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Abstract: In this paper a new approach for Artificial Neural Networking using Feed Forward Back 

Propagation Method and Levenberg-Marquardt backpropagation training function has been developed using 

Java Programming, where by directly feeding the RMS and Phase values of vibration, the unbalance plane can 

be detected with minimum error. In a Machine Fault Simulator RMS value and phase values of vibrations are 

collected from the four accelerometers placed in X and Y direction of Left and Right Bearings .Further these 

data are fed into the neural network for training purpose. In the testing phase of the neural network, the plane 

of vibration has been determined using different training algorithms available in MATLAB. Their prediction 

values have been compared with the actual value, errors for different training algorithms are calculated and a 

conclusion has been drawn for the best training function available for this current research work. 

Keywords: Condition monitoring, Rotating Equipment, Vibration Analysis, Artificial Neural Networking, 

MATLAB 

 

I. Introduction 

In the past few years, the machine condition monitoring has gained much importance in the field of 

engineering and maintenance. Rotating machines which vibrates can cause catastrophic failures if not attended 

or maintained properly. Various techniques are available in condition monitoring namely: Vibration Analysis, 

Oil Debris Analysis, Ferrography, Temperature analysis. Among all these techniques, vibration analysis have 

gained much importance in the field of condition monitoring because of its accuracy in detecting faults its 

ability for proper diagnosis of the faults. Vibration-based condition monitoring (VCM) requires vibration 

measurement on each bearing pedestal using a number of vibration transducers and then signals processing for 

all the measured vibration data to identify fault(s). Artificial Neural networking technique has gained a lot of 

importance in the field of predictive maintenance. In the current research work, focus has been given on the 

establishment of procedure for unbalance plane detection based on the minimum error prediction for different 

training algorithms. 

 

II. Literature Review 
Yazhao Qiu (1) presented a fuzzy approach for the analysis of unbalanced nonlinear rotor systems 

involving uncertain parameters. Jiangping Wang (2) investigated the use of basic fuzzy logic principle as a fault 

diagnostic technique for five-plunger pump. Fuzzy logic was used to classify frequency spectra according to the 

likely fault condition which they represent. Javier Sanz (3) in his paper used a combination of the capability of 

wavelet transform (WT) to treat transient signals with the ability of auto-associative neural networks to extract 

features of data sets in an unsupervised mode.Yaguo Lei (4) performed fault diagnosis of rotating machinery 

using statistical analysis, empirical mode decomposition (EMD), adaptive neurofuzzy inference system (ANFIS) 

and genetic algorithms (GAs). Yaguo Lei (5) used statistical analysis method combined with adaptive neuro-

fuzzy inference system (ANFIS) for fault diagnosis.S. Rajakarunakaran (6) considered a centrifugal pumping 

rotary system where the fault detection model was developed by using two different artificial neural network 

approaches which included feed forward network with back propagation algorithm and binary adaptive 

resonance network (ART1).Enrico Zio (7) in his paper developed a Neuro Fuzzy approach for pattern 

classification. J. Rafiee (8) presented a gear fault identification system using genetic algorithm (GA) and 

artificial neural networks (ANNs).Gang Niu (9) proposed a data-fusion strategy where vibration signals were 

collected, trend features were extracted, normalized and sent into neural network for feature-level fusion.Karim 

Salahshoor (10) used distributed pattern of three adaptive Neuro-fuzzy inference system (ANFIS) classifiers for 

an industrial 440 MW power plant steam turbine with once-through Benson Type boiler.Ilyes Khelf (11) 
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accurate identified the defects in rotating machines, using the combination of pattern recognition and non-

destructive testing techniques such as vibration analysis and its indicators.Dimitrios Kateris (12) in his paper 

presented the architecture of a diagnostic system for extended faults in bearings based on neural networks which 

highlighted the combined use of kurtosis and the line integral of the acceleration signal. Unbalance faults were 

identified through a data driven approach applied to a rotor dynamic test rig fitted with multiple discs by R.B. 

Walker (13).The process of automating the localization was achieved by using an artificial neural network 

(ANN). 

 

III. Features Extraction Of Signal: 
The Root Mean Square (RMS) value and the phase value of the vibration for each of the vibration readings 

in X and Y direction for Left and Right bearings has been extracted from vibration signal using the vibration 

analyser. Denoising of the vibration signature has been done using low pass filter where maximum allowable 

frequency was 30 Hertz. Above 30 Hertz, no frequency values were considered for this research. Fig 1 

represents the Time Domain vibration signal and Fig 2 shows the RMS value of vibration which is calculated 

directly using the following formula. 

