Investigation of Bend Characterices of Reinforcing Steel Used In the Nigerian Construction Industries

¹ENGR. (DR) I.E Umeonyiagu^{*}, ²ENGR. Ikhazuagbe .O

¹Civil Enginerring Technology Department, Anambra State University ²Civil Enginerring Technology Department, Auchi Polytechnic, Auchi Edo State. Corresponding Author: ENGR. (DR) I.E Umeonyiagu

Abstract: This paper examines the mechanical properties of the reinforcing steel bars used in the Nigerian Construction Industry. Tensile test were conducted to ascertain the tensile characteristics of the steel bars with regards to their level of conformity to the BS 4449: 1997 provisions. Four hundred and eighteen samples of bars from fourteen steel producing companies were used in the experiment and seven hundred and sixty test results obtained. It was found that eighty five percent of the samples tested fell short of BS 4449: 1997 provision. The research draws the attention of the regulatory bodies to the quality of reinforcing steel bars in the market. The study finally recommends that all imported reinforcing steel bars should be checked for quality compliance with an accredited certificate before entering into the country

Keywords: Steel bar, Tensile tests, BS4449:1975, Mechanical properties, Percentage elongation) Chukwudi, B.C and Onyeka, J.O.

Date of Submission: 25-07-2017

Date of acceptance: 17-08-2017

I. Introduction

Steel is an important solid substance needed by people to meet their needs and desires. It is part of everyday operations, in urban development, rural development, the developed and developing countries. It is extensively used in automobiles and railroads, small housing to large multi-family dwellings, construction industries, delivering energy such as electricity and natural gas, and supplying water through pumps and pipelines. Steel is an iron-based material containing low amounts of carbon and alloying elements that can be made into thousands of compositions with exacting properties to meet a wide range of needs. Between twentyfour to twenty-six different elements are used in various proportions and combinations in the manufacture of both carbon and low alloy structural steels. However, all finished steel bars for reinforced work are ensured sound, free from cracks, neatly rolled to the dimension and weight as specified. Several studies have been carried out on improving the mechanical properties of steel. Arum, C. (2007) did a study on methods to classify defects such as cracks, dark spots, and sharp marks, of steel Bar Coil (BIC) with cylindrical shape. Each of these defects was qualified serious, and could harm the quality of the product relatively. Amir and Morteza (2013) did a study and presented comparative experimental data on the mechanical properties of reinforcing steel rods. The URW1050 steel fibres and HPP45 synthetic fibres, both with the same concrete design mix, were used to make cube specimens for compression tests, cylinders for tensile split tests and beam specimens for flexural tests. The experimental data demonstrated the steel fibre reinforced concrete is stronger in flexure at early stages, while both fibre reinforced concrete types displayed comparatively the same performance in compression, tensile splitting and 28-day flexural strength. In terms of post-crack control, HPP45 was found to be preferable. This work is a comparative study of the mechanical properties such as yield strength, ultimate tensile strength, percentage elongation and hardness, of locally made steel bars from scraps and imported steel bars. These properties are then compared to the values provided by the BS code to ascertain the level of conformity.

II. Literature Review

2.1 Requirements for Reinforcing Steel

The UK Certification Authority for Reinforcing Steels, Part one 1999 has prescribed that satisfactory reinforcing steel must be able to:-

- 1. Be bent into shape with precision to fit complicated structures.
- 2. Possess a minimum strength to discharge its load bearing function.
- 3. Possess ductility to satisfy formability requirements to be bent into the designed shape and also sufficient ductility to provide progressive failure under certain conditions.
- 4. Possess good weldability in part, for site fabrications and in part to minimize damage. For many structures of particular design, possess good fatigue properties.

