannon entropy and their ratio etc. Kankar et al. [49] proposed a method of selecting the best wavelet based on 

the ratio of maximum energy to Shannon entropy. The coefficients of wavelet transform were calculated using 

six different base wavelets, after calculating cyclic autocorrelation of vibration signals. The base wavelet 

maximizing the energy to Shannon entropy ratio was selected to extract statistical features from wavelet 

coefficients. They used minimum Shannon entropy criterion to select the best wavelet out of six wavelets for 

extracting statistical features from wavelet coefficients of raw vibration signals of bearing. After calculating 

Shannon entropy for each wavelet, Complex Morlet Wavelet with minimum value of entropy was selected as 

mother wavelet. Pandya et al. [50] have investigated the feasibility of applying wavelet packet decomposition 
for feature extraction of bearing vibration signals using rbio5.5 mother wavelet. They used maximum energy to 

minimum Shannon entropy ratio as a criterion for selecting best node of wavelet packet tree. The extracted 

features were used to train and test neural network for bearing fault classification.   

It is concluded that selection of mother wavelet is based on the popularity in some studies. Also 

quantitative criteria such as maximum energy, minimum Shannon Entropy and the ratio of maximum energy to 

minimum Shannon entropy are decisive for selecting appropriate wavelet as reported in some studies. Wavelet 

based methods can be successfully applied for the analysis of bearing vibration signals heavily buried in noise. 

Wavelet based denoising methods rely on base wavelet. Hence in addition to energy and entropy based methods, 

denoising performance parameters such as peak signal to noise ratio (PSNR), mean square error (MSE) and 

maximum error (MAXERR) can be investigated for their appropriateness for selecting base wavelet. However, 

it is observed that every individual wavelet selection criteria results in different base wavelet complicating the 

decision making.   
In this era of information technology, the field of condition monitoring has begun to incorporate 

technologies to assist the diagnostics and interpretation of signals with integration of Artificial Intelligence 

techniques such as expert systems, fuzzy logic and Neural Networks. A diagnosis method for faulty rolling 
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element bearings based on empirical mode decomposition (EMD) energy entropy was put forward by Yu et al. 

[51]. Vibration signals were decomposed into a finite number of stationary intrinsic mode functions (IMFs) and 

then using EMD energy entropy approach, energy features extracted were fed to artificial neural network.  
Kumar et al. [52] used discrete wavelet transform for processing bearing vibration signals and the statistical 

features extracted from wavelet coefficients were fed to the artificial neural network for classification. 

Alexandridis and Zapranis [53] proposed Wavelet networks (WNs) as a new class of networks which have been 

used with great success in a wide range of applications. P.G. Kulkarni and A. D. Sahasrabudhe [54] have 

proposed the use benchmarks in signal denoising such as Peak signal to noise ratio (PSNR), Mean squared error 

(MSE), and Max error as wavelet selection criteria in addition to maximum energy and minimum Shannon 

entropy for selecting appropriate mother wavelet. This method is based on assigning weights to each selection 

criteria based on analytic hierarchy process (AHP) depending on the nature of vibration data and then finding 

the overall ranking of each wavelet. Mother wavelets from Daubechies, Symlet, Coiflet, and Bior families are 

investigated and the best mother wavelets proposed by the weighting schemes are further used for processing 

vibration signals using a multiresolution analysis. This methodology is successfully implemented for assessing 
health of bearings of critical subsystem of a lathe machine tool. The new wavelet selection strategy may be 

implemented with equal success for health assessment of a broad range of machine tools such as CNC lathes, 

milling machines, machining centers, and other delicate machine tools.  

With the advent in technology, researchers have focused on application of intelligent fault diagnosis 

systems using machine learning and neural network. In the next section, the work carried on this topic is 

discussed. 

