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Abstract: Reanalysis methods are intended to analyze efficiently structures that are modified due to changes in 

the design. To find out the changes in the dynamic properties (natural frequency), solving of various 

simultaneous equations for Eigen values is necessary and is a length, breadth and depth. In this paper, the focus 

will be on reanalysis of a Cantilever beam. The natural frequency of the Cantilever beam will be calculated 

using Ansys, FEM (using MAT LAB software) and also using conventional equations of Cantilever Beam. These 

values are compared using polynomial regression method. 
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I. Introduction 
Most optimal design procedures are iterative and require repeated analyses of structures obtained by 

progressive modifications in design variables. Reanalysis methods are intended to analyze efficiently structures 

that are modified due to changes in design. The object is to evaluate the structural modification within the frame 

of vibration analysis technology refers to technique to modify physical properties of a structure in order to 

change or optimize its dynamic properties. To find out the changes in the dynamic properties (natural 

frequency), solving of various simultaneous equations for the Eigen values is necessary and is lengthy process. 

To avoid this, changes in physical parameters are considered such as length, breadth and depth. 

 

Reanalysis 

Reanalysis methods are intended to analyze efficiently new designs using information from previous 

ones. One of the many advantages of the substructure technique is the possibility of repeating the analysis for 

one or more of the substructures making use of the work done on the others. This represents a significant saving 

of time when modifications once are required. Modification is invariably required in iterative processes for 

optimum design never the less, in the case of large structures the expenses are still too high. Therefore, 

development of techniques which are themselves based on previous analysis, and which obtained the condensed 

matrices of the substructures under modification, with little extra calculation time, can be very useful. “General 

Reanalysis Techniques” are very useful in solving medium size problems and are totally essential in the design 

of large structures. Some steps in a dynamic condensation process are particularly characterized by their 

computational effort, as for instance:  

1. Stiffness matrix factorization  

2. Resolution of certain systems of linear equation  

3. Resolution of an Eigen problem to obtain the normal vibration modes.  

Reanalysis methods are intended to analyze efficiently structures that are modified due to changes in 

the design. The object is to evaluate the structural response for such changes without solving the complete set of 

modified simultaneous equations. The solution procedures usually use the original response of the structure. 

Development of structural modification techniques which are themselves based on the previous analysis. The 

modified matrices of the beam element structures are obtained, with little extra calculation time, can be very 

easy and useful. The General structural modification techniques are very useful in solving medium size 

structural problems as well as for the design of large structures also. The main object is to evaluate the dynamic 

characteristics for such changes without solving the total (or) complete set of modified equations. 

 

Finite Element Method Approach  
Initially the total structure of Cantilever beam is divided into small elements using successive levels of 

divisions. In finite element analysis the structure is discredited into a set of elements joined together at some 

points called nodes or nodal points. In analysis more number of elements will give more incisiveness results. 

Assay of stiffness and mass matrix are performed for each element separately and then globalized into a single 

matrix for the total system. The dynamic analysis of beam structure is [K-λM] [X]=0 ----------------- (1) 
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 Where k, m are the stiffness and mass matrix respectively. The dynamic behavior of a damped structure [4] 

which is assumed to linear and discretized for n degrees of freedom can be described by the equation of motion. 

M+C+Kx=f------------- (2) 

 Where M, C = αM+βK, and K are mass, damping and stiffness matrices, ,and X are acceleration, velocity, 

displacement vectors of the structural points and “f” is force vector. Undamped homogeneous equation 

M+Kx=0. Provides the Eigen value problem (k-λm) = 0. 

Solution of above equation fetches the matrices eigen values λ and eigen vector Ɵ. 
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The eigen vector will satisfy the orthonormal conditions ,T M I   ,T K   ,TC I       if 

we use the transformation X q in the equation of motion, and premultiplying by 
T we get

T T T TM q C q K q f        
 

-------------- (3). 