 

 
Fig 1: Time Domain Vibration Signal                    Fig 2: Features in Time Domain Signal 

 

RMS = 0.707 * peak value of the vibration signal                                                                               Eq - (A) 

The peak value of the signal is obtained directly from the accelerometer attached in X and Y direction of left 

and right bearings. 

 

IV. Basics of Artificial Neural Networking 
A neural network is a massively parallel distributed processor that has a natural tendency for storing 

knowledge and making it available for use. Artificial neural network (ANN) is a type of artificial intelligence, 

which has nonlinear information processing devices, built from interconnected elementary processing devices 

called neurons. Among all kinds of intelligent diagnosis methods, pattern recognition based on an Artificial 

Neural Network (ANN) has been widely used because of its power in self- organizing, unsupervised learning, 

and nonlinear pattern classification .The artificial neuron receives signals analogous to the natural 

electrochemical signals. The way information is processed and intelligence is stored depends on the architecture 

and algorithms of ANN. It is an online algorithm and receives data points one at a time. In this research work 

only one hidden layer has been used. 

 
Fig 3: Typical multilayer feed forward neural network 
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In the Fig 3Ω and λ are the input neurons considered in the input layer. Neuron A, B, and C are the 

hidden neurons in the hidden layer. α and β are the output neurons. δα and δβ are the errors calculated. η is the 

learning rate of the neurons. 

 

 
Fig 4: Flowchart of Artificial Neural Networking 

 

Artificial Neural Networking is a very important tool used for prediction purposes. In this research, the 

ANN module has been developed and executed using JAVA programming code. Fig 4 clearly explains the step 

by step working of Artificial Neural Networking. The input layer consists of the values of unbalance mass (m), 

the eccentricity (e) and the rpm (r) at which the disc is rotating. Only one hidden layer has been considered with 

error as low as 0.0096.Value of η has been kept as low 0.005 for the benefit of better convergence and accurate 

results. After the training of the neural network, the testing of the neural work is done for the determination of 

the unbalance plane. 

4.1 Neural Network Calculations: Codes for calculation has been written in Java language and executed based 

on the network diagram as shown in Fig 3. 

1. Calculate errors of output neurons: 

δα = outα (1 - outα) (Targetα - outα)                                                                                                               Eq-(i) 

δβ = outβ (1 - outβ) (Targetβ - outβ)                                                                                                              Eq-(ii) 

 

δα and δβ are theerrors of the output neurons which are calculated between the current output and the target 

output. 

2. Change output layer weights: 

W
+

Aα = WAα + ηδα outA                                                                                                                                                                                                    Eq-(iii) 

W
+

Aβ = WAβ + ηδβ outA                                                                                                                                                                                                  Eq- (iv) 

W
+

Bα = WBα + ηδαoutB                                                                                                                                                                                                     Eq- (v) 

W
+

Bβ = WBβ + ηδβ outB                                                                                                                                                                                                    Eq-(vi) 

W
+

Cα = WCα + ηδα outC                                                           Eq-(vii) 

W
+

Cβ  = WCβ + ηδβ outC                                                                                              Eq-(viii) 

The output layer weights are calculated as per the equation (iii) to equation (viii). WAα,WAβ  ,WBα  ,WBβ ,WCα , 

WCβ are the weights of the hidden layers. δα and δβ values are obtained from equation (i) and (ii). The learning 

rate η is initially fixed at a very low value of 0.01. 

3. Calculate (back-propagate) hidden layer errors 

δA = outA (1 – outA) (δαWAα + δβWAβ)                                                                                                        Eq-(ix) 

δB = outB (1 – outB) (δαWBα + δβWBβ)                                                                                                         Eq-(x) 

δC = outC (1 – outC) (δαWCα + δβWCβ)                                                                                                        Eq-(xi) 

 

δA , δB  and  δC  are the hidden layer errors which have been calculated using the formulas as mentioned in 

equation (ix) , (x) and (xi). The values of WAα , WBα , WCα , WAβ , WBβ  and WCβ  have been obtained from equation 

(iii) ,(iv), (v), (vi) , (vii) and  (viii) respectively. δα and δβ values are obtained from equation (i) & (ii). 