 

V. Artificial Intelligence Methods for Fault Diagnosis 
Due to the variability and richness of the response signals, it is almost impossible to recognize fault 

patterns directly. Therefore, a common fault diagnosis system often consists of three key steps: data processing, 

feature extraction and fault diagnosis [55]. Fault diagnosis of rotating machinery is a technique of fault 

detection, isolation and identification. This information is useful to know about the operational condition of the 

equipment [56].  

There are mainly three types of fault diagnosis:  

a) Determining whether there is fault in the equipment or not 

b) Finding the exact position of the fault 

c) Predicting the trend of fault development.  

For pattern recognition problem of rotating machinery Artificial intelligent has attracted great attention in the 

recent years and it has also shown promising results in the fault recognition in rotating machinery [57]. Most 

common intelligent fault diagnosis systems are built based on the preprocessing by feature extraction algorithms 

to transform the input patterns so that they can be represented by low-dimensional feature vectors for easier 
match and comparison. Then, the feature vectors are used as the input of AI techniques for fault recognition. 

The step of fault recognition amounts to mapping the information obtained in the feature space to machine faults 

in the fault space. Numerous AI tools or techniques have been used, including convex optimization, 

mathematical optimization, as well as classification-, statistical learning- and probability-based methods. 

Specifically, classifiers and statistical learning methods have been widely used in fault diagnosis of rotating 

machinery, that includes, k-nearest neighbor (k-NN) algorithms [58], Bayesian classifier [59], support vector 

machine (SVM) [60] and artificial neural network (ANN) [61]. Most recently, deep learning approaches have 

also begun to be applied in the field of fault diagnosis [62]. 

 
Support vector Machines (SVM) 

Support Vector Machines are one of the most popular classification algorithms. SVM is a 

supervised type of machine learning algorithm. SVM can be used for both classification and regression 

challenges. However, it is mostly used for the classification problems. The objective of the SVM algorithm is to 

create the best line or decision boundary that can segregate n-dimensional space into classes so that the new data 

point can be easily put in the correct category in the future. Example of Support vector machine algorithm is 

shown in the Fig. 8.  This best decision boundary is called a hyper plane. In the SVM algorithm, suppose the 

number of features extracted is n then each data item is plotted in n dimensional space with the value of each 

feature being the value of a particular coordinate. Then classification can be performed by finding the hyper 

plane that differentiates the two classes very well. SVM chooses the extreme points/vectors that help in creating 

the hyperplane. These extreme cases are called as support vectors, and hence algorithm is termed as Support 
Vector Machine. Support Vectors are simply the co-ordinates of individual observation. SVM has an excellent 

performance in generalization with small training data. SVM is used to separate two classes to find support 

vectors that defines the bounding plane. The number of support vectors increases with the complexity of the 

problem. For more than 10 classes SVM is less good. SVM tends to generalize well even with a limited amount 
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of training data. To select the kernel function parameters is very difficult. It is less efficient in a case of lot of 

data, because number of support vectors increases with the complexity of the problem [63]. SVM algorithm was 

proposed for fault diagnosis of the rotational unbalance in the rotor. Several situation of unbalance faults were 
detected successfully. The SVM algorithm has a practical signification for the machine learning in the case of a 

small number of samples [64].  Lie You et al [65] have proposed a novel fault diagnosis model for vertical axial 

flow pump, which extracts features by combining vibration severity, dyadic wavelet energy time-spectrum, and 

coefficient power spectrum of the maximum wavelet energy level (VWC) at the feature extraction stage. At the 

stage of fault classification, a support vector machine (SVM) is designed based on the modified shuffled frog-

leaping algorithm (MSFLA) for the accurate classifying machinery fault method. Shaojiang dong et al. [66] 

have explained a novel method to solve the rotating machinery fault diagnosis, which is based on principal 

components analysis (PCA) to extract the characteristic features and the Morlet kernel support vector machine 

(MSVM) to achieve the fault classification. The Morlet kernel can effectively improve the recognition accuracy 

of SVM. Xiaochen Zhang et al. [67] have proposed a method based on fast clustering algorithm (FCA) and 

support vector machine (SVM) to diagnose rotating machinery fault for imbalanced data. Chenxi Wu et al. [68] 
employed based on continuous wavelet transform (CWT) and support vector machine (SVM) for the diagnosis 

of bearing faults. They have presented a method for selection of mother wavelet. They have reported higher 

accuracy in fault diagnosis with this method. 

