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Abstract: The purpose of this research is the study and improvement of numerical methods to solve viscous 

compressible flows. The equations represent these flows are solved in the conservative form with a comparison 

between conservative variables and new variables called pseudo-primitive variables. The discretization in space 

is performed by the finite element method and the discretization in time is accomplished by a finite difference 

method. Among the objectives of this work is the simulation of dominant convective flows, the case where the 

Reynolds number and the Mach number are high. Knowing that when advection flows dominate diffusion flows, 

the discretization of advection-diffusion equations by Galerkin's standard finite element method presents non-

physical oscillations, which makes the method unstable. To stabilize the solutions a variant of the finite element 

method of Petrov-Galerkin is developed. The nonlinear system resulting from the discretization is solved by the 

iterative algorithm GMRES with a diagonal pre-conditioning. Various simulations, ranging from transonic 

flows to supersonic flows are treated, for the systematic validation of the methods and techniques developed. 
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I. Introduction 
This research contributes to the study and improvement of numerical methods for the simulation of 

viscous compressible flows. These flows are described by the Navier-Stokes equations. To solve these equations 

numerically, a first step is to choose the form of these equations and the independent variables to use. Indeed, 

there are several possible choices, mainly: the conservative form [1-4], the conservative form using the entropic 

variables [5], and the non-conservative form [6, 7]. A priori, the conservative form is the most suitable, both 

physically and numerically, especially for shock wave flows. This is because the conservation equations are 

solved as derived from conservation laws. Moreover, this form directly expresses the variables that are naturally 

conserved through discontinuities. In this work, the Navier-Stokes equations are solved in the conservative form 

using two types of independent variables: conservative variables (density, momentum per unit volume and total 

energy per unit volume), and pseudo-primitive variables (static pressure, momentum per unit volume and 

temperature). This study was carried out in order to represent as precisely as possible the physical and natural 

boundary conditions, to satisfy the second principle of thermodynamics and finally to develop a general 

conservation form able to use any type of independent variables. 

Knowing that when advection flows dominate diffusion flows, the discretization of advection-diffusion 

equations by Galerkin's standard finite element method presents non-physical oscillations, which makes the 

method unstable. These oscillations are due to the negative numerical diffusion produced by Galerkin's standard 

finite element method [8]. Stabilization methods have been used for problems dominated by advection to 

suppress oscillations and improve the stability of the numerical solution. In Computational Fluid Dynamic 

(CFD), the common remedy is to add a numerical dissipation. Several stabilization methods have been 

developed, Streamline Upwind Petrov-Galerkin (SUPG) is one of the popular stabilization methods for 

advection dominated problems [9-13], in fixed areas. Other stabilization methods such as Galerkin Least-

Squares (GLS) [14], edge stabilization [15], continuous interior penalty [16], local projection stabilization [17] 

orthogonal sub-grid scale [18] and Variational Multi-Scale (VMS) [19-21] have also been proposed in the 

literature for fixed domains, for an overview see [22]. A comparison of the SUPG method with other 

stabilization methods for a problem in a fixed domain can be found in [8]. An adaptive SUPG method for a 

transient problem in a fixed domain has been analyzed in [23]. In [24], a comparative study of different SUPG 

stabilization parameters was performed. A detailed study of the stabilization methods for compressible flows, 

including their formulation and history, can be found in [13]. 

We use triangular elements for which the components of velocity and momentum per unit volume are 

approximated by continuous polynomials of the second degree whereas the other variables are approximated by 

continuous linear polynomials. This choice of mixed polynomial approximations makes it possible to check the 

stability of the element, satisfying the "Inf-Sup" condition [25, 26]. The nonlinear system resulting from the 

discretization is solved by the iterative GMRES algorithm with diagonal preconditioning [27, 28]. Various test 
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cases, ranging from transonic flows to supersonic flows, are treated for the systematic validation of the methods 

and techniques developed. 

 

II. Mathematical formulation 
In this section, we present the equations of fluid dynamics; to solve numerically these equations the 

first step is the choice of a form and independent variables. 

 

II.1. Equations of fluid dynamics 

The equations of fluid dynamics result from conservation laws: conservation of mass, conservation of moment 

(Newton's second law) and conservation of energy (first and second laws of thermodynamics). To write these 

equations, the concept of total derivative, the Reynolds transport theorem and the Gaussian theorem are used. 

Let Ω be a bounded domain of ℝ𝑛 and Γ its boundary (in practice we take 𝑛 = 1, 2 or 3). 
 