It is vital note, that the matrices  TM M  ,  TC C  ,  TK K   

 are not usually diagonalised by the eigenvectors of the original structure [3] Given an initial geometry Ŷand 

assuming a change ΔY in the design variables, the modified design is given by Y Y Y  -----------(4) 

 

 The geometric variables Y usually represent coordinates of joints, but other choice for thesevariables is 

sometimes preferred. The displacement analysis equations for the initial design are Kr R . where K = 

stiffness matrix corresponding to the designŶ , R= load vector whose elements are usually assumed to be 

independent of the design variables and r= nodal displacements computedŶ at . The stiffness matrix and mass 

matrix of a typical plane truss element are 
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Where „A‟ is the cross sectional area of the cantilever beam, „l‟ is the length of the cantilever beam, „ρ‟ is the 

density of the cantilever beam material 

 

Regression Method 

As with correlation, regression is used to analyze the relation between two continuous (scale) variables. 

However, regression is better suited for studying functional dependencies between factors. The term functional 

dependencyimplies that X [partially] determines the level of Y. For example, there is a function dependency 

between age and Blood pressure since as one ages, blood pressure increases. In contrast, there is no functional 

dependency between arms Length and leg length since increasing the length of an arm will have no effect on leg 

length (or vice versa).In addition, regression is better suited than correlation for studying samples in which the 

investigator fixes thedistribution of X. For example, if I decide to select ten 30-year-olds, ten 40-year olds, and 

ten 50-year-olds to study the relation between age and blood pressure, I have fixed the distribution of the X 

variable in the sample. This would necessitate the use of regression and (in theory) prevent the use of 
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correlation.The most elementary type of regression model is the simple linear regression model, which can be 

expressed by the following equationY X      

It is important to note that linearregression does not actually test whether the data sampled from the 

population follow a linear relationship. It assumes linearity and attempts to find the best-fit straight line 

relationship based on the data sample. The dashed line shown in the figure (1) is the deterministic component, 

whereas the points represent the effect of random error. 

 

 
Figure 1: A linear model that incorporates a stochastic (random error) component. 

 

Assumptions of Standard Regression Analyses  
1. The subjects are randomly selected from a larger population. The same caveats apply here as with 

correlation analyses. The observations are independent. The variability of values around the line is 

Gaussian.  

2. X and Y are not interchangeable. Regression models used in the vast majority of cases attempt to predict 

the dependent variable, Y, from the independent variable, X and assume that the error in X is negligible. In 

special cases where this is not the case, extensions of the standard regression techniques have been 

developed to account for non negligible error in X.  

3. The relationship between X and Y is of the correct form, i.e., the expectation function (linear or nonlinear 

model) is appropriate to the data being fitted.  

4. There are enough data points to provide a good sampling of the random error associated with the 

Experimental observations. In general, the minimum number of independent points can be no less than the 

number of parameters being estimated, and should ideally be significantly higher 

5. The relationship is linear 

6. The errors have the same variance 

7. The errors are independent of each other 

8. The errors are normally distributed 

 

II. Numerical Examples 
The polynomial regression method is applied to a simple cantilever beam structures. In finite element 

method, Discretization of the domain is the process of sub-dividing the domain (or structure) into many number 

of smaller parts. During discretization, the shapes, sizes, number and configuration of the elements have to be 

chosen carefully such that the original body is simulated as closely as possible without increasing the 

computational effort needed for the solution. The element must be made small enough to view and give usable 

results and to be large enough to reduce computational efforts. Small elements are generally desirable where the 

results are changing rapidly such as where the changes in geometry occur. Large elements can be used where the 

results are relatively constant. The discretized body or mesh is often created with mesh generation program or 

preprocessor programs available to the user. Figure (2) shows an example of creating a finite element for a 

cantilever beam. 

