Evaporation Control Technique in Open Reservoirs: An Overview and Assessment Study

Sanket S. Jadhav¹, Purushottam S. Indulkar², Pradeep R. Pal³, Ankur A. Kharde⁴, Prof. Nagaraj H. Koppa⁵

Student¹, Department of Civil Engineering, Guide ²- Gharda Institute of Technology, Lavel, Tal. Khed, Dist. Ratnagiri, 415708 University of Mumbai
Corresponding Author: Sanket S. Jadhav

Abstract: Global warming and the increasing concentration of greenhouse gases in the atmosphere will affect temperature and rainfall. This rise in temperature ultimately results in evaporation losses from storage reservoirs. As water is a limited resource and its conservation and management is important, so that there are different methods to reduce evaporation from open reservoirs. These methods are mainly categorized as physical and chemical methods. Water losses by evaporation from storage reservoirs must be minimized for greatest utility of limited supplies. Hence in this paper we have focused on evaporation losses from the open reservoir and carried out a test on artificial reservoir using low density polypropylene balls as floating cover to predict how much percentage of evaporation losses can be reduced from open reservoirs. From analysis 80-82% evaporation losses can be reduced to actual losses from water bodies.

Keywords: Evaporation, Floating covers, Open reservoir, Polypropylene balls, seepage losses.

Date of Submission: 30-03-2018
Date of acceptance: 16-04-2018

I. Introduction

As per available records, assessment of evaporation losses in the country was first made by L.A. Ramdas and presented in Symposium of Evaporation control in 1966. The assessment was based on the assumptions viz, Area of arid, semi-arid and long dry spell regions of India 2,000,000Sq.Km Estimated water area in this region (1%) 20,000Sq.Km. Estimated area where film application may be feasible 2,000 Sq.Km. The evaporation loss from the above area 6,000 MCM the National Commission on Agriculture (1976) had estimated that the annual evaporation losses from reservoir surfaces will be of the order of 50,000 MCM.

Central Water Commission in their publication “Status Report on Evaporation Control in Reservoirs, 1988” had indicated that on an average there is a loss of about 450 MCM of water every month from an area of 2,000 Sq.Km which amounts to an annual loss of 5,400 MCM. The Water Management Forum (WMF), a national body of the Institution of Engineers (India), in their publication “Water Conservation by Evaporation Control, 1988” had indicated that on the Indian sub-continent the estimate total loss of water from large, medium and small storages will be to the tune of 60,000 MCM, which according to WMF would be adequate to meet the entire municipal and rural water needs of India by 2000 AD.

II. Evaporation Estimates

Many methods exist for either measuring or estimating evaporative losses from free water surfaces. Evaporation pans provide one of the simplest, inexpensive, and most widely used methods of estimating evaporative losses. The use of pan data involves the application of a coefficient to measured pan readings to estimate evaporation from a larger water body. Pan evaporation is considered an indication of atmospheric evaporative power.

Evaporation from a free surface is related to pan evaporation by a coefficient applied to the pan readings. A pan made of unpainted galvanized iron or stainless steel 4 feet in diameter and 10 inches deep. The pans are supported on low wooden frames and are filled with 8 inches of water.

Also it is necessary to find loss of water due to seepage, which may be significant. Some work has been done in this field in our country. Two research stations namely Irrigation Research Institute, Poondi, Chennai and Irrigation Research Institute, Roorkee, Uttaranchal have made attempts to develop methods of measuring seepage.
III. Materials And Methodology

Materials
1. Low-density polypropylene (LDPP) balls: It is polyethylene thermoplastic made from petroleum. The density of LDPP can range from 0.93 to 0.97 g/cu.cm. It is also harder and opaque and can withstand higher temperatures (120°C).
 LDPP is resistant to many different solvents and has variety of applications:
 • Swimming pool installation
 • Bottle caps
 • Food storage containers
2. Tank: The material of tank is cast iron. The dimensions of tank are 2m X 1.25m X 0.5m. The tank is divided into two compartments of 1m length each, and we have made below tank like controlled and uncontrolled condition
3. Metric scale: To measure water loss (30cm).

IV. Methodology

Covering the water surface with floating balls

Procedure:
We have chosen a tank dimensions as 2m X 1.25m X 0.5m and made two compartments. Both filled with water up to 0.31m deep and cover the water surface with 50mm polypropylene balls so that sun rays do not pass through sides of tank. This whole setup kept for 7-8 days in open terrace. In that period readings were taken successively 8 days by corresponding its temperature.

V. Results

Observations at average of temperature 30°C

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncontrolled condition (mm)</td>
<td>313</td>
<td>305</td>
<td>298</td>
<td>293</td>
<td>288</td>
<td>283</td>
<td>279</td>
<td>273</td>
</tr>
<tr>
<td>Controlled condition (mm)</td>
<td>313</td>
<td>311</td>
<td>310</td>
<td>309</td>
<td>308</td>
<td>307.5</td>
<td>306</td>
<td>305</td>
</tr>
</tbody>
</table>

Loss in Uncontrolled condition @ 30°C= 40mm
Loss in Controlled condition @ 30°C= 8mm
Evaporation Control Technique In Open Reservoirs: An Overview And Assessment Study

Figure 1: Evaporation losses in first trail @30°C

<table>
<thead>
<tr>
<th>Date</th>
<th>15 Feb. 18</th>
<th>16 Feb. 18</th>
<th>17 Feb. 18</th>
<th>18 Feb. 18</th>
<th>19 Feb. 18</th>
<th>20 Feb. 18</th>
<th>21 Feb. 18</th>
<th>22 Feb. 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncontrolled</td>
<td>313</td>
<td>307</td>
<td>295</td>
<td>286</td>
<td>280</td>
<td>271</td>
<td>262</td>
<td>253</td>
</tr>
<tr>
<td>condition (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlled</td>
<td>313</td>
<td>312</td>
<td>311.5</td>
<td>310</td>
<td>308</td>
<td>306</td>
<td>305</td>
<td>304</td>
</tr>
<tr>
<td>condition (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Loss in Uncontrolled condition @ 35°C = 60mm
Loss in Controlled condition @ 35°C = 9mm

Figure 2: Evaporation losses in second trail @35°C

<table>
<thead>
<tr>
<th>Date</th>
<th>2 March 18</th>
<th>3 March 18</th>
<th>4 March 18</th>
<th>5 March 18</th>
<th>6 March 18</th>
<th>7 March 18</th>
<th>8 March 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncontrolled</td>
<td>313</td>
<td>305</td>
<td>293</td>
<td>283</td>
<td>277</td>
<td>267</td>
<td>258</td>
</tr>
<tr>
<td>condition (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlled</td>
<td>313</td>
<td>311</td>
<td>310</td>
<td>309</td>
<td>307.5</td>
<td>305</td>
<td>304</td>
</tr>
<tr>
<td>condition (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Loss in Uncontrolled condition @ 40°C = 62mm
Loss in Controlled condition @ 40°C = 11mm
VI. Conclusions

- By observations we have estimated that 80-82% of water can be saved by using polypropylene balls as floating cover.
- There is no any adverse effect of polypropylene balls on water body under high temperature.
- This method is very economical method to minimize evaporation losses in small and large water bodies.

References

[8] National water policy- 2002, Ministry of water resources, Govt. of India.