- Conservation of mass - the continuity equation 
 

𝜕𝜌

𝜕𝑡
+ ∇ ∙  𝜌𝐮 = 0                                                                                            (1) 

 

- Conservation of momentum  
 

𝜕𝜌𝐮

𝜕𝑡
+ ∇ ∙  𝜌𝐮 ⊗ 𝐮 + ∇𝑝 = ∇ ∙ 𝜎 + 𝜌𝐟                                                                         (2) 

 

- Conservation of energy 
 

𝜕𝜌𝑒

𝜕𝑡
+ ∇ ∙   𝜌𝑒 + 𝑝 𝐮 = ∇ ∙  𝜎 ∙ 𝐮 − ∇ ∙ 𝐪 + 𝜌𝐟 ∙ 𝐮                                                              (3) 

 

In the above relations, 𝜌 is the density, 𝐮 is the velocity, 𝑝 is the pressure, 𝜎 is the viscous stress tensor, 𝐟 is the 

body force, 𝑒 is the total specific energy (𝑒 = 𝑖 +
1

2
 𝐮 2) and 𝐪 is the heat flux. The fluid is isotropic and 

Newtonian, the viscous stress tensor 𝜎 is given by: 
 

𝜎 = −
2

3
𝜇 ∇ ∙ 𝐮 𝐼 + 𝜇 ∇𝐮 +  ∇𝐮 𝑡                                                                             (4) 

 

where 𝜇 is the dynamic viscosity. The heat flux 𝐪 is given by Fourier's law: 
 

𝐪 = −𝜆∇𝑇                                                                                                   (5) 
 

where 𝜆 is the thermal conductivity and 𝑇 is the temperature. In the case of two-dimensional flows, we have 

only four equations to determine the five unknown variables 𝜌, 𝑢1, 𝑢2, 𝑝 and 𝑇 , in the case where the transport 

coefficients (thermal conductivity 𝜆 and 𝜇 dynamic viscosity) are expressed in terms of these five unknown 

variables. In the case of a compressible fluid such as air, the ideal gas law can be used: 
 

𝑝 = 𝜌𝑅𝑇                                                                                                     (6) 
 

where 𝑅 = 𝑐𝑝 − 𝑐𝑣  is the gas constant. The quantities 𝑐𝑣 and 𝑐𝑝 are respectively the specific heat at constant 

volume and the specific heat at constant pressure.  

 

II.2. Forms of the equations of conservation 

To solve numerically the equations of mass conservation, momentum conservation and energy conservation, we 

must choose the form of these equations and the independent variables to be used. Indeed, there are several 

possible choices, mainly: 

- The non-conservation form [6, 7] where the conservation equations (1, 2 and 3) are transformed in order to 

simplify them and to show the appropriate independent variables ( 𝑝, 𝑢1, 𝑢2 and 𝑇  for example). To obtain the 

non-conservative form, the system of equations (1, 2 and 3) is transformed in order to write it according to the 

independent variables and their variations. Mathematically, the transformations performed on these equations 

are not valid in the presence of a surface of discontinuity, since neither velocity, density nor certain other 

quantities are continuous. Consequently, in the presence of a discontinuity surface, equations of the non-

conservation form are not equivalent to the original equations (1, 2 and 3). The choice of this form can be 

justified given that the physical and natural boundary conditions on temperature and velocity are represented as 

accurately as possible. 
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- The conservation form in entropic variables [5] where the conservation equations (1, 2 and 3) are expressed in 

terms of the so-called entropic variables 
1

𝑇
 
− 𝐮 2

2
+ 𝛾𝑇 − 𝑇𝑠, 𝐮, −1 . The conservation form in entropic variables 

is characterized by two important properties. The first property is that this form leads to a system of advection-

diffusion equations where all matrices are symmetric. The second property is that with this form the second 

principle of thermodynamics is directly satisfied. This form allowed to develop the first upwind finite element 

method for compressible fluids, this method is known as Streamline Upwind Petrov-Galerkin (SUPG). 

However, such a form does not make it easy to apply physical boundary conditions because of the type of 

independent variables used. 
 

- The conservation form [1-4] where the conservation equations, (1, 2 and 3) are directly considered without any 

transformation. This form expresses directly the variables that are naturally conserved through discontinuities. 

Numerically, the conservation form is best adapted because problems of fluid dynamics often present areas of 

discontinuities. Physically, the conservation form is best adapted because the fluid dynamics equations are 

solved by perfectly respecting the laws of physics; in addition the boundary conditions are directly imposed on 

the physical variables. 
 

By this work our contribution consists of solving problems of fluid dynamics at high Reynolds and 

Mach numbers. Thus, the Navier-Stokes equations are studied in conservation form. In order to apply the 

boundary conditions as accurately as possible, different types of independent variables were used while keeping 

the conservation form. In the following, we present the conservation equations in the conservation form and we 

define the conservative variables. The conservation form will be generalized in order to use any types of 

independent variables. 