5. Possess good bond properties.

2.2 Mechanical Properties of Reinforcing Bars

According to the BS 4449 (1997), the main mechanical properties of reinforcing steel bars are shown in table 1.0

	Grade	Yield Strength N/mm2	Tensile Yield Ratio	Elongation at fracture %	Total elongation at
		-		-	Maximum Force %
	250	250	1.15	22	-
	460A	460	1.05	12	2.5
	460B	460	1.08	14	5
a	DCII	10 (1007)			

Table 2.1	Tensile P	roperties	of Reinford	ing Bars
I able 2.1	I Chone I	roperties	of itemion	mg Dais

Source: BS4449 (1997)

According to Alabi, A.G.F and Onyeji L.I; (2010), tensile properties indicate how reinforcing steel bar will react when subjected to tensile forces. A tensile test is a fundamental mechanical test where a carefully prepared specimen is loaded in a very controlled manner while measuring the applied load and the elongation of the specimen over some distance. Tensile tests results are used to deduce the modulus of elasticity, elastic limit, elongation, proportional limit, reduction in area, tensile strength, yield point, yield strength amongst various others.

3.1 Samples Collection

Samples were collected from fourteen different sources. Six of the sources were foreign and their actual names were not known, but only the countries of origin were specified. Thus, there were nineteen samples from fourteen different companies including the foreign ones which were considered in the test. The samples of bars collected from different sources are as shown in table 3.1

III. Materials And Method

S/NO	Company/Country	Identification	Diameter Collected
			(mm)
01	Sunflage Steel Company, Lagos, Nigeria.	А	10,12
02	Universal Steel Company, Lagos, Nigeria	В	8, 10
03	Mayor Steel Company, Lagos, Nigeria	С	8, 10, 16
04	Sankyo. Lagos, Nigeria	D	20, 25
05	Nigeria-Spanish. Kano	E	12
06	Katsina Steel Rolling Mill. Katsina. Nigeria	F	12
07	Delta Steel Company Ltd. Warri. Nigeria	G	16
08	Oshogbo Steel Rolling Company Ltd. Oshogbo. Nigeria	Н	12
09	Ukraine. Asia	Ι	8
10	Cote D''ivoire, West Africa.	J	8
11	Russia, Asia	K	12
12	Brazil, South America.	М	10
13	Holland, Europe.	N	16
14	Unknown-Foreign Source	0	10

 Table 3.1 Steel Reinforcing Bar Samples Collection and Identification

3.2 Sample Labelling

The fourteen companies from which samples were collected have been labelled in an alphabetical order such as A, B, C, D, E, F, G, H, I, J, K, M, N and O for identification purposes (Table 3.1)

3.3 Sample Preparation

For the tension test, ten samples were tested for each diameter and consists a length of five hundred millimetres (500mm) each. The sample diameter was measured in three places and the average was taken as the sample diameter. The results are as shown in Table 3.2. The tests were done in accordance with BS 4449: 1997, clause 1.9 and BS 4449 (1969) clause 15.

3.4 Basic Equations

The basic equations used in this research are
Effective cross sectional area Aeff = M/ 0.0785 (i)
Alternatively, Area =
$$\frac{\pi d^2}{4}$$
 (ii)
Yield Stress = $\frac{Yield Load}{Cross-Sectional Area}$ (N/mm²) (iii)
Ultimate Stress = $\frac{Ultimate Load}{Cross-Sectional Area}$ (N/mm²) (iv)

(v)

Ultimate/Yield Ratio = $\frac{Ultimate Stress}{Yield Stress}$ (N/mm²) Characteristic strength: $f_c = f_m$ - 1.64 ð Average Mean Strength $(F_m) = \frac{\sum Yield Strss}{Number of Specimen(N)}$ (vi) Stress = $\frac{Load}{Area}$ (vii) Stress = $\frac{1}{Area}$ (vii) Design strength = $\frac{Characteristics strength fc}{Partial factor of safety ym}$ (viii) Average Elongation= $\frac{\sum Elongation}{Nunber of Specimen(N)}$ (ix) Percentage Elongation (e_f) = $\frac{L_{f-L_0}}{L_0} \times 100$ (x) Average Ultimate strength = $\frac{\sum Ultimate Stress}{\sum N}$ Standard deviation (δ) = $\sqrt{\frac{\sum fd^2}{\sum f}}$ (xi)