4. Change hidden layer weights 

W
+

λA = WλA + ηδA inλ                                                                                                                                                                                                   Eq-(xii) 

W
+

ΩA = W
+ 

ΩA + ηδA inΩ                                                                                                                                                                                            Eq-(xiii) 

W
+

λB = WλB + ηδB inλ                                                                                                                                                                                                    Eq-(xiv) 

W
+

ΩB = W
+

ΩB + ηδB inΩ                                                                                                                                                                                             Eq-(xv) 
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W
+

λC = WλC + ηδC inλ                                                                                                                                                                                                 Eq-(xvi) 

W
+

ΩC = W
+

ΩC + ηδC inΩ                                                                                                                                                                                         Eq- (xvii) 

The hidden layer weights are adjusted following the equation (xii), (xiii), (xiv), (xv), (xvi) and (xvii). If the 

calculated error of the output neurons is more than the set (desired) error, the process is repeated as shown in 

Figure 4.  

 

V. Experimental Setup And Procedure Of Data Collection 
Considering the main cause of rotating machine vibration as unbalance, a test rig for experimental 

validation of the model based identification technique was built. Schematic representation of the experimental 

set has been shown in the figures below. 

 

 
Figure 5:Schematic representation of the experimental set up (no fault case) 

 

 
Figure6:Schematic representation of the experimental set up (with unbalance fault) 

 

The experimental verification for the Unbalance Identification of mass on a shaft with single plane and 

two eccentricities has been performed on a Machine Fault Simulator provided at Central mechanical 

Engineering Research Institute (CSIR-CMERI) located at Durgapur. A rigid shaft considered to be massless is 

mounted between two roller bearings. The distance between the two bearings is L1+L2, which is 60cm. This 

shaft is connected to a Variable Frequency Drive (VFD) motor by a flexible coupling. To measure the vibration 

in X-Direction and Y-Direction at the two bearings, four accelerometers are connected; two in each bearing. The 

weight of the disc is 653 gram (M1). The position of the disc is varied in three different locations: (i) 15 cm from 

left bearing (ii) 30cm from left bearing which is the mid position on the shaft (iii) 45 cm from left bearing. 

Initially no unbalance mass was attached in order to get the no fault readings. Three unbalance masses of 8 gram 

(m1), 12 gram (m2) and 16 gram (m3) are attached subsequently to the disc at eccentricities 6.85cm (e1) and 

6.85cm (e2) separately one by one. Then the shaft is rotated at rpm 300, 600, 900, 1200 and 1500; and 

simultaneously the vibration readings (RMS values) and their phase values in x and y-direction at the two 

bearings were noted down. Artificial Neural Networking Techniques with varying training algorithms have been 

used to determine the unbalance plane of vibration.  

 

Mass Unbalance: The unbalance masses used are 8 gram, 12 gram and 16 gram which are shown in the figures 

below. 
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Fig 7                                                                  Fig 8                                                                         Fig 9 

 

Fig 7: Unbalance mass of 8gram attached to the rotating system; Fig 8:  Unbalance mass of 10gram attached to 

the rotating system; Fig 9:  Unbalance mass of 8gram attached to the rotating system 

 

Eccentricity: 

All rotors have some eccentricity. Eccentricity is present when geometrical center of the rotor and the 

mass center do not coincide along their length. In the present case, the disc is considered absolutely balanced 

where the Geometrical Centre of the disc coincides with the Centre of the Gravity of the disc. In the current 

research work eccentricity is the distance between the Geometrical Centre (Centre of rotation) and the points 

where the unbalance mass is to be attached. There are two locations at a distance of 6.85cm from the centre of 

rotation (e1) and at a distance of 4.85cm from the centre of rotation of the disc (e2). 

 
                                 Fig 10: The rotating disc                Fig 11:Schematicrepresentation of rotating disc 

 

Plane of Unbalance: 

The Figure 13, Figure 14 and Figure 15 shows the different position of the rotating disc placed on the shaft. 

 
Fig 13: Machine Fault Simulator with rotating disc placed at centre position 

 

 
Fig 14: Machine Fault Simulator with rotating disc placed at left position 
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Fig 15: Machine Fault Simulator with rotating disc placed at right position 

 

The design of experiment (Table 2) is based on the maximum possible combination of Unbalance mass 

(m), Eccentricity (e), Plane of unbalance (p) and the RPM(r) values. The table (Table 1) below provides the 

maximum and minimum values the independent parameters/input to the system. 