 
Figure 2: Discretized Element 
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The polynomial equation for regression method, 
2 2

1 2 3 4 5 6nf C C B C H C B C H C BH     
 

 

These 3 values for the case study 
Young‟s modulus (E) 205x109 N/m2 

Density (ρ) 7850Kg/m3 

Cross section of area (A) 0.0756m2 

 

Dynamic Reanalysis Of Cantilever Beam Using Conventional Equations: 

9.1 Free Vibration Analysis of Beams using Conventional Equations: 

he conventional equations for cantilever beam based on the mode shapes are given as follows: 

 
 

The first three undamped natural frequencies and mode shapes of cantilever beam 

Case study : 

A cantilever beam of 1.93m length, 0.252m breadth(b) and 0.3m depth(d) is shown in above 

figure(3.2). The first mode of natural frequency values are calculated using conventional equation by 

considering the following situations: 

1. Increasing the depth(d) of the beam by 5% 

2. Increasing the breadth(b) and depth(d) of the beam by 5% 

3. Decreasing the depth(d) of the beam by 5% 

4. Decreasing the breadth(b) and depth(d) by 5% 

 

 
Fig. Cantilever Beam 
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conventional results from first mode natural frequency formula:  

The first mode of natural frequencies are obtained using conventional equation and the reanalysis of the beam is 

done by using polynomial regression method and the percentage errors are calculated. 
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          =66.478 Hz 

 

Increasing the depth(d) of beam by 5% 

By using the polynomial regression method the natural frequencies of cantilever beam for increasing the 

depth(d) by 5% are as follows: 

ƒ𝑛 =α1+ α2b+ α3d+ α4b
2
+ α5d

2
+ α6bd 

α1= -9.4658492835519595E-02                      α2= -2.3853940192537948E-02 

α3= 2.0884918091567624E+02                    α4= -6.0111929279216270E-03 

α5= -6.5545449365670549E-01                     α6= 5.2629993590750750E+01 

 

Table 3.3.1: Increasing the depth of beam by 5% 
Breadth(b) Depth(d) ƒn (Conventional) ƒn (Regression) %Error 

0.252 0.3 66.47 66.47354 -0.05806 

0.252 0.315 69.80235751 69.79917 -0.05523 

0.252 0.33 73.12627928 73.12451 -0.05311 

0.252 0.345 76.45020107 76.44955 -0.05154 

0.252 0.36 79.77412285 79.7743 -0.05047 

0.252 0.375 83.09804464 83.09875 -0.04984 

0.252 0.39 86.42196642 86.42291 -0.0496 

0.252 0.405 89.74588821 89.74677 -0.04971 

0.252 0.42 93.06980999 93.07034 -0.05013 

0.252 0.435 96.39373178 96.39361 -0.05082 

0.252 0.45 99.71765357 99.71659 -0.05176 

 

Increasing the breadth(b) and depth(d) of the beam by 5% 

By using the polynomial regression method the natural frequencies of cantilever beam for increasing the 

breadth(b) and depth(d) by 5% are as follows: 

ƒ𝑛 =α1+ α2b+ α3d+ α4b
2
+ α5d

2
+ α6bd 

α1= 1.6257664335197344E-02                             α2= 1.0908943441650720E+02 

α3= 1.2986837430536571E+02                            α4= 3.9719636556959870E-02 

α5= 5.6292001923083035E-02 α6=4.7285281615472741E-02  

 

Increasing the breadth(b) and depth(d) by 5% 

Breadth(b) Depth(d) ƒn (Conventional) ƒn (Regression) %Error 

0.252 0.3 66.51215 66.47847 -0.05064 

0.2646 0.315 69.83776 69.80217 -0.05097 

0.2772 0.33 73.16337 73.12592 -0.05119 

0.2898 0.345 76.48898 76.44973 -0.05131 

0.3024 0.36 79.81459 79.77359 -0.05136 

0.315 0.375 83.14019 83.09751 -0.05134 
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Decreasing the depth(d) of the beam by 5% 

By using the polynomial regression method the natural frequencies of cantilever beam for decreasing the 

depth(d) by 5% are as follows: 

ƒ𝑛 =α1+ α2b+ α3d+ α4b
2
+ α5d

2
+ α6bd 

α1= -3.2325620284851558E-02                           α2= -8.1460563085897775E-03 