Table 3.2 Measured Diameters and Cross Sectional Areas for Samples

S/NO	Mark	Market Assumed	Average Measured	Average Mass	Average Cross-Sectional Area
		Diameter (mm)	Diameter (mm)	(kg)	(mm2)
01	A ₁₂ T	12.00	11.88	0.338	86.14
02	A ₁₀ T	10.00	9.65	0.282	71.96
03	B ₁₀ T	10.00	9.65	0.279	70.98
04	B ₈ T	8.00	7.44	0.189	48.37
05	C ₁₆ T	16.00	15.82	0.629	160.14
06	C ₁₀ T	10.00	9.55	0.284	72.42
07	E ₂₅ T	25.00	24.56	1.244	316.93
08	E ₂₀ T	20.00	19.57	1.103	281.13
09	F ₁₂ T	12.00	11.40	0.349	88.84
10	G ₁₂ T	12.00	11.48	0.334	85.17
11	H ₁₆ T	16.00	15.52	0.376	95.77
12	I ₁₂ T	12.00	11.40	0.343	87.47
13	K ₁₀ T	10.00	9.36	0.276	70.12
14	L ₁₂ T	12.00	11.82	0.430	110.30
15	M ₁₀ T	10.00	9.23	0.282	71.71
16	N ₁₆ T	16.00	15.60	0.829	211.28

4.1 Bend Test

The bend test was carried out to prescriptions and in accordance to the BS 4449:1997 provisions.

	Table 4.1 Twelve Millimetre Diameter Bars from Company A (Sample 1-10)								
S/No.	Identification Number	Bar Size (mm)	Former Diameter	Observations After	Remarks				
				Test					
01	$A_{12}B_1$	12.0	39.0	No Cracks	Ok				
02	$A_{12}B_2$	12.0	39.0	No Cracks	Ok				
03	$A_{12}B_3$	12.0	39.0	No Cracks	Ok				
04	$A_{12}B_4$	12.0	39.0	No Cracks	Ok				
05	$A_{12}B_5$	12.0	39.0	No Cracks	Ok				
06	$A_{12}B_6$	12.0	39.0	No Cracks	Ok				
07	$A_{12}B_7$	12.0	39.0	No Cracks	Ok				
08	$A_{12}B_8$	12.0	39.0	No Cracks	Ok				
09	$A_{12}B_{9}$	12.0	39.0	No Cracks	Ok				
10	$A_{12}B_{10}$	12.0	39.0	No Cracks	Ok				

IV. Results And Discussions

In the entire specimen tested for 12mm and gauge diameter of 39mm, no cracks were observed.

Table 4.2 Ten Millimetre	Diameter Bars	from Compar	y A (Sample 1-10))
--------------------------	---------------	-------------	-------------------	---

S/No.	Identification Number	Bar Size (mm)	Former Diameter	Observations After Test	Remarks
01	$A_{10}B_{1}$	10.0	33.0	No Cracks	Ok
02	$A_{10}B_2$	10.0	33.0	No Cracks	Ok
03	A ₁₀ B ₃	10.0	33.0	No Cracks	Ok
04	$A_{10}B_4$	10.0	33.0	No Cracks	Ok
05	A ₁₀ B ₅	10.0	33.0	No Cracks	Ok
06	$A_{10}B_{6}$	10.0	33.0	No Cracks	Ok

DOI: 10.9790/1684-1404062330

07	$A_{10}B_7$	10.0	33.0	No Cracks	Ok
08	$A_{10}B_{8}$	10.0	33.0	No Cracks	Ok
09	$A_{10}B_{9}$	10.0	33.0	No Cracks	Ok
10	$A_{10}B_{10}$	10.0	33.0	No Cracks	Ok

In the entire specimen tested for 10mm and gauge diameter of 33mm, no cracks were observed

Table 4.3 Ten Millin	netre Diameter Bar	rs from Company E	(Sample 1-10)

S/No.	Identification Number	Bar Size (mm)	Former Diameter	Observations After Test	Remarks
01	D D	10.0	22.0		
01	$B_{10}B_1$	10.0	33.0	No Cracks	Ok
02	$B_{10}B_2$	10.0	33.0	No Cracks	Ok
03	$B_{10}B_{3}$	10.0	33.0	No Cracks	Ok
04	$B_{10}B_{4}$	10.0	33.0	No Cracks	Ok
05	$B_{10}B_{5}$	10.0	33.0	No Cracks	Ok
06	$B_{10}B_{6}$	10.0	33.0	No Cracks	Ok
07	$B_{10}B_{7}$	10.0	33.0	No Cracks	Ok
08	$B_{10}B_{8}$	10.0	33.0	No Cracks	Ok
09	$B_{10}B_{9}$	10.0	33.0	No Cracks	Ok
10	$B_{10}B_{10}$	10.0	33.0	No Cracks	Ok