 

II.3. Conservative form in conservative variables 

In order to determine the conservation form in conservative variables, the conservative variables: the density 𝜌, 

the momentum per unit volume 𝐔 and the total energy per unit volume 𝐸 are directly taken as independent 

variables in the conservation equations (1, 2 and 3). Thus, the conservative form in conservative variables of the 

conservation equations (1, 2 and 3) are written as follows: 
 

- Equation of mass conservation: 
 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ 𝐔 = 0                                                                           (7) 

 

- Equation of the conservation of momentum: 
 

𝜕𝐔

𝜕𝑡
+ ∇ ∙  𝐔 ⊗ 𝐮 + ∇𝑝 = ∇ ∙ 𝜎 + 𝜌𝐟                                                    (8) 

 

- Equation of conservation of energy: 
 

𝜕𝐸

𝜕𝑡
+ ∇ ∙   𝐸 + 𝑝 𝐮 = ∇ ∙  𝜎 ∙ 𝐮 − ∇ ∙ 𝐪 + 𝐟 ∙ 𝐔                                          (9) 

 

The flow velocity and the temperature, as a function of the conservative variables, are expressed respectively by 

the following relations: 

𝐮 =
𝐔

𝜌
                                                                                              (10) 

𝐸 = 𝜌𝑒 = 𝜌  𝑐𝑣𝑇 +
 𝐔 2

2𝜌2
        ⟹        𝑇 =

1

𝑐𝑣
 
𝐸

𝜌
−

 𝐔 2

2𝜌2
                                  (11) 

 

To express the pressure and the heat flux as a function of the conservative variables  𝜌, 𝐔, 𝐸 , equation (11) is 

combined with the ideal gas law (6) and the Fourier law (5). Thus, the following relations are obtained: 
 

𝑝 =  𝛾 − 1  𝐸 −
 𝐔 2

2𝜌2
                                                                      (12) 

𝐪 = −
𝜆

𝑐𝑣
∇  

𝐸

𝜌
−

 𝐔 2

2𝜌2
                                                                        (13) 

 

To express the viscous stress tensor according to conservative variables, equation (10) is combined with 

equation (4). Thus, the viscous stress tensor, as a function of the conservative variables, is written as follows: 
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𝜎 =
𝜇

𝜌
 ∇𝐔 +  ∇𝐔 𝑡 −

2

3
 ∇ ∙ 𝐔 𝐼 + 𝜎‡                                                       (14) 

where 

𝜎‡ = −
𝜇

𝜌2
 𝐔 ∙  ∇𝜌 𝑡 +  ∇𝜌 ∙ 𝐔𝑡 −

2

3
 𝐔𝑡 ∙ ∇𝜌 𝐼  

 

In the following subsection, we introduce a new type of independent variables, we will develop the conservative 

form in pseudo-primitive variables. 

 
II.4. Conservative form in pseudo-primitive variables 

The conservation form in pseudo-primitive variables uses the independent variables 𝐘 =  𝑝, 𝐔, 𝑇 𝑡 . To obtain 

the conservation form in pseudo-primitive variables, the equations (1, 2 and 3) are transformed in order to 

express them in terms of the independent variables and their derivatives. In this form, the density 𝜌 is expressed 

as a function of the pseudo-primitive variables (𝑝, 𝐔, 𝑇), using the ideal gas law  
 

𝜌 =
𝑝

𝑅𝑇
                                                                                                    (15) 

 

The time derivative of the density 𝜌 is given by: 
 

𝜕𝜌

𝜕𝑡
=

1

𝑅𝑇

𝜕𝑝

𝜕𝑡
−

𝑝

𝑅𝑇2

𝜕𝑇

𝜕𝑡
                                                                              (16) 

 

The conservative form in pseudo-primitive variables is written as follows: 
 

- Equation of mass conservation: 
 

 
1

𝑅𝑇
 
𝜕𝑝

𝜕𝑡
−  

𝑝

𝑅𝑇2 
𝜕𝑇

𝜕𝑡
+ ∇ ∙ 𝐔 = 0                                                     (17) 

 

- Equation of the conservation of momentum: 
 

𝜕𝐔

𝜕𝑡
+ ∇ ∙  𝐔 ⊗ 𝐮 + ∇𝑝 = ∇ ∙ 𝜎 +

𝑝

𝑅𝑇
𝐟                                                  (18) 

 

- Equation of conservation of energy: 
 

𝜕𝜌𝑖

𝜕𝑡
+

𝜕𝜌𝑒𝑐

𝜕𝑡
+ ∇ ∙   𝜌𝑖 + 𝜌𝑒𝑐 + 𝑝 𝐮 = ∇ ∙  𝜎 ∙ 𝐮 − ∇ ∙ 𝐪 + 𝐟 ∙ 𝐔                           (19) 

or : 

