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Abstract: In this paper, we describe a computational homogenization methodology to study of three-

dimensional cubic cells in order to estimate the effective yield surface of random porous media containing 

spheroidal voids. The representativity of the overall yield surface estimates is examined using cubic cells 

containing randomly distributed. Spherical voids are considered in the computations. The computational results 

are compared with some existing Gurson-type yield criteria.  
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I. Introduction 
The mathematical development of yield criteria for the plastic porous solids has been widely 

investigated by Rice and Tracey [1], Gurson [2], Tvergaard [3], Koplik and Needleman [4], Sun and Wang [5], 

Ponte Castaneda [6], recently by Dunand and Mohr[7], Li et al. [8], Mroginski et al. [9], Fei et al. [10], Shen et 

al. [11], Yan et al. [12]. The role of porosities regarding the ductile fracture process, these voids being the 

consequence of manufacturing processes. The mathematical derivations of these criteria are generally based 

upon the continuum-based micromechanical framework, for which the starting point is the micro structural 

representation of the porous medium. The non-triviality of the theoretical problem leads to define a basic unit 

cell containing one centered void for the material volume used to represent the microstructure. The unit cell is 

an elementary volume element consisting in a hollow sphere or cylinder subjected to a uniform macroscopic 

strain rate at its external boundary. Gurson [2] proposed the most widely used micromechanics-based yield 

criterion to analyze plastic porous solids containing spherical voids. 

The Gurson model is based upon the following assumptions: isotropy, incompressibility and rigid-

plasticity for the local yielding of the surrounding matrix material which obeys to the Von Mises criterion. The 

resulting macroscopic yield criterion of Gurson [2] for the porous medium is hydrostatic pressure-dependent, 

integrates the volume fraction of porosities as a model parameter and accounts for a possible void growth driven 

by the local plastic deformation of the surrounding matrix material. As pointed out by Tvergaard, the Gurson 

model gives an upper bound of the macroscopic yield stress as a function of the mean stress for a periodic 

arrangement of voids. In order to improve its agreement with two-dimensional finite element simulation results 

on a periodic unit cell, Tvergaard [3], proposed to introduce heuristic parameters in the Gurson yield criterion. 

These adjustable parameters have no direct physical meaning but may be correlated to interaction effects 

between voids. The extension of the Gurson model by Tvergaard, known as the Gurson-Tvergaard (GT) model, 

was thenceforth widely used by many researchers to check its capability to capture the poroplastic behavior of 

many engineering porous materials. In very useful background papers, Benzerga and Leblond [13], and Besson 

[14], reviewed the various extensions of the Gurson model based upon enhanced micromechanical approaches 

or upon phenomenological generalizations to take into consideration the void shape or the matrix material 

features such as isotropic/kinematic hardening, viscoplasticity, compressibility and anisotropy. Using 

micromechanical approaches, Ponte Castaneda [6] and Sun and Wang [5] proposed, respectively, upper and 

lower bounds for the overall yield surface of porous media. Using the variational technique introduced by Ponte 

Castaneda [6] proposed another upper bound which overcomes the well known basic drawbacks of the Gurson 

criterion at low stress triaxiality values. The effect of void shape on the macroscopic yield response of porous 

materials was investigated by several authors Gologanu et al. [15], [16], Yee and Mear, [17], recently by Danas 

and Aravas [18], Madou and Leblond [19], Monchiet and Kondo [20]. 

Although the mathematical developments have reached a high degree of sophistication, the resulting 

yield criteria generally involve a certain number of parameters with no physical significance. That may be 

explained by the fact that these micromechanics-based models consider as material volume element an 

elementary volume element containing a single void. Because the voids are diluted in the matrix material, the 

interactions between voids are neglected. Moreover, this microstructural representation of the porous material 

implies periodicity. However, to be statistically representative, the material volume element should contain 

sufficient information about the porous microstructure, in particular the void distribution. This last decade, the 
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material response of porous media was also investigated using computational homogenization. This approach is 

emerging as a powerful tool to bring a better understanding of void distribution effects and interaction 

phenomena on the mechanical behavior of random porous media. The main advantage of the computational 

homogenization is its ability to directly compute the mechanical fields on the random porous media by 

representing explicitly the microstructure features such as shape, orientation and distribution of voids. Although 

many studies were dedicated to the development of yield criteria for plastic porous media, it seems that only few 

works have been devoted to three-dimensional computational homogenization involving multiple voids. To our 

knowledge, only Bilger et al. [21], Fritzen et al. [22] and Khdir et al. [23] used this approach to estimate the 

overall yield surface of porous materials. Their computations were limited to spherical voids. The calculations 

of Bilger et al. [21] were performed on the basis of three-dimensional Fast Fourier Transform. The pore 

clustering effect on the overall material response was the key point of their investigation. Fritzen et al. [22] 

assumed the random porous media as a volume of porous material which is periodically arranged. The results 

highlighted by Fritzen et al. [22] led them to extend the GT yield criterion in order to overcome the 

analytical/numerical discrepancies. Khdir et al. [22] focused their investigations on the porous materials 

containing two populations of voids. Their results showed that, for an identical fraction of porosities, there is no 

significant difference between a double and a single population of voids. 