In the entire specimen tested for 10mm and gauge diameter of 33mm, no cracks were observed

Table 4.4 Sixteen Millimetre Diameter Bars from Company C (Sample 1-10)

S/No.	Identification Number	Bar Size (mm)	Former Diameter	Observations After Test	Remarks
01	C ₁₆ B ₁	16.0	51.0	Total Breakage	Not Ok
02	C ₁₆ B ₂	16.0	51.0	Total Breakage	Not Ok
03	C ₁₆ B ₃	16.0	51.0	Total Breakage	Not Ok
04	$C_{16}B_4$	16.0	51.0	Total Breakage	Not Ok
05	C ₁₆ B ₅	16.0	51.0	Total Breakage	Not Ok
06	C ₁₆ B ₆	16.0	51.0	Total Breakage	Not Ok
07	C ₁₆ B ₇	16.0	51.0	Total Breakage	Not Ok
08	C ₁₆ B ₈	16.0	51.0	Total Breakage	Not Ok
09	C ₁₆ B ₉	16.0	51.0	Total Breakage	Not Ok
10	C ₁₆ B ₁₀	16.0	51.0	Total Breakage	Not Ok

In the entire specimen tested for 16mm and gauge diameter of 51mm, no cracks were observed

Table 4.5 Ten Millimetre Diameter Bars from Company C (Sample 1-10)

S/No.	Identification Number	Bar Size (mm)	Former Diameter	Observations After Test	Remarks
01	C ₁₀ B ₁	10.0	33.0	No Cracks	Ok
02	$C_{10}B_2$	10.0	33.0	No Cracks	Ok
03	$C_{10}B_3$	10.0	33.0	No Cracks	Ok
04	$C_{10}B_4$	10.0	33.0	No Cracks	Ok
05	$C_{10}B_5$	10.0	33.0	No Cracks	Ok
06	$C_{10}B_{6}$	10.0	33.0	No Cracks	Ok
07	$C_{10}B_7$	10.0	33.0	No Cracks	Ok
08	$C_{10}B_8$	10.0	33.0	No Cracks	Ok
09	C ₁₀ B ₉	10.0	33.0	No Cracks	Ok
10	$C_{10}B_{10}$	10.0	33.0	No Cracks	Ok

In the entire specimen tested for 10mm and gauge diameter of 33mm, no cracks were observed

	Table 4.6 Twenty Millimetre Diameter Bars from Company E (Sample 1-10)						
S/No.	Identification Number	Bar Size (mm)	Former	Observations After Test	Remarks		
			Diameter				
01	$E_{25}B_1$	25.0	78.0	No Cracks	Ok		
02	$E_{25}B_2$	25.0	78.0	No Cracks	Ok		
03	$E_{25}B_{3}$	25.0	78.0	No Cracks	Ok		
04	$E_{25}B_4$	25.0	78.0	No Cracks	Ok		
05	$E_{25}B_5$	25.0	78.0	No Cracks	Ok		
06	$E_{25}B_6$	25.0	78.0	No Cracks	Ok		
07	$E_{25}B_{7}$	25.0	78.0	No Cracks	Ok		
08	$E_{25}B_8$	25.0	78.0	No Cracks	Ok		
09	$E_{25}B_{9}$	25.0	78.0	No Cracks	Ok		
10	$E_{25}B_{10}$	25.0	78.0	No Cracks	Ok		

In the entire specimen tested for 25mm and gauge diameter of 78mm, no cracks were observed