 
 𝐔 2𝑅

2𝑝
 
𝜕𝑇

𝜕𝑡
+  

1

𝛾 
−

 𝐔 2𝑅𝑇

2𝑝2
 

𝜕𝑝

𝜕𝑡
+  

𝑈1𝑅𝑇

𝑝
 
𝜕𝑈1

𝜕𝑡
+  

𝑈2𝑅𝑇

𝑝
 
𝜕𝑈2

𝜕𝑡
 

+∇ ∙   𝑐𝑝𝑇 +
 𝐔 2𝑅2𝑇2

2𝑝2
 𝐔 = ∇ ∙  𝜎 ∙ 𝐮 − ∇ ∙ 𝐪 + 𝐟 ∙ 𝐔 

with 

𝛾 = 𝛾 − 1     and     𝑒𝑐 =
 𝐮 2

2
 

 

The velocity 𝐮 is calculated as a function of the pseudo-primitive variables, using the expressions of the density 

(15) and the momentum per unit volume: 
 

𝐮 =
𝐔𝑅𝑇

𝑝
                                                                                          (20) 

 

The heat flux is given by the Fourier law (5). The viscous stress tensor is evaluated by equation (4) where the 

velocity is calculated by the relation (20). In the system of equations (17, 18 and 19), the equation of mass 

conservation is considered the pressure equation, the equation of the conservation of the momentum is 

considered the equation of the momentum per unit of volume and the equation of energy conservation is 

considered the equation of temperature. 

 
II.5. Generalization of conservative form  

The conservation form in conservative variables (7, 8 and 9) can be written in the vector form: 
 

𝐕,𝑡 + 𝐅𝑖,𝑖
𝑎𝑑𝑣 𝐕 = 𝐅𝑖,𝑖

𝑑𝑖𝑓𝑓 𝐕 + 𝓕                                                                  (21) 
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Where 𝐕 =  𝜌, 𝐔,𝐸 𝑡  is the vector of the conservative variables, 𝐅𝑖
𝑎𝑑𝑣 is the advection flux in the 𝑖 direction, 

𝐅𝑖
𝑑𝑖𝑓𝑓

 is the diffusion flux in the same direction and 𝓕 is the source vector. The system of equations (21) in the 

quasi-linear form [29, 30] is written: 
 

𝐕,𝑡 + 𝐀𝑖𝐕,𝑖 =  𝐊𝑖𝑗𝐕,𝑗 ,𝑖
+ 𝓕                                                                       (22) 

 

Where 𝐀𝑖 are the Jacobian matrices of advection fluxes such that 𝐀𝑖 = 𝐅𝑖,𝐕
𝑎𝑑𝑣, 𝐊 =  𝐊𝑖𝑗   are the diffusion 

matrices such that: 
 

𝐊𝑖𝑗𝐕,𝑗 = 𝐅𝑖
𝑑𝑖𝑓𝑓

 
 

In order to obtain a general conservation form, able to use any type of independent variables, the system (21) is 

transformed using the change of variables 𝐕 = 𝐕(𝐘). We obtain: 
 

𝐀0𝐘,𝑡 + 𝐅 𝑖,𝑖
𝑎𝑑𝑣

 𝐘 = 𝐅 𝑖,𝑖
𝑑𝑖𝑓𝑓

 𝐘 + 𝓕                                                          (23) 

with 

𝐀0 = 𝐕,𝐘        𝐀0𝐘,𝑡 = 𝐕,𝑡        and        𝐀0𝐘,𝑖 = 𝐕,𝑖 

on the other hand : 

𝐅 𝑖
𝑎𝑑𝑣

 𝐘 = 𝐅𝑖
𝑎𝑑𝑣 𝐕         𝐅 𝑖

𝑑𝑖𝑓𝑓
 𝐘 = 𝐅𝑖

𝑑𝑖𝑓𝑓 𝐕      et     𝓕  𝐘 = 𝓕 𝐕  
 

Where 𝐀0 represents the transformation matrix of the vector of the conservative variables 𝐕 to the vector of 

other types of independent variables 𝐘. Thus, the system (22) becomes: 
 

𝐀0𝐘,𝑡 + 𝐀 𝑖𝐘,𝑖 =  𝐊 𝑖𝑗𝐘,𝑗 ,𝑖
+ 𝓕                                                                    (24) 

with : 

𝐀 𝑖 = 𝐅 𝑖,𝐘
𝑎𝑑𝑣

= 𝐀𝑖𝐀0        and        𝐊 𝑖𝑗 = 𝐊𝑖𝑗𝐀0 
 

If 𝐘 = 𝐕 the transformation matrix 𝐀0 then equals the identity matrix, so we find the conservation form 

in conservative variables. 

 

III. Finite Element Formulation 
In this work, the Navier-Stokes equations are solved by the finite element method for discretization in 

space and the finite difference method for discretization in time. In order to stabilize the solutions of the 

dominant advection problems, we use a variant of the Petrov-Galerkin finite element method. With this method 

we modify the Galerkin's standard finite elements method by adding to it a disturbance term of type upwind 

acting only in the direction of the flow and not transversally. 