α3= 2.0868197121130873E+02                   α4= -2.0528061901838868E-03 

α5= -5.4208754208936583E-01α6=5.2587856745250306E+01                                    

 

Decreasing the depth(d) of the beam by 5% 
Breadth(b) Depth(d) ƒn (Conventional) ƒn (Regression) %Error 

0.252 0.3                  66.47 66.47354 -0.05806 

0.252 0.285 63.18655 63.17268 -0.02194 

0.252 0.27 59.86094 59.84818 -0.02131 

0.252 0.255 56.53533 56.52344 -0.02103 

0.252 0.24 53.20972 53.19845 -0.02118 

0.252 0.225 49.88412 49.87322 -0.02184 

0.252 0.21 46.55851 46.54775 -0.02311 

0.252 0.195 43.2329 43.22203 -0.02514 

0.252 0.18 39.90729 39.89607 -0.02813 

0.252 0.165 36.58168 36.56986 -0.03232 

0.252 0.15 33.25608 33.24341 -0.03809 

 

Decreasing the Breadth(b) and Depth(d) of the beam by 5% 

By using the polynomial regression method the natural frequencies of cantilever beam for decreasing the 

breadth(b) and depth(d) by 5% are as follows: 

ƒ𝑛 =α1+ α2b+ α3d+ α4b
2
+ α5d

2
+ α6bd 

α1= -4.0920431654701064E+00                         α2= -2.7795014096424597E+02 

α3= 4.8636570319929723E+02                          α4= -3.4603540586310110E+03 

α5= -3.4474950483908215E+03 α6=6.9409522011659174E+03     

                                                

Decreasing the Breadth(b) and Depth(d) of the beam by 5% 
Breadth(b) Depth(d) ƒn (Conventional) ƒn (Regression) %Error 

0.252 0.3 66.51215 66.48934 -0.0343 

0.2394 0.285 63.18655 63.2113 0.03918 

0.2268 0.27 59.86094 59.90684 0.076683 

0.2142 0.255 56.53533 56.57596 0.071858 

0.2016 0.24 53.20972 53.21865 0.016769 

0.189 0.225 49.88412 49.83491 -0.09864 

0.1674 0.21 46.55851 46.51493 -0.0936 

0.1548 0.195 43.2329 43.23057 -0.00539 

0.1422 0.18 39.90729 39.91978 0.031292 

0.1296 0.165 36.58168 36.58257 0.002415 

0.117 0.15 33.25608 33.21893 -0.1117 

 

Dynamic Analysis Of Cantilever Beam Using Ansys 

Free Vibration Analysis of Beams using ANSYS: 

 

 

0.3276 0.39 86.4658 86.42149 -0.05125 

0.3402 0.405 89.79141 89.74552 -0.05111 

0.3528 0.42 93.11702 93.06961 -0.05091 

0.3654 0.435 96.44262 96.39375 -0.05068 

0.378 0.45 99.76823 99.71795 -0.0504 



Structural Dynamic Reanalysis of Cantilever Beam Using Polynomial Regression Method 

DOI: 10.9790/1684-1305050114                                            www.iosrjournals.org                                  7 | Page 

 
Beam under free Vibration 

 

Modal Analysis: 

Any physical system can vibrate. The frequencies at which vibration naturally occurs, and the modal 

shapes which the vibrating system assumes are properties of the system, and can be determined analytically 

using Modal Analysis.Analysis of vibration modes is a critical component of a design, but is often overlooked. 

Structural elements such as complex steel floor systems can be particularly prone to perceptible vibration, 

irritating building occupants or disturbing sensitive equipment. Inherent vibration modes in structural 

components or mechanical support systems can shorten equipment life, and cause premature or completely 

unanticipated failure, oftenresulting in hazardous situations. Detailed fatigue analysis is often required to assess 

the potential for failure or damage resulting from the rapid stress cycles of vibration. 