	Table 4.7 Twenty Minimeter Diameter Bars from Company E (Sample 1-10)							
S/No.	Identification Number	Bar Size (mm)	Former	Observations After Test	Remarks			
			Diameter					
01	$E_{20}B_1$	20.0	63.0	No Cracks	Ok			
02	$E_{20}B_2$	20.0	63.0	No Cracks	Ok			
03	$E_{20}B_{3}$	20.0	63.0	No Cracks	Ok			
04	$E_{20}B_4$	20.0	63.0	No Cracks	Ok			
05	$E_{20}B_5$	20.0	63.0	No Cracks	Ok			
06	$E_{20}B_6$	20.0	63.0	No Cracks	Ok			
07	$E_{20}B_7$	20.0	63.0	No Cracks	Ok			
08	$E_{20}B_8$	20.0	63.0	No Cracks	Ok			
09	$E_{20}B_{9}$	20.0	63.0	No Cracks	Ok			
10	$E_{20}B_{10}$	20.0	63.0	No Cracks	Ok			

Table 4.7 Twenty Millimetre Diameter Bars from Comp	pany E (Sample 1-10)
Tuble III Twenty winnine de Diameter Dars nom com	Sung E (Sumple 1 10)

In the entire specimen tested for 20mm and gauge diameter of 63mm, no cracks were observed

Table 4.8 Twelve Millimetre Diameter Bars from Company F (Sample 1-10)

S/No.	Identification Number	Bar Size (mm)	Former Diameter	Observations After Test	Remarks
01	$F_{12}B_{1}$	12.0	39.0	No Cracks	Ok
02	$F_{12}B_2$	12.0	39.0	No Cracks	Ok
03	F ₁₂ B ₃	12.0	39.0	No Cracks	Ok
04	$F_{12}B_4$	12.0	39.0	No Cracks	Ok
05	F ₁₂ B ₅	12.0	39.0	No Cracks	Ok
06	F ₁₂ B ₆	12.0	39.0	No Cracks	Ok
07	$F_{12}B_7$	12.0	39.0	No Cracks	Ok
08	F ₁₂ B ₈	12.0	39.0	No Cracks	Ok
09	F ₁₂ B ₉	12.0	39.0	No Cracks	Ok
10	$F_{12}B_{10}$	12.0	39.0	No Cracks	Ok

In the entire specimen tested for 12mm and gauge diameter of 39mm, no cracks were observed

Table 4.9 Twelve Millimetre	Diameter Bars	from Company	H (Sample 1-10)
-----------------------------	---------------	--------------	-----------------

S/No.	Identification Number	Bar Size (mm)	Former Diameter	Observations After Test	Remarks
01	U.D.	12.0	39.0	No Croales	01-
01	$H_{12}B_1$	12.0	39.0	No Cracks	Ok
02	$H_{12}B_1$	12.0	39.0	No Cracks	Ok
03	$H_{12}B_1$	12.0	39.0	No Cracks	Ok
04	$H_{12}B_1$	12.0	39.0	No Cracks	Ok
05	$H_{12}B_1$	12.0	39.0	No Cracks	Ok
06	$H_{12}B_1$	12.0	39.0	No Cracks	Ok
07	$H_{12}B_1$	12.0	39.0	No Cracks	Ok
08	$H_{12}B_1$	12.0	39.0	No Cracks	Ok
09	$H_{12}B_1$	12.0	39.0	No Cracks	Ok
10	$H_{12}B_1$	12.0	39.0	No Cracks	Ok

In the entire specimen tested for 12mm and gauge diameter of 39mm, no cracks were observed

	Table 4.10 Sixteen Winniede Dianeter Dars nom Company 1 (Sample 1 10)						
S/No.	Identification Number	Bar Size (mm)	Former Diameter	Observations After Test	Remarks		
01	I ₁₆ B ₁	16.0	51.0	No Cracks	Ok		
02	$I_{16}B_2$	16.0	51.0	No Cracks	Ok		
03	$I_{16}B_3$	16.0	51.0	No Cracks	Ok		
04	$I_{16}B_4$	16.0	51.0	No Cracks	Ok		
05	$I_{16}B_5$	16.0	51.0	No Cracks	Ok		
06	$I_{16}B_6$	16.0	51.0	No Cracks	Ok		
07	$I_{16}B_7$	16.0	51.0	No Cracks	Ok		
08	$I_{16}B_8$	16.0	51.0	No Cracks	Ok		
09	I ₁₆ B ₉	16.0	51.0	No Cracks	Ok		
10	$I_{16}B_{10}$	16.0	51.0	No Cracks	Ok		

In the entire specimen tested for 16mm and gauge diameter of 51mm, no cracks were observed