 

III.1. Space discretization 

The weak variational formulation of conservative form in conservative variables (21) is given by: 
 

  𝐖 ∙  𝐕,𝑡 + 𝐅𝑖,𝑖
𝑎𝑑𝑣 𝐕 − 𝓕 + 𝐖,𝑖 ∙  𝐅𝑖

𝑑𝑖𝑓𝑓
(𝐕)  d𝛀

𝛀

 

+     𝐀𝑖
𝑡 ∙ 𝐖,𝑖 𝜏 𝐕,𝑡 + 𝐅𝑖 ,𝑖

𝑎𝑑𝑣  𝐕 − 𝐅𝑖 ,𝑖
𝑑𝑖𝑓𝑓  𝐕 − 𝓕  dΩ𝑒

Ω𝑒
𝑒

                                (25) 

=   𝐖 ∙  𝐅𝑖
𝑑𝑖𝑓𝑓

(𝐕) ∙ 𝐧𝑖  dΓ
Γ

 

 

where Ω𝑒 is an element of the triangularization of Ω. In the quasi-linear form, the weak variational formulation 

is given by: 
 

  𝐖 ∙  𝐕,𝑡 + 𝐀𝑖𝐕,𝑖 − 𝓕 + 𝐖,𝑖 ∙  𝐊𝑖𝑗𝐕,𝑗  d𝛀
𝛀

 

+     𝐀𝑖
𝑡 ∙ 𝐖,𝑖 𝜏  𝐕,𝑡 + 𝐀𝑖𝐕,𝑖 −  𝐊𝑖𝑗 𝐕,𝑗 ,𝑖

− 𝓕  dΩ𝑒

Ω𝑒
𝑒

                                 (26) 

=   𝐖 ∙   𝐊𝑖𝑗 𝐕,𝑗 ∙ 𝐧𝑖  dΓ
Γ
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This variational formulation is characterized by two important properties; it is a method of weighted residue and 

with a good choice of the matrix of stabilization 𝜏, stability is improved thanks to the elliptic term: 
 

    𝐀𝑖
𝑡 ∙ 𝐖,𝑖 𝜏 𝐀𝑖𝐕,𝑖  dΩ𝑒

Ω𝑒
𝑒

                                                                       (29) 

 

The stabilization matrix 𝜏 for the variational formulation of the conservative form in conservative variables [31 

to 34], is written as follows: 
 

𝜏 =    𝑐𝑖𝑗𝐀𝑗 

𝑖

 

−1

𝜁 𝑃𝑒                                                                         (30) 

 

To obtain a general weak variational formulation, able to use any type of independent variables 𝐘, we replace 

the weak variational formulation (25) by: 
 

  𝐖 ∙  𝐀0𝐘,𝑡 + 𝐅 𝑖,𝑖
𝑎𝑑𝑣

 𝐘 − 𝓕  + 𝐖,𝑖 ∙  𝐅𝑖
𝑑𝑖𝑓𝑓

(𝐕)  d𝛀
𝛀

 

+     𝐀 𝑖
𝑡 ∙ 𝐖,𝑖 𝜏  𝐀0𝐘,𝑡 + 𝐅 𝑖 ,𝑖

𝑎𝑑𝑣  𝐘 − 𝐅 𝑖 ,𝑖
𝑑𝑖𝑓𝑓  𝐘 − 𝓕   dΩ𝑒

Ω𝑒
𝑒

                                (31) 

=   𝐖 ∙  𝐅𝑖
𝑑𝑖𝑓𝑓

(𝐕) ∙ 𝐧𝑖  dΓ
Γ

 

 

Using the quasi-linear notation, the variational formulation (26) is replaced by the following variational 

formulation: 
 

  𝐖 ∙  𝐀0𝐘,𝑡 + 𝐀 𝑖𝐘,𝑖 − 𝓕  + 𝐖,𝑖 ∙  𝐊 𝑖𝑗𝐘,𝑗  d𝛀
𝛀

 

+     𝐀 𝑖
𝑡 ∙ 𝐖,𝑖 𝜏  𝐀0𝐘,𝑡 + 𝐀 𝑖𝐘,𝑖 −  𝐊 𝑖𝑗𝐘,𝑗 ,𝑖

− 𝓕   dΩ𝑒

Ω𝑒
𝑒

                                (32) 

=   𝐖 ∙   𝐊 𝑖𝑗𝐘,𝑗 ∙ 𝐧𝑖  dΓ
Γ

 

 

Using the matrix of change of variables 𝐀0 and the matrix of stabilization 𝜏 of the conservative form in 

conservative variables, we obtain a general matrix of stabilization 𝜏  for any type of independent variables 𝐘, so 

we write 𝜏  as follows: 
 

𝜏 = 𝐀0
−1    𝑐𝑖𝑗𝐀𝑗 

𝑖

 

−1

𝜁 𝑃𝑒 = 𝐀0
−1 𝜏                                                   (33) 

 

By the means of this study we confirm that, in the case of the flows with dominant advection, the developed 

Petrov-Galerkin finite element method has really eliminated the non-physical oscillations contrary to the 

Galerkin's standard finite element method.  