 

 
Fig.8 Support vector machine algorithm 

 

T Praveenkumar et al. [69] have carried out the fault diagnosis of gear box by using statistical features 

extracted from the acquired vibration signals. The extracted features were given as an input to the support vector 

machine (SVM) for fault identification. The Performance of the fault identification system using vibration 

signals are discussed and compared Support Vector Machine shows better classification ability in identification 

of a various faults in the gearbox and it can be used for automated fault diagnosis.  

 
Artificial Neuron Networks (ANNs) 

Neural network can be defined as a computing system made up of a number of simple, highly 

interconnected processing elements, which process information by their dynamic state response to external inputs. 

Artificial Neural Network as computational model that is inspired by the way biological neural networks in the 

human brain process information.  

There are three components in ANNs. Input layer, hidden layer and output layer with some activation 

function and learning rules. Each layer is comprised of n nodes (n P 1) and each node in any layer is connected 

to all the nodes in the neighbouring layers. Each node can also be connected to a constant number which is 

called bias. These connections have their individual weights which are called synaptic weights and are 
multiplied to the node values of the previous layer. Input and output data dimensions of the ANN determine the 

number of nodes in the input and output layers, respectively, but the number of hidden layers and their nodes is 

determined heuristically and that is the most important part in ANNs accuracy of results depends on this. 
A single layer perceptron as shown in Fig.9 is a feed-forward network based on a threshold transfer function. SLP 

is the simplest type of artificial neural networks and can only classify linearly separable cases with a binary target 

(1, 0). 

Activation function of a node defines the output of that node given an input or set of inputs. Every 

activation function (or transfer function) takes a single number and performs a certain fixed mathematical 

operation on it. Sigmoid, Tanh, ReLU are some examples of activation functions. The learning rule is a rule or an 
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algorithm which modifies the parameters of the neural network, in order for a given input to the network to 

produce a favoured output. This learning process typically amounts to modifying the weights and thresholds. 

There are many classes of neural networks viz. Artificial Neural Network (ANN), Convolutional Neural 
Network (CNN), Recurrent Neural Network (RNN) etc. Artificial Neural Network (ANN) is a very broad term 

that encompasses any form of Deep Learning model. ANNs can be either shallow or deep. They are called 

shallow when they have only one hidden layer (i.e. one layer between input and output). They are called deep 

when hidden layers are more than one (what people implement most of the time). This is where the expression 

Deep Neural Network (DNN) comes. 

Convolutional Neural Network (CNN) are designed specifically for computer vision (they are sometimes 

applied elsewhere though). The CNN are deep neural networks that focus mainly on image processing and are 

excellent for pattern recognition. In addition, it is one of the best methods for classification. CNN automatically 

obtain the characteristics of the images by means of convolutional filters, which makes them a tool with a great 

capacity to learn characteristics in a robust and sensitive way. Their name come from convolutional layers: they 

are different from standard (dense) layers of canonical ANNs, and they have been invented to receive and process 
pixel data. Recurrent Neural Network (RNN) are the "time series version" of ANNs. They are meant to process 

sequences of data. 

A feed forward neural network is an artificial neural network where connections between the units 

do not form a cycles or loops in the network. In this network, the information moves in only one direction, 

forward, from the input layers, through the hidden layer (for single layer perceptron no hidden layer) and to the 

output layers or nodes. (Fig. 9) 

 
Fig. 9 Single-layer Perceptron 

 
Multi-layer perceptron (MLP) consists of multiple layers of computational units as shown in the Fig. 10, 

usually interconnected in a feed-forward way. Each neuron in one layer has directed connections to the neurons of 

the subsequent layer. In many applications the units of these networks apply a sigmoid function as an activation 

function. MLP are very more useful and one good reason is that, they are able to learn non-linear representations. 