 

Table 1: Independent/Input parameters and their levels 
Serial No Independent /Input Parameters Minimum Level Maximum Level 

1 Unbalance Mass (m ) 8gram 16gram 

2 Eccentricity (e) 4.85cm 6.85cm 

3 Plane of unbalance (p) 15cm (measured from left bearing) 45cm (measured from left bearing) 

4 Revolutions per Minute (RPM) (r) 300 1500 

 

Table 2: Design of Experiment 

 

The design of experiment as mentioned in the table 2 has been performed for 300, 600, 900, 1200 and 1500 

RPM`s. In total there are 105 set of experiments. 

 

1.1 Indicators Used In Experiment :  

NFC: No fault disc at Center, NFL: No fault disc at Left position, NFR: No fault disc at Right position 

The number succeeding NFC, NFL, NFR represents the rpm at which the disc is rotating without any unbalance 

mass attached. With unbalance mass attached, the experimental code is written in the following format as 

mentioned below one after the other. 

Position of Rotating Disc (p) Unbalance Mass (m)Eccentricity (e)Revolutions Per Minute (RPM) (r) 

For example:C16e11500 represents the rotating disc placed at centre of the shaft with mass unbalance of 

16gram placed at an eccentricity e1rotated at 1500 RPM. It is similar for rest of the experimental cases. 

 

VI. Results And Discussion 
The input layer consists of the values of unbalance mass (m), Eccentricity (e) , RPM ( r) , RMS value 

of Left Bearing X-direction vibration  LX (RMS) , Phase value of Left Bearing X-direction vibration LX 

Set Experimental Codes Unbalance Mass Eccentricity Location Of Unbalance Plane (In Cm) 

  (IN GRAM) (IN CM) (FROM LEFT BEARING ) 

1 NFL 0 0 15 

2 NFC 0 0 30 

3 NFR 0 0 45 

4 L8e2 8 4.85 15 

5 C8e2 8 4.85 30 

6 R8e2 8 4.85 45 

7 L8e1 8 6.85 15 

8 C8e1 8 6.85 30 

9 R8e1 8 6.85 45 

10 L12e2 12 4.85 15 

11 C12e2 12 4.85 30 

12 R12e2 12 4.85 45 

13 L12e1 12 6.85 15 

14 C12e1 12 6.85 30 

15 R12e1 12 6.85 45 

16 L16e2 16 4.85 15 

17 C16e2 16 4.85 30 

18 R16e2 16 4.85 45 

19 L16e1 16 6.85 15 

20 C16e1 16 6.85 30 

21 R16e1 16 6.85 45 
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(Phase), RMS value of Left Bearing Y-direction vibration  LY (RMS), Phase value of Left Bearing Y-direction 

vibration LY(Phase), RMS value of Right Bearing X-direction vibration RX (RMS), Phase value of Right 

Bearing X-direction vibration RX (Phase), RMS value of Right Bearing Y-direction vibration RY(RMS) and 

Phase value of Right Bearing Y-direction vibration RY(Phase)being fed to it .The output layer consists of the 

Plane of Unbalance (p) which has to be predicted through the online software. In between the input layer 

consisting of the input neurons and the output layer consisting of the output neurons lies the hidden layer where 

the calculation of weight adjustment and error minimization is done. Initially, the RMS and phase values in X 

and Y direction of left and right bearing has to be entered into the software. Weight of the neurons as well as the 

bias was fixed and entered thorough the input layer .Normalization was done for the input neurons and the 

output values are calculated using the formulas mentioned in the equations (i)-(xvii). Fig 16 and Fig 17 

represents the initial GUI (Graphic User Interface)screens before the neural network is activated. The Fig 18. 

below represents the training of the neural networking which has been coded and developed using the equations 

from (i)–(xvii) in JAVA software. The training function used here is the Levenberg-Marquardt backpropagation 

with TANSIG as the transfer function. “Gradient Descent algorithm with momentum” has been used to 

minimize the error as an adaptive learning technique. 

 

 
Fig 16: Initial Opening GUI Screen for the Online Software 

 

 
Fig 17: GUI Screen to read the values of RMS and Phase 

 

 
Fig18: Neural Networking Training user interface screen (for RMS and Phase) developed by JAVA software 
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6.1 Testing Of Artificial Neural Network for Unbalance Plane Detection: 

To test the artificial neural network for determination of the unbalance plane of vibration, the following data 

were given as input. For testing the neural network, the screen as shown in Fig 19 will appear on the screen. 