 

III.2. Temporal discretization 

The temporal derivatives are approximated using the implicit schema of Euler or the implicit schema of the 

second order of Gear. The temporal derivative of any quantity 𝐯(𝑡), using the Euler scheme, is given by: 
 

𝜕𝐯

𝜕𝑡
≈

𝐯 𝑡 + ∆𝑡 − 𝐯(𝑡)

∆𝑡
                                                                      (34) 

 

with ∆𝑡 is the time step. The temporal derivative of any quantity 𝐯(𝑡), using the Gear scheme, is given by: 
 

𝜕𝐯

𝜕𝑡
≈

𝟑𝐯 𝑡 + ∆𝑡 − 4𝐯 𝑡 + 𝐯 𝑡 − ∆𝑡 

2∆𝑡
                                                      (35) 
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This schema with two time steps, requires a starting procedure, we set 𝐯 −1 = 𝐯(0) when the time 𝑡 = 0, 

which corresponds to the implicit Euler scheme with the time step 
2

3
∆𝑡. 

 

III.3. Choice of the element 

To solve the viscous compressible flow equations, the triangular element is best adapted. 

Geometrically, this element provides great flexibility to model the contours of complex geometric shapes. 

Numerically, the choice of this element imposes conditions on the degree of the interpolation functions. To 

solve this problem, we have chosen a triangular element for which the components of velocity and momentum 

per unit volume are approximated by continuous polynomials of the second degree, while the other variables are 

approximated by continuous linear polynomials. This choice of mixed polynomial approximations makes it 

possible to verify the stability of the element, and to satisfy the "Inf-Sup" condition [25, 26]. 

 

III.4. Method of resolution 

The matrix system obtained after the space and time discretization is given by: 
 

 𝐌   𝐘,𝑡 +   𝐊(𝐘)   𝐘 =  {𝐅}                                                               (36) 
 

where  𝐌  is the total mass matrix,  𝐊(𝐘)  is the global stiffness matrix,  𝐘  is the global vector of unknown 

variables, and {𝐅} is the global source vector. The matrix system contains several types of nonlinearities. 

Nonlinearities that represent the effects of viscosity and compressibility. The additional nonlinearities, if we use 

the Petrov-Galerkin method of stabilization. Thus, the matrix which results from the system is a hollow, non-

linear, non-symmetric and large matrix. This therefore encourages the use of a robust iterative resolution 

method. In this work we use the Generalized Minimal RESidual (GMRES) iteration method [27, 28, 35]. We 

conclude that this method is robust, and is specially adapted for solving nonlinear problems. 

 

IV. Numerical simulations 
IV.1. Flows around the profile NACA0012 

Transonic flow around the NACA0012 profile presenting various difficulties has been resolved using the 

stabilization methods described previously. The characteristics of these flows vary between 500 and 100 000 

for the Reynolds number with a Mach number equal to 0, 85. The NACA0012 profile is symmetrical and the 

coordinates of the upper surface are given by: 
 

𝑦 𝑥 = 5𝑡 0,2969𝑥1/2 − 0,126𝑥 − 0,3516𝑥2 + 0,2848𝑥3 − 0,1015𝑥4  
 

where 𝑥 is the distance along the chord from the leading edge (𝑥 = 0), 𝑦 is the ordinate on the intrados and 𝑡 

(=  0,12) is the relative thickness of the profile. The mesh used is composed of 8 150 triangular elements. This 

mesh is refined around the profile, in areas of circulation, in areas of wake and in the areas of the leading edge. 

Figures 1 shows the geometry of the profile and the flow domain (Figure 1a), the mesh (Figure 1b) with an 

enlargement around the profile (Figure 1c). 
 

 

 
 

a) Geometry - flow domain b) Mesh c) zoom around the profile 

Figure 1: Geometry of the NACA0012 profile and mesh 
 

At upstream infinity Γ𝑖𝑛, the boundary conditions are of Dirichlet type: 
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𝑀𝑎∞ = 0,85

𝜌 = 𝜌
∞

𝑈1 = 𝑈∞

𝑈2 = 0,0

𝐸 = 𝐸∞

           or          

 
 
 

 
 
𝑀𝑎∞ = 0,85

𝑝 = 𝑝
∞

𝑈1 = 𝑈∞

𝑈2 = 0,0

𝑇 = 𝑇∞

  

At downstream infinity Γ𝑜𝑢𝑡, one imposes a boundary condition of Dirichlet: either 𝑝 = 𝑝∞ , or 𝜌 = 𝜌∞  

dependently of the type of formulation, and the condition (𝜎 ∙ 𝑛)
1

= 0. On the wall of the profile Γ𝑤, one 

imposes the condition of adherence 𝐔 = 0. The initial solution used is a uniform field, except for the wall of the 

profile where the condition is imposed 𝐔 = 0. For both types of independent variables, three types of flows are 

solved under the same conditions. 