S/No.	Identification Number	Bar Size (mm)	Former	Observations After Test	Remarks
5/110.	identification (tumber	Dur bize (min)	Diameter	Cost valors riter rest	rtemarks
01	$J_{12}B_1$	12.0	39.0	No Cracks	Ok
02	$J_{12}B_2$	12.0	39.0	No Cracks	Ok
03	$J_{12}B_3$	12.0	39.0	No Cracks	Ok
04	$J_{12}B_4$	12.0	39.0	No Cracks	Ok
05	$J_{12}B_5$	12.0	39.0	No Cracks	Ok
06	$J_{12}B_6$	12.0	39.0	No Cracks	Ok
07	$J_{12}B_7$	12.0	39.0	No Cracks	Ok
08	$J_{12}B_8$	12.0	39.0	No Cracks	Ok
09	$J_{12}B_9$	12.0	39.0	No Cracks	Ok
10	$J_{12}B_{10}$	12.0	39.0	No Cracks	Ok

 Table 4.11 Twelve Millimetre Diameter Bars from Company J (Sample 1-10)

In the entire specimen tested for 12mm and gauge diameter of 39mm, no cracks were observed

S/No.	Identification Number	Bar Size (mm)	Former	Observations After Test	Remarks
5/110.	Identification (vulloer	Dai Size (iiiii)	Diameter	Observations Arter Test	Remarks
			Diameter		
01	$K_{10}B_1$	10.0	33.0	No Cracks	Ok
02	K ₁₀ B ₂	10.0	33.0	No Cracks	Ok
03	K10B3	10.0	33.0	No Cracks	Ok
04	$K_{10}B_{4}$	10.0	33.0	No Cracks	Ok
05	K10B5	10.0	33.0	No Cracks	Ok
06	$K_{10}B_{6}$	10.0	33.0	No Cracks	Ok
07	$K_{10}B_{7}$	10.0	33.0	No Cracks	Ok
08	$K_{10}B_{8}$	10.0	33.0	No Cracks	Ok
09	$K_{10}B_{9}$	10.0	33.0	No Cracks	Ok
10	$K_{10}B_{10}$	10.0	33.0	No Cracks	Ok

In the entire specimen tested for 10mm and gauge diameter of 33mm, no cracks were observed

Table 4.13 Ten Millimetre Diameter Bars from	Company M (Sample 1-10)
--	-------------------------

S/No.	Identification Number	Bar Size (mm)	Former Diameter	Observations After Test	Remarks
01	$M_{10}B_1$	10.0	33.0	No Cracks	Ok
02	$M_{10}B_2$	10.0	33.0	No Cracks	Ok
03	$M_{10}B_3$	10.0	33.0	No Cracks	Ok
04	$M_{10}B_4$	10.0	33.0	No Cracks	Ok
05	$M_{10}B_5$	10.0	33.0	No Cracks	Ok
06	$M_{10}B_{6}$	10.0	33.0	No Cracks	Ok
07	$M_{10}B_7$	10.0	33.0	No Cracks	Ok
08	$M_{10}B_8$	10.0	33.0	No Cracks	Ok
09	M ₁₀ B ₉	10.0	33.0	No Cracks	Ok
10	M ₁₀ B ₁₀	10.0	33.0	No Cracks	Ok

In the entire specimen tested for 10mm and gauge diameter of 33mm, no cracks were observed

Table 4.14 Sixteen N	/lillimetre Diamete	r Bars from	Company	N (Sample 1-10)

S/No.	Identification Number		Former	Observations After Test	Remarks
5/1NO.	Identification Number	Bar Size (mm)		Observations After Test	Remarks
			Diameter		
01	$N_{16}B_1$	16.0	51.0	No Cracks	Ok
02	$N_{16}B_2$	16.0	51.0	No Cracks	Ok
03	N ₁₆ B ₃	16.0	51.0	No Cracks	Ok
04	$N_{16}B_4$	16.0	51.0	No Cracks	Ok
05	N ₁₆ B ₅	16.0	51.0	No Cracks	Ok
06	$N_{16}B_6$	16.0	51.0	No Cracks	Ok
07	N ₁₆ B ₇	16.0	51.0	No Cracks	Ok
08	$N_{16}B_8$	16.0	51.0	No Cracks	Ok
09	$N_{16}B_{9}$	16.0	51.0	No Cracks	Ok
10	$N_{16}B_{10}$	16.0	51.0	No Cracks	Ok