 

 
Fig19: User interface screen for online determining the unbalance plane of vibration 

 

Input Parameters: The parameters provided for testing neural network are given below: 

r (RPM):    1500   

LX (RMS):0.0053LX (PHASE):269.95LY (RMS):0.010637LY (PHASE):82.28 

RX (RMS):0.00737RX (PHASE):278.56RY (RMS):0.015739RY (PHASE):82.35 

After entering these data as the input, the output is as follows, which is directly giving the unbalance plane of 

vibration as shown in Fig 20. 

 

Predicted Output Using Online Software Prediction: 

In the figure below, the unbalance plane of vibration is shown directly as the output of the process. 

 

 
Fig 20:Unbalance Plane (p) Online Prediction User Interface Screen 

 

Unbalance Plane Detection by the online software: 40.53 cm measured from left bearing 

Experimental Unbalance: 45 cm measured from left bearing  

Error:4.470 

Error %: 9.93% 

 

6.2 Prediction of Plane of Vibration using NNTOOL IN MATLAB: 

Inputs: The inputs to the MATLAB nntool bar are the Mass unbalance (m), Eccentricity (e) , RPM (r) , 

RMS value of Left Bearing X-direction vibration  (LX) , Phase value of Left Bearing X-direction vibration LX 

(Phase), RMS value of Left Bearing Y-direction vibration  (LY), Phase value of Left Bearing Y-direction 

vibration LY(Phase), RMS value of Right Bearing X-direction vibration(RX), Phase value of Right Bearing X-

direction vibration RX (Phase), RMS value of Right Bearing Y-direction vibration (RY) and Phase value of 

Right Bearing Y-direction vibration RY(Phase).The two Adaptive Learning Functions available in Matlab are 

the LEARNGDM – Gradient Descent with momentum and LEARNGD – Gradient Descent.  The transfer 

functions available are: LOGSIG – Log Sigma, PURELIN – Pure Linear and TANSIG – Tan Sigma. There are 

12 (twelve) different types of training algorithms available in Matlab for performing the training of the neural 

network which have been analysed in details below. 

 

6.2.1 Comparison of outputs using different Training Function in Neural Networking: 

LEARNGDM – Gradient Descent with Momentum has been used as an “Adaptive Learning Function” 

for prediction of the unbalance plane. The transfer function used in MATLAB is TANSIG. Comparison of 

results for various Training algorithms used in Neural Network has been shown from Fig 21 to Fig 32.These 

figures explains the performance of the neural network using MATLAB. It has been observed that in most of the 

cases the training validation and the test data coincide at a point where the Mean Square error value is very low. 

Also the performance graph in most cases indicate steady slope between the training and the testing data which 

validates the point of convergence. 

Inputs to the neural network are:  

r (RPM):    1500 

LX (RMS):  0.0053LX (PHASE):269.95LY (RMS):0.010637LY (PHASE):82.28 

RX (RMS):  0.00737     RX (PHASE):278.56RY (RMS):0.015739RY (PHASE):82.35 
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Output: Plane of Unbalance (p). Comparison table for the different the unbalance plane as calculated by 

different training methods is as follows: 

 

 
Fig 21:  Neural network by TRAINBFG (BFGS quasi-Newton backpropagation) 

 

 
Fig 22:  Neural network by TRAINCGB (Powell -Beale conjugate gradient backpropagation) 

 
Fig 23:  Neural network by TRAINCGF (Fletcher-Powell conjugate gradient backpropagation) 

 

 
Fig 24:  Neural network by TRAINCGP (Polak-Ribiere conjugate gradient backpropagation) 
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Fig 25:  Neural network by TRAINGD (Gradient descent backpropagation) 

 

 
Fig 26:  Neural network by TRAINGDM (Gradient descent with momentum backpropagation) 

 

 
Fig 27:  Neural network by TRAINGDA (Gradient descent with adaptive lr backpropagation) 

 

 
Fig 28:  Neural network by TRAINGDX (Gradient descent w/momentum & adaptive lr backpropagation) 

 

 
Fig29:  Neural network by TRAINLM (Levenberg-Marquardt backpropagation) 



Application of Artificial Neural Networking for Determining the Plane of Vibration in Rotating System 

DOI: 10.9790/1684-1401052335                                      www.iosrjournals.org                                        33 | Page 

 
Fig30:  Neural network by TRAINOSS (One step secant backpropagation) 

 

 
Fig31:  Neural network by TRAINNRP (Resilient backpropagation (Rprop)) 

 

 
Fig32:  Neural network by TRAINSCG (Scaled conjugate gradient backpropagation) 

 

A comparative analysis of results as obtained from neural networks with different training algorithms and their 

errors have been summarized in the Table 4 as shown below. 