In this contribution, a computational homogenization of random porous media, including spherical 

voids, is presented in order to determine their overall yield surface while still studying the representativity of the 

computational results.  

 

II. Homogenization Approach 
2.1 Porous microstructures 

The porous media considered in the computations are made of perfectly-plastic matrix obeying to the 

commonly used isotropic Von Mises yield criterion, the yield stress being constant and equal to 290 MPa. The 

plastic flow is assumed perfect in order to disregard hardening effects in the investigation and to compare the 

simulation results with the most common analytical models. The matrix material is sufficiently stiff in order to 

overcome any yield strain effects.  

The porous media are represented by three-dimensional cubic cells containing a large number of pores, 

in order to assure that the studied material volume element is sufficiently large compared to porosities. The 

voids are randomly distributed and oriented in space in the cubic cell. Moreover, they are identical and non-

overlapped. The question of the void content effects is examined in this work. The volume fraction of n  

spheroidal voids inside a cubic cell of volume V  is given by:  

 

spheroidal

4

3

n abc
f

V


                                               (1) 

where a  is the polar radius along the y axis of the spheroidal void and, b  and c  are the equatorial radii along 

the z and x axis, respectively. 

Three void volume fractions f are studied f = 0.05, 0.13 and 0.23. 

 

 
Fig. 1 Examined porous media spherical (  a b c ) pore (n ≈ 200 pores) 
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The void shape effects are examined in this work which constitutes a noteworthy difference with 

respect to existing literature (Bilger et al. [21] Fritzen et al. [22]; Khdir et al. [23]).  

Fig.1 presents the designed porous microstructures. The cases of spherical (  a b c ), oblate (

b c  and b a ) and prolate ( b c  and a b ) pores are examined. For each shape, three void volume 

fractions f are studied (f = 0.05, 0.13 and 0.23). The finite element method was chosen for the numerical 

computations using Zebulon software. A standard small-strain approximation was used for the simulations. The 

mesh size used was fine enough to represent accurately the geometry of the porosity and to ensure the overall 

response convergence. 

 

2.2 Boundary conditions 

The porous media being hydrostatic pressure-dependent, the boundary conditions imposed to the 

designed representative element should involve a wide range of stress trriaxiality ratios to be explored. The 

stress triaxiality parameter   m eqT  is defined as the ratio of the overall hydrostatic stress m  and the 

overall Von Mises equivalent stress eq , respectively, given by:  

 
1

3
 m tr Σ  and  

1 23
:

2
eq

   Σ Σ  (2) 

where Σ  is the macroscopic stress tensor and Σ  denotes its deviatoric part. 

In this work, due to its computational robustness, the following mixed boundary conditions were imposed: 
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In which the values assigned to shear components of the overall stress tensor are zero. The terms α and 

β, introduced to control the diagonal components of the overall strain tensor E , are two loading parameters, 0
> 0 is a prescribed deformation rate and t is the simulation time. The stress triaxiality is indirectly assigned by 

the two measures of stress, given by Eq. (3.14), which are defined implicitly by the mixed boundary conditions 

through the two loading parameters α and β. The different values of α and β used to obtain different stress 

triaxiality ratios are listed in Table1. 

 
 1 2 3 4 5 6 7 8 9 

α 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.00 

β 0.00 0.05 0.10 0.15 0.25 0.50 1.00 1.00 1.00 

Table 1. Loading parameters used in the simulations. 

 

III. Results And Discussion 
3.1 Representativity (RVE) 

The size of the volume element is conditioned by the number of porosities which should be chosen 

large enough to ensure that the volume element is representative. This representativity was investigated in terms 

of the mechanical responses by Huet [26], Drugan and Willis [25] and Kanit et al. [27]. These authors have 

studied the effects of the volume element size on the elastic stiffness. More recently, Khdir et al. [23] have 

investigated these effects on the elastic-plastic response. In the case of elastic-plastic composites, made of two 

phases with highly contrasted properties, Khdir et al. [23] have shown that the minimum size of the volume 

element in the yield and post-yield region must be greater than the minimum size required in the elastic domain. 

This question which arises in three-dimensional computational homogenization has to be systematically 

accounted for. Several volume elements with different sizes (i.e. containing different number of pores) are 

simulated for a porosity of f= 0.23, and the mechanical representativity of the computational results are 

examined. The overall stationary stresses are plotted as a function of the number of pores in Fig. 2 for the three 

shapes.  
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(a)                                                                                (b) 

Fig. 2 Asymptotic overall Von Mises equivalent stress and hydrostatic stresses as a function of the number of 

pores for spherical  pores at f = 0.23 The average (dashed line) and the standard deviations (colored area) are 

calculated for n = 50. 

 

Figs. 2 a correspond to the loading path 1 in Table 1 characterized by (α = 1, β = 0) for which the 

deviatoric component exhibits the highest stationary value, whereas Figs. 2 b correspond to the loading path 9 in 

Table 1 characterized by (α = 0, β = 1) for which the hydrostatic component takes its highest stationary value.  