In the entire specimen tested for 16mm and gauge diameter of 51mm, no cracks were observed

Table 4.15: Bend Test Results for Fourteen Companies						
S/No	Identification No.	Bar Size (mm)	Former Diameter	Observations	Remarks	
1.	A ₁₂ B	12.0	39.0	No Cracks	Satisfactory	
2.	A ₁₀ B	10.0	33.0	No Cracks	Satisfactory	
3.	$B_{10}B$	10.0	33.0	No Cracks	Satisfactory	
4.	C ₁₆ B	16.0	51.0	Total Breakage	Satisfactory	
5.	C ₁₀ B	10.0	33.0	No Cracks	Satisfactory	
6.	C ₁₂ B	12.0	33.0	No Cracks	Satisfactory	
7.	$E_{25}B$	25.0	78.0	No Cracks	Satisfactory	
8.	E ₂₀ B	20.0	63.0	No Cracks	Satisfactory	
9.	F ₁₂ B	12.0	39.0	No Cracks	Satisfactory	
10.	G ₁₂ B	12.0	39.0	No Cracks	Satisfactory	
11.	H ₁₆ B	16.0	51.0	No Cracks	Satisfactory	
12.	$I_{12}B$	12.0	39.0	No Cracks	Satisfactory	
13.	K10B	10.0	33.0	No Cracks	Satisfactory	
14.	$L_{12}B$	12.0	39.0	No Cracks	Satisfactory	
15.	$M_{10}B$	10.0	33.0	No Cracks	Satisfactory	
16.	N ₁₆ B	16.0	51.0	No Cracks	Satisfactory	

Fifteen out of the sixteen samples have passed the bend test, as neither micro cracks was observed, nor any form of unacceptable deformation. However, the ten specimens constituting sample $C_{16}B$ as reflected in table 4.15 did not complied with the codes requirement.

S/No	Mark	Source	Percentage Elongation	Bend Test	Remarks
1.	A ₁₂ T	Local	T	Т	Not Satisfactory
2.	A ₁₀ T	Local	Х	Т	Not Satisfactory
3.	$B_{10}T$	Local	Т	Т	Not Satisfactory
4.	C ₁₆ T	Local	Х	Т	Not Satisfactory
5.	C ₁₀ T	Local	Т	Т	Not Satisfactory
6.	E ₂₅ T	Local	Т	Т	Not Satisfactory
7.	E ₂₀ T	Local	Т	Т	Not Satisfactory
8.	F ₁₂ T	Local	Т	Т	Not Satisfactory
9.	G ₁₂ T	Local	Т	Т	Not Satisfactory
10.	H ₁₆ T	Local	Т	Т	Not Satisfactory
11.	I ₁₂ T	Local	Т	Т	Not Satisfactory
12.	K ₁₀ T	Foreign	Х	Т	Not Satisfactory
13.	L ₁₂ T	Foreign	Т	Т	Not Satisfactory
14.	M ₁₀ T	Foreign	Т	Т	Not Satisfactory
15.	N ₁₆ T	Foreign	Х	Т	Not Satisfactory

Table 4.16: Testing of Selected Tensile and Bend Test Parameters

Legend: T=>Within Code Provision: X=> Outside Code Provision: *=>No Trace of the Element

Nine companies out of eleven local company bars are within the range of code provision,, while two companies' bars are outside code provision in percentage elongation. Three companies out of five foreign company bars are within the range of code provision, while two companies bar are outside code provision in percentage elongation.

V. Conclusion And Recommendations

5.1 Conclusion

Based on the results of the tests conducted, the following conclusions were made.