 

Flow 1:  𝑅𝑒 = 10 000,  𝑀𝑎 = 0,85 

We are in the presence of a weakly turbulent and relatively complex flow. To perform this simulation, the 

Petrov-Galerkin method is used at the beginning of the resolution. The Reynolds number was increased 

gradually, by interval of 200. This resolution strategy was exactly applied in the same way for the two types of 

forms: the conservative form in conservative variables and the conservative form in pseudo-primitive variables. 

The Mach number contour, density contour and velocity field are shown in figure 2 for the conservative form in 

conservative variables and in figure 3 for the conservative form in pseudo-primitive variables. 
 

   

a) Mach number contour b) Density contour c) Velocity field 

Figure 2: Conservative form in conservative variables  𝑹𝒆 = 𝟏𝟎 𝟎𝟎𝟎 
 

  
 

a) Mach number contour b) Density contour c) Velocity field 

Figure 3: Conservative form in pseudo-primitive variables  𝑹𝒆 = 𝟏𝟎 𝟎𝟎𝟎 
 

In particular, we observe the impact effect of the shock, which is formed around 70% of the chord of the profile but 

undergoes a pulsation of the boundary layer. The pulsation effect is particularly visible on curves 𝐶𝑝 , figure 4. 
 

 
Figure 4: Pressure coefficient 

 

Note also the presence of supersonic pockets in the wake. At a given time step, on the velocity fields (figures 2c 

and 3c), we distinguish well the stall of vortices. 

 

Flow 2 :  𝑅𝑒 =  50 000,     𝑀𝑎 =  0.85 
The purpose of these simulations is to compare the two types of variables. In order to observe the evolution of the 

simulations, the final result is obtained following a progressive increase of the Reynolds number. The Mach number 

contour, density contour and velocity field are presented in figure 5 for the conservative form in conservative 

variables and in the figure 6 for the conservative form in pseudo-primitive variables. 
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a) Mach contour b) Density contour c) Velocity field 

Figure 5: Conservative form in conservative variables   𝑹𝒆 = 𝟓𝟎 𝟎𝟎𝟎 
 

   

a) Mach contour b) Density contour c) Velocity field 

Figure 6: Conservative form in pseudo-primitive variables    𝑹𝒆 = 𝟓𝟎 𝟎𝟎𝟎 
 

From these results, we note that: 

- The physical phenomena observed in the case of the preceding simulations (𝑅𝑒 =  10 000) are more apparent 

and better defined for the two types of variables. 

- The phenomenon of shift of the shock wave and the stationary state of the flow. 

- The movement of the shock downstream, an elevation of the Mach number in the supersonic zone and the 

presence of supersonic zones in the wake. 

- The phenomenon of stalling alternating swirls with unsteady wake are more apparent on the velocity fields, if 

one makes a comparison with the case of the previous simulations (𝑅𝑒 =  10 000). 

For these simulations, there are really no differences between the two types of variables; but a 

particular attention on the quality of the results allows us to conclude that the conservative form in pseudo-

primitive variables always gives better solutions. 

 

Flow 3:   𝑅𝑒 = 100 000,   𝑀𝑎 = 0,85 

Keeping the same resolution strategy as the case of previous simulations, i.e. we gradually increase the 

Reynolds number up to 100 000. At this value of the Reynolds number, we notice that the numerical solution 

becomes unstable and the results are generally not favorable. For both types of variables, conservative and 

pseudo-primitive variables, the Mach number contour, density contour and velocity field are shown in Figures 8 

and 9. We note the presence of strong oscillations and a deterioration of the Mach number contour. In order to 

improve the numerical results, it would be better to refine the mesh, or even to use a model of turbulence. 
 

   

a) Mach number contour b) Density contour c) velocity field 

Figure 8: Conservative form in conservative variables    𝑹𝒆 = 𝟏𝟎𝟎 𝟎𝟎𝟎 
 

  
 

a) Mach number contour b) Density contour c) velocity field 

Figure 9: Conservative form in pseudo-primitive variables 𝑹𝒆 = 𝟏𝟎𝟎 𝟎𝟎𝟎 
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IV.2. Supersonic flow on a flat plate 

These simulations show a supersonic flow, at Mach 3, along a flat plate. The computation domain is a rectangle 

of length 1,6 on the 𝑥 − 𝑎𝑥𝑖𝑠 and width 1 on the 𝑦 − 𝑎𝑥𝑖𝑠. The numerical solutions are obtained on a structured 

mesh, composed of 2 560 triangular elements and 5 265 nodes, illustrated in figure 10. 
 