Convolutional Neural Networks (CNNs) are very similar to ordinary Neural Networks, they are made up of 

neurons that have learnable weights and biases. In convolutional neural network (CNN, or ConvNet or shift 

invariant or space invariant) the unit connectivity pattern is inspired by the organization of the visual cortex as 

shown in the Fig.11. Units respond to stimuli in a restricted region of space known as the receptive field. 

Receptive fields partially overlap, over-covering the entire visual field. Unit response can be approximated 

mathematically by a convolution operation. They are variations of multilayer perceptrons that use minimal pre-

processing. Their wide applications is in image and video recognition, recommender systems and natural 
language processing. CNNs requires large data to train on. 

In recurrent neural network (RNN), connections between units form a directed cycle (they propagate 

data forward, but also backwards, from later processing stages to earlier stages). This allows it to exhibit dynamic 

temporal behavior. Unlike feed forward neural networks, RNNs can use their internal memory to process 

arbitrary sequences of inputs. This makes them applicable to tasks such as unsegmented, connected handwriting 

recognition, speech recognition and other general sequence processors. CNNs are feed-forward Artificial Neural 

Networks (ANNs) with alternating convolutional and subsampling layers. Deep 2D CNNs with many hidden 

layers and millions of parameters have the ability to learn complex objects and patterns providing that they can 

be trained on a massive size visual database with ground-truth labels. With a proper training, this unique ability 

makes them the primary tool for various engineering applications for 2D signals such as images and video 

frames. Yet, this may not be a viable option in numerous applications over 1D signals especially when the 

training data is scarce or application-specific. To address this issue, 1D CNNs have recently been proposed and 
immediately achieved the state-of-the-art performance levels in several applications such as personalized 
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biomedical data classification and early diagnosis, structural health monitoring, anomaly detection and 

identification in power electronics and motor-fault detection. 

Another major advantage is that a real-time and low-cost hardware implementation is feasible due to 
the simple and compact configuration of 1D CNNs that perform only 1D convolutions (scalar multiplications 

and additions). This paper presents a comprehensive review of the general architecture and principals of 1D 

CNNs along with their major engineering applications, especially focused on the recent progress in this field. 

Their state-of-the-art performance is highlighted concluding with their unique properties. The benchmark 

datasets and the principal 1D CNN software used in those applications are also publically shared in a dedicated 

website [70]. Tang et al [71] have used intelligent fault diagnosis techniques for rotary machinery based on with 

deep neural network. As a common DNN with special structure, deep convolutional neural network is of great 

concern in intelligent fault diagnosis due to its advantages in processing nonlinear problems for rotary 

machinery. 

 

 
Fig. 10 Multi-Layer Perceptron 

 

 
Fig.11 CNN for image classification 

 

The DNN is successfully used in different applications including image processing, speech recognition 

and audio processing [72]. Owing to the advantages of DNN in thorough learning capability, it is valuable to 

explore the feature mining and intelligent diagnosis methods based on DNN in research on mechanical failure 

[73- 76]. In this method Local connection means each neuron in the convolutional layer is only connected to the 
neuron in a local window in the next layer, and every kernel is viewed as a small local window with a certain 

stride. Weights sharing can be understood that one convolutional kernel can only capture a kind of specific local 

feature from the input data. Luo et al. [77] have proposed Variable predictive model-based class (VPMCD) for 

the fault diagnosis of rotating machinery. The fault diagnosis process is essentially a class discrimination 

problem. However, traditional class discrimination methods such as SVM and ANN fail to capitalize the 

interactions among the feature variables. VPMCD can adequately use the interactions. But the feature extraction 

and selection will greatly affect the accuracy and stability of VPMCD classifier. Aiming at the nonstationary 
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characteristics of vibration signal from rotating machinery with local fault, singular value decomposition (SVD) 

technique based local characteristic-scale decomposition (LCD) was developed to extract the feature variables. 