The stationary stresses are normalized with respect to the average value of computational results of several 

realizations containing 50 pores. All computed data are found within or close to the colored area defined by the 

standard deviations. The stationary values for n = 200 are close to the averages of n = 50 pores, the largest 

difference being about 7%. The computations are performed using the largest cubic cells (containing n = 200 

voids) in order to assure the mechanical representativity of the numerical yield surfaces.  

These cubic cells are successively stretched in the orthogonal directions. It can be observed that 

identical overall mechanical responses are obtained which is, for isotropy, a necessary condition but not 

sufficient. To ensure this property the cubic cells must also be subjected to simple shear loading. We observed 

that the overall shear responses are the same in three perpendicular planes. Then, when a sufficient number of 

pores are randomly distributed and oriented in the volume element, an isotropic response is obtained at the 

macroscopic scale. The found isotropy proves that this large volume element is representative enough of the 

random porous medium, whatever the void shape. 

 

3.2 Local plastic strain fields 

The local plastic strain fields can be observed in Fig.3 at different triaxiality ratios for spherical pores. 

The porosity of  f = 0.23 is chosen to illustrate this distribution. The observations are presented at the end of the 

prescribed loading. The pore-pore interactions and the triaxiality effects on the local fields are illustrated in the 

figures for three particular cases: The cases ( = 1,  = 0) and ( = 0,  = 1) correspond to the lowest and 

highest triaxiality ratios, respectively, and the case ( = 1,  = 0.25) to an intermediate one.  

 

 
Fig. 3 Distribution of the accumulated plastic strain for spherical pores at f = 0.23 and three different loading 

cases: (a)  = 1,  = 0, (b)  = 1,  = 0.25, (c)  = 0,  = 1. 
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3.3 Comparison between numerical results and analytical criteria 

In this subsection, the case of spherical pores is analyzed. The common representation of the overall 

yield surface, plotting the overall Von Mises equivalent stress as a function of the overall hydrostatic stress, is 

adopted to illustrate the computational data.  

The computed data are compared with some existing analytical models in Figs.4, 5, 6  for the three 

considered void volume fractions. Besides the commonly used Gurson model, other analytical models are 

selected. The mathematical expressions of some existing yield criteria for plastic porous materials are recalled in 

Table 2.  

 
G yield criterion  

(Gurson [2], 1977)  
2

2
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GT yield criterion  

(Tvergaard [3], 1981)  
2
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PC yield criterion  
(Ponte Castañeda [6], 1991)     

2 2
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eq mf f f fΣ  (6) 

GS yield criterion  

(Gărăjeu and Suquet [24], 1997)  
2
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eq mf f f fΣ  (7) 

SW yield criterion  
(Sun and Wang [5], 1989)    

2

2

0 0

1 3
, 2 ln cosh 1 1 ln 0

2 2 

   
         

   

eq mf f f f fΣ  (8) 

Table 2. Gurson-type yield criteria 
 

 
Fig. 4 Comparison between some existing analytical models and the simulation results for spherical pores at  

f = 0.05, n ≈ 200 pores 
 

 
Fig. 5 Comparison between some existing analytical models and the simulation results for spherical pores at 

f = 0.13, n ≈ 200 pores 
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Fig.6 Comparison between some existing analytical models and the simulation results for spherical pores at 

f = 0.23; n ≈ 200 pores  

 

It can be observed in that the computed data satisfy the Gărăjeu and Suquet [24] upper bound and the 

Sun and Wang [5] lower bound. The GS model is identical to the Gurson model around the normalized 

hydrostatic stress axis and to the Ponte Castaneda [6] model around the normalized equivalent stress axis. 

Around the normalized hydrostatic stress axis, the GS model is identical to the Gurson model, but strongly 

deviates when decreasing the mean stress axis. It can be observed that the GS model overestimates the 

numerical data for high normalized hydrostatic stress, but becomes closer when decreasing the mean stress.  

All the computed data satisfy the SW lower bound but it is found that the SW model is close to the 

numerical data around the normalized equivalent stress axis at the lowest void content. The PC yield criterion 

provides too stiff predictions around the normalized hydrostatic stress axis. The divergences with the model 

decrease when the void content increases. The G criterion overestimates the numerical data, the difference 

between the two solutions increasing with the void content. The GT model using the calibrated parameters of 

Tvergaard [3], see Table 2, underestimates the numerical yield surface. For the lowest void content, the GT 

model is close to the numerical surface, especially around the normalized equivalent stress axis. For the highest 

void content, the GT model becomes a lower bound.  

 

IV. Conclusion 
The overall yield surface of plastic porous media was investigated via computational micromechanics. 

The computational results were investigated in terms of representativity and were related to some existing 

Gurson-type yield criteria for spherical voids. We have found that the Gurson-Tvergaard heuristic parameters 

are independent on the void size which could suggest that a porous medium containing a single population of 

voids could properly represent a same medium with two populations of voids.  
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