 

Table 4: Comparative Analysis of Result (Training Function GRADIENT DESCENT WITH MOMENTUM) 
Methodology Actual Plane Of 

Unbalance 

Predicted Plane Of 

Unbalance 

Error Error (In %) 

ONLINE SOFTWARE       
(using java code) 

45 40.53 4.470 9.93 

BFGS quasi-Newton 

backpropagation 

45 44.1519 0.8481 1.88 

Powell -Beale conjugate 
gradient backpropagation 

45 43.8034 1.1966 2.65 

Fletcher-Powell conjugate 

gradient backpropagation 

45 39.7941 5.2059 11.56 

Polak-Ribiere conjugate gradient 
backpropagation 

45 43.334 1.666 3.70 

Gradient descent 

backpropagation 

45 44.8371 0.1629 0.362 

Gradient descent with 
momentum backpropagation 

45 44.9959 .0041 .0091 

Gradient descent with adaptive 

lr backpropagation 

45 42.9352 2.0648 4.588 

Gradient descent w/momentum 
& adaptive lr backpropagation 

45 35.5315 9.4685 21.0411 

Levenberg-Marquardt 

backpropagation 

45 39.15 5.85 13 
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One step secant backpropagation 45 39.5148 5.4852 12.18 

Resilient backpropagation 45 43.8263 1.1764 2.614 

Scaled conjugate gradient 
backpropagation 

45 41.287 3.713 8.25 

 

 
Fig 33:Actual vs Prediction Unbalance Plane Histogram                           Fig 34: Error Histogram 

 

 
 

Legends used in Fig 33 and Fig 34:  

ONLINE PREDICTION – Represented by “A” in Histogram, 

TRAINBHG - Represented by “B” in Histogram, 

TRAINCGB - Represented by “C” in Histogram, 

TRAINCGF - Represented by “D” in Histogram, 

TRAINCGP - Represented by “E” in Histogram, 

TRAINGD - Represented by “F” in Histogram, 

TRAINGDM- Represented by “G” in Histogram, 

TRAINGDA - Represented by “H” in Histogram, 

TRAINGDX- Represented by “I” in Histogram, 

TRAINLM - Represented by “J” in Histogram, 

TRAINOSS - Represented by “K” in Histogram, 

TRAINNRP -Represented by “L” in Histogram, 

TRAINSCG - Represented by “M” in Histogram. 

Fig 33 and Fig 34 represents the histogram for the unbalance plane of vibration and the error histogram 

respectively. From these two figures it was evident that the “Gradient descent with momentum training 

algorithm” has the least error for prediction.  

 

VII. Conclusion And Future Scope Of Work: 
In this research work the unbalance plane of vibration has been detected using the online software 

coded in Java and by the Matlab nntool. It has been noticed that the software did provide better accuracy of 

result than the MATLAB simulation with the application of nntool using Levenberg-Marquardt backpropagation 

training algorithm. Optimization of the weights and the learning rate (which has been coded within the software 

using JAVA application) was done and the error was below the MATLAB predicted error. Unlike in MATLAB 

where the Input, Target and Sample file has to be created separately for calculation, the values of RMS and 

phase can be directly entered into the Online Software  and on clicking the submit button the software returns 

the predicted plane of unbalance. The only constrain in this online software is that it has to be fed with 

numerous number of experimental data for various cases and estimations before running the testing phase for 

the unbalance plane prediction and getting the accurate result. 

 It has also been concluded that, although the neural network can be trained with different types of 

training algorithms (in this research paper 12 different types of training algorithms have been used ), the best 

result comes with the Gradient Descent with Momentum where the prediction is almost near to the actual value. 

The next Training algorithm with minimum error is the Gradient Descent algorithm. It is clearly seen that 

Levenberg-Marquardt backpropagation used in MATLAB nntool gives 13% error where the same training 

function when used in ONLINE Software yielded error of 9.93%. Thus it can be concluded that, using 
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Levenberg-Marquardt backpropagation training function, the ONLINE software is a better choice as compared 

to MATLAB nntool. In the future scope of the work, the ONLINE software shall be updated with training 

algorithms like “Gradient descent with Momentum” and “Gradient Descent” to provide better accuracy in 

prediction. 
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