Subsequently, combining artificial neural net (ANN) and mean impact value (MIV), ANN-MIV as a kind of 
feature selection approach was proposed to select more suitable feature variables as input vector of VPMCD 

classifier. Chan et al. [78] has proposed feature inherited hierarchical convolution neural network (FI-HCNN) to 

improve motor fault severity estimation. The main novelty of the proposed FI-HCNN is the special inherited 

structure between the hierarchy; the severity estimation part utilizes the latent features to exploit the fault-related 

representations in the fault diagnosis task. FI-HCNN can improve the accuracy of the fault severity estimation 

because the level-specific abstraction is supported by the latent features. Experimental studies of mechanical 

motor faults, including eccentricity, broken rotor bars, and unbalanced conditions are used to corroborate the 

high performance of FI-HCNN. Yong et al. [79] have proposed a novel method for the diagnosis of bearing 

faults using hierarchical multitask convolution neural networks (HMCNNs). This method focuses on the 

relationship between fault location, fault type, and fault severity. HMCNN model includes a main task and 

multiple subtasks. In the HMCNN model, a weighted probability is used to reduce the classification error 
propagation among multitasks to improve the fault diagnosis accuracy. ZhiQiang et al. [80] have presented an 

implementation of deep learning algorithm convolutional neural network (CNN) used for fault identification and 

classification in gearboxes. Different combinations of condition patterns based on some basic fault conditions 

are considered. 20 test cases with different combinations of condition patterns are used, where each test case 

includes 12 combinations of different basic condition patterns. Vibration signals are pre-processed using 

statistical measures from the time domain signal such as standard deviation, skewness, and kurtosis. In the 

frequency domain, the spectrum obtained with FFT is divided into multiple bands, and the root mean square 

(RMS) value is calculated for each one so the energy maintains its shape at the spectrum peaks. The achieved 

accuracy indicates that the proposed approach is highly reliable and applicable in fault diagnosis of industrial 

reciprocating machinery. Dong et al. [81] have proposed novel method of fault diagnosis based on convolutional 

neural network (CNN), discrete wavelet transform (DWT), and singular value decomposition (SVD). CNN is 

used to extract features of shaft orbit images, DWT is used to transform the denoised swing signal of rotating 
machinery, and the wavelet decomposition coefficients of each branch of the signal are obtained by the 

transformation. To effectively identify the fault classes of rotating machinery under noise interference, an 

efficient fault diagnosis method without additional denoising procedures is proposed. First, a one-dimensional 

deep residual shrinkage network, which directly takes the raw vibration signals contaminated by noise as input, 

is developed to realize end-to-end fault diagnosis. An adaptive batch normalization algorithm (AdaBN) is 

introduced into the diagnosis model to enhance the adaptability to noise. [82]. Deep 2D CNNs with many 

hidden layers and millions of parameters have the ability to learn complex objects and patterns providing that 

they can be trained on a massive size visual database with ground-truth labels. With a proper training, this 

unique ability makes them the primary tool for various engineering applications for 2D signals such as images 

and video frames. Yet, this may not be a viable option in numerous applications over 1D signals especially 

when the training data is scarce or application-specific. To address this issue, 1D CNNs have recently been 
proposed and immediately achieved the state-of-the-art performance levels in several applications such as 

personalized biomedical data classification and early diagnosis, structural health monitoring, anomaly detection 

and identification in power electronics and motor-fault detection. Another major advantage is that a real-time 

and low-cost hardware implementation is feasible due to the simple and compact configuration of 1D CNNs that 

perform only 1D convolutions (scalar multiplications and additions). Zhiqiang Chen et al. [83] presented a study 

of deep neural networks for fault diagnosis in gearbox. Four classic deep neural networks (Auto-encoders, 