 
Figure 10: Geometry - Computation domain 

 

At the inlet of the flow [AD] and at the upper boundary of the domain [DE], all the variables are fixed 

at their values at infinity. At the exit of the domain, border] EC [, all the variables are left free. On the boundary 

of the domain] AB [, we impose the horizontal component of the momentum per unit of volume at zero, 𝐔2 =
0. On the flat plate, boundary of the domain [BC], one imposes the condition of adhesion 𝐔 = 0 and the 

condition of adiabaticity through the temperature: 

𝑇 = 𝑇𝑠𝑡𝑎𝑔 = 𝑇∞  1 +
𝛾 − 1

2
𝑀∞

2   

 

The initial solution used is a uniform field, except on the plane plate [BC] where the normal and 

tangential components of the momentum per unit volume are imposed equal to zero. The resolution strategy is 

to set the Reynolds number to 1 000 and then 10 000 and the Mach number to 3, using the Petrov-Galerkin 

method from the beginning. The step in time is performed with local time steps, 𝐶𝐹𝐿 =  0,5. As expected, 

under these physical and numerical conditions, the numerical results clearly show the presence of the boundary 

layer and oblique shock. These physical phenomena are clearly visible on the density contour, the Mach number 

contour and the pressure contour, for both formulations. The contours are shown in figures 11 and 12 for the 

Reynolds number equal to 1 000 and in figures 13 and 14 for the Reynolds number equal to 10 000. For 

numerical simulations with Reynolds number equal to 1000, the conservative form in pseudo-primitive variables 

gives a better quality solution, it presents less oscillations. In figure 15, the pressure coefficient is compared 

with that obtained by [28] using a finite element method and entropy variables. 
 

   

a) Density contour b) Mach number contour c) Pressure contour 

Figure 11: Conservative form in conservative variables   𝑹𝒆 = 𝟏 𝟎𝟎𝟎,   𝑴𝒂 = 𝟑 
 

   

a) Density contour b) Mach number contour c) Pressure contour 

Figure 12: Conservative form in pseudo-primitive variables    𝑹𝒆 = 𝟏 𝟎𝟎𝟎,   𝑴𝒂 = 𝟑 
 

For numerical simulations with Reynolds number equal to 10,000, conservative form in conservative variables 

shows remarkable oscillations, especially for Mach number contour; which is not the case for the conservative 

form in pseudo-primitive variables. In figure 15b, the pressure coefficients for both forms are illustrated for the 

Reynolds number equal to 10 000. 
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a) Density contour b) Density contour c) Pressure contour 

Figure 13: conservative form in conservative variables   𝑹𝒆 = 𝟏𝟎 𝟎𝟎𝟎,   𝑴𝒂 = 𝟑 
 

   

a) Density contour b) Density contour c) Pressure contour 

Figure 14: conservative form in pseudo-primitive variables   𝑹𝒆 = 𝟏𝟎 𝟎𝟎𝟎,   𝑴𝒂 = 𝟑 
 

  

a) 𝑅𝑒 = 1 000 a) 𝑅𝑒 = 10 000 

Figure 15: Pressure coefficients 

 

V. Conclusion 
We have developed a finite element method for the simulation of viscous compressible flows. The 

equations, which describe these viscous compressible flows of a perfect and Newtonian fluid, are written in 

conservative form. From the study of the physical and numerical behaviour of the two types of independent 

variables, we conclude that: the numerical results obtained by the pseudo-primitive variables are of a better 

quality compared to the numerical results obtained by the conservative variables. In addition, the use of pseudo-

primitive variables makes it easy to apply physical boundary conditions. An identical approximation for all 

variables reveals oscillations in the fields of density and pressure. This problem of instability has been solved by 

the choice of triangular elements, for which: the components of velocity and momentum per unit of volume are 

approximated by continuous polynomials of the second degree, whereas the other variables are approximated by 

continuous linear polynomials. This choice of mixed polynomial approximations satisfies the stability condition 

"Inf-Sup". Spatial discretization by the finite element method with Galerkin-type weighting leads to nonphysical 

oscillations, when advection dominates. In order to obtain stable results, a variant of the Petrov-Galerkin method 

has been developed and used successfully. The success of such a method is based on the constitution of the 

stabilization matrix. We proposed a definition of the stabilization matrix for the conservative form in 

conservative variables. Starting from this definition, we have derived a general form of this matrix for all types 

of independent variables. The matrix system obtained, after the spatial and temporal discretization, comprises 

several types of nonlinearities. To solve this matrix system, we successfully used a variant of the iterative 

algorithm GMRES with diagonal pre-conditioning. Diagonal pre-conditioning is simple and effective. The 

numerical methods and techniques developed have been successfully validated on several situations of 

compressible viscous flows. 
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