- 1. Most of the bars could not comply with the rolling deviations over and under nominal mass as provided by BS 4449:1969, 1995 and 1997 respectively.
- 2. The characteristic strength values for 92% of the locally produced bar samples are low, compared to the BS 4449:1969, 1995 and 1997 standards for high tensile steel which is 460N/mm² minimum value.
- 3. The characteristic strength values in respect of the local bars suggest similarities to that of mild steel as determined by the tensile test. This implies that products are actually mild steel rolled and openly sold as high tensile steel after rethreading.
- 4. 95 % of the reinforcement bar samples complied with the minimum ultimate to yield strength ratio as specified by BS 4449, (1969) and (1997) code provisions.
- 5. The percentage elongation values for the locally produced bar samples are within acceptable code limits of 92%.
- 6. The percentage elongation values for 67 % of the foreign bar samples are below 33% of the minimum standard provisions.

5.2 Recommendations

- On the basis of the findings of this study, the following recommendations are made:
- 1. There is a need to develop a local standard which will give clear guidelines based on characteristics strength, bend tests, elongation and percentage elemental compositions as determined in the laboratory for applications in structural design.
- 2. There should be technical information on all steel reinforcement sold in the open markets so as to guide the designers on their strength and deformation characteristics.
- 3. Regulatory authorities such as the Standards Organisation of Nigeria, Council for the Regulation of Engineering in Nigeria and tertiary institutions should strengthen their collaborations on ensuring quality standards through materials testing.
- 4. Steel rolling mills in the country should be compelled to make their quality testing facilities available to regulatory and other quality enforcement agencies for periodic inspection and compliance.
- 5. All imported reinforcement steel must be checked for quality compliance prior to accepting such consignment into the country and such must be accompanied with an accredited certification.

References

- [1] Alabi, A.G.F and Onyeji L.I; (2010) Analysis and Comparative Assessment of Locally Produced reinforcing steel bars for structural purposes; USEP Journal of Research Information in Civil Engineering, vol. 7, no 2, 2010, p. 7
- [2] American Society for Testing of Materials (2003): AASHTO No. M 31"Standard Specifications for Deformed and Plain Billet Steel Bars for Concrete Reinforcement":A615/A615M- 03a
- [3] Amstead, B.H. (1987) Manufacturing process. John Wiley and Sons Inc. Toronto,
- [4] Arum, C. (2008): "Verification of Properties of Concrete Reinforcement Bars:- Nigerian Case Study" Published by : http://de.sagepub.com PP.370-376
- [5] Ayodele, E.O (2009): Collapse of Buildings in Nigeria Roles of reinforcement; Continental Journal of Environmental sciences, vol. 3, Wilolud online journals, pp 1–6.
- [6] Bhupinder S. and Kaushik S.K. (2002): "Influence of Steel making Process on the Properties Reinforcement" Indian Concrete Journal: pp. 407-412
- [7] British Standards Institutions BS 4449(1997)- "Carbon Steel Bars for the Reinforcement of concrete" London. Pp.1-17
- [8] British Standards Institution BS4482(1985)" Cold Reduced Steel Wire for the Reinforcement of Concrete" pp. 1-26
- [9] Charles K.K. and Mark A (2002) "Strength & Ductility Characteristics of Reinforcing Steel Bar milled from Scrap Metals"-Materials and Design 23 pp.537-545
- [10] Certification Authority for Reinforcement Steels (1984-1995) (UK CARES Vol 1 10)
- [11] Chukwudi, B.C and Onyeka, J.O (2010): Assessment of the Quality of steel rods available in Onitsha market; In view of the Role of poor quality rods in Building failures in Nigeria; Pacific Journal of science and technology, vol. 11, no 1, p 55
- [12] COREN (2011) Engineering Regulation and Monitoring Report (Kano Zonal Inspectorate), Pp 1 6.
- [13] Ejeh, S.P and Jibrin, M.U (2012): Tensile tests on Reinforcing steel bars in the Nigerian Construction Industry; IOSR Journal of Mechanical and civil Engineering (IOSR – JMCE), vol. 4, no 2 2012, pp. 06 -12. Obtainable at http://www.iosrjournals.org
- [14] Firoze, P.E. "Attributes of Ductile Reinforcing Steel"-PDF extracts from internet -m.firoze@bsm.com. Pp.18-20

ENGR. (DR) I.E Umeonyiagu. "Investigation of Bend Characterices of Reinforcing Steel Used In the Nigerian Construction Industries." IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), vol. 14, no. 4, 2017, pp. 23–30.