Restricted Boltzmann Machines, Deep Boltzmann Machines and Deep Belief Networks) were employed as the 

classifier to classify and identify the fault conditions of gearbox. It was concluded that Multi-layer feed-forward 

neural network with one or two hidden layers performs better than deeper net architectures for gearbox fault 

diagnosis. It was observed that the deep learning algorithms, RBM, DBM, DBN and SAE, were efficient, 

reliable and robust in gearbox fault diagnosis. Israel £. Alguihdigue and Robert E. Uhrig [84] have presented the 

work on the design of a vibration monitoring methodology based on neural network technology using two 
neural networks algorithms, first the Recirculation algorithm for data compression and second the back 

propagation algorithm to perform the actual classification of the patterns. It is concluded that to implement 

reliable monitoring systems using neural networks, it is best to utilize multiple independent networks to address 

several phases of the problem, then to design a large network capable of performing all analysis. Luis A. 

Pinedo‑ Sanchez et al. [85] have proposed a method based on Convolutional Neural Networks (CNN) to 

estimate the level of wear in roller bearings in each of its elements, inner race, outer race and rolling element. 

They found a CNN model based on the AlexNet architecture to be an effective tool to classify the wear level 

and diagnose the rotating system. Wenliao Du et al. [86] have developed a method based on dual-tree complex 

wavelet transform based stacked sparse autoencoder for intelligent fault diagnosis of rotating machinery. They 

concluded that the developed method can accommodate changing working conditions, be free of manual feature 
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extraction, and perform better than the existing intelligent diagnosis methods. Shaojiang Dong et al. [87] 

implemented a method based on the k-nearest neighbor classification algorithm is used for completing the fault 

diagnosis of rolling bearing under variable working conditions. In order to solve the problem of low diagnosis 
results of traditional bearing fault diagnosis methods under different working conditions, an unsupervised deep 

learning algorithm combined with feature transfer learning was proposed. Haedong Jeong et al. [88] an 

autonomous orbit pattern recognition algorithm using the deep learning method on shaft orbit shape images. In 

details, the convolutional neural network is implemented to construct weights between neurons and to generate 

the entire structure of the neural network. This was done with an objective to identify rotating machinery 

dynamics and status. Chih-Hao Chena et al. [89] have presented a study for the fault diagnosis procedure for 

rotating machinery using the wavelet packets-fractal technology and a radial basis function neural network. The 

faults of rotating machinery considered in this study include imbalance, misalignment, looseness and imbalance 

combined with misalignment conditions. It was found that the wavelet packets decomposition can accurately 

decompose vibration signals into various perpendicular frequency bands without losing the characteristics of the 

measured vibration signals. Chuan Li et al. [90] have proposed deep statistical feature learning for vibration 
measurement to diagnose fault patterns in rotating machinery. The statistical feature set was first extracted from 

the time, frequency, and time-frequency domains of the vibration signals. It was concluded that deep statistical 

feature learning is capable of classifying fault patterns at higher rates than other models.  

 

VI. Conclusion 
With the increasing complexity of mechanical structures, it is increasingly important to monitor and 

diagnose the condition of rotating machinery.  In many cases, the vibration signal and shaft orbit are important 

features that reflect the state of mechanical equipment. Therefore, an efficient feature extraction and fault 

diagnosis method plays a significant role in the operation management and condition monitoring of mechanical 
equipment. For the fault diagnosis of rotating machinery intelligent systems are used for more efficient and 

accurate results. But a single method cannot give exact results for that there must be a combination of different 

methods based on data available and output desired in a specific manner. For feature classification no of 

classifiers are there with different algorithms. And for deep learning different neural networks are proposed for 

application based and particular condition based. Fault diagnosis of rotating machinery is a predominant 

research area to get the novel approach for diagnosis of fault by blending of different methods. The useful life 

prediction is ongoing research area.  
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