Detailed seismic qualification also requires an understanding of the natural vibration modes of a 

system, as the large amount of energy acting on a system during seismic activity varies with frequency.The goal 

of modal analysis in structural mechanics is to determine the natural mode shapes and frequencies of an object 

or structure during free vibration. It is common to use the finite element method (FEM) to perform this analysis 

because, like other calculations using the FEM, the object being analyzed can have arbitrary shape and the 

results of the calculations are acceptable. The types of equations which arise from modal analysis are those seen 

in eigensystems. The physical interpretation of theeigenvalues and eigenvectors which come from solving the 

system are that they represent the frequencies and corresponding mode shapes. Sometimes, the only desired 

modes are the lowest frequencies because they can be the most prominent modes at which the object will 

vibrate, dominating all the higher frequency modes. It is also possible to test a physical object to determine its 

natural frequencies and mode shapes. This is called an Experimental Modal Analysis. The results of the physical 

test can be used to calibrate a finite element model to determine if the underlying assumptions made were 

correct (for example, correct material properties and boundary conditions were used). 

 

Procedure for modal in ANSYS 

1. Build the model of cantilever beam as shown in figure 4.1 

2. Define the material properties such as young‟s modulus and density etc., 

3. Apply boundary conditions 

4. Enter the ANSYS solution processor in which analysis type is taken as    modal analysis, and by taking 

mode extraction method, by defining number of modes to be extracted. 

5. Solve the problem using current LS command from the tool bar. 

Here eigen values analysis of cantilever beam was carried out. 

 

Physical Properties: 

The physical properties of the beam are taken as follows: 

Physical Properties 
Young‟s modulus(E) 205×109 N/m2 

Density(ρ) 7850 Kg/m3 

Length(l) 1.93m 

Breadth(b) 0.252m 

Depth(d) 0.3m 

 

Case study: 

A cantilever beam of length 1.93m, breadth(b) of 0.252m and depth(d) of 0.3m shown in figure(4.1) is 

divided into 12 elements equally. Natural frequencies of the cantilever beam are calculated by considering the 

following situations: 

 

http://en.wikipedia.org/wiki/Modal_analysis
http://en.wikipedia.org/wiki/Finite_element_method
http://en.wikipedia.org/wiki/Eigensystem
http://en.wikipedia.org/wiki/Eigenvalues
http://en.wikipedia.org/wiki/Eigenvectors
http://en.wikipedia.org/wiki/Modal_analysis
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1. Increasing the depth(d) of the beam by 5% 

2. Increasing the breadth(b) and depth(d) of the beam by 5% 

3. Decreasing the depth(d) of the beam by 5% 

4. Decreasing the breadth(b) and depth(d) of the beam by 5% 

 
L=1.93m, b=0.252 m, d=0.3m 

Figure : Cantilever beam 

 

Results from ANSYS for case study: 

The Modal analysis of cantilever beam has been carried out by using ANSYS10.0 

 Increasing the depth(d) of the beam by 5% 

By using ANSYS software the results for natural frequency for increasing the depth of the cantilever beam by 

5% are calculated. 

ƒ𝑛 = α1+ α2b+ α3d+ α4b
2
+ α5d

2
+ α6bd 

α1= -5.0991185667651062E-01α2= -1.2849778788034882E-01 

α3= 2.1262898807318032E+02α4= -3.2381442545194261E-02 

α5= -1.2442372442372843E+01α6= 5.3582504994441798E+01 

 

 
ANSYS answer for table 4.4.1(under lined in table) 

 

 Increasing the depth(d) of the beam by 5% 
Breadth(b) Depth(d) ƒn(ANSYS) ƒn (Regression) %Error 

0.252 0.3 66.177 66.17537 -0.00246 

0.252 0.315 69.452 69.45257 0.000816 

0.252 0.33 72.723 72.72416 0.001599 

0.252 0.345 75.989 75.99016 0.001528 

0.252 0.36 79.25 79.25056 0.000706 

0.252 0.375 82.506 82.50536 -0.00078 

0.252 0.39 85.755 85.75456 -0.00051 

0.252 0.405 88.999 88.99816 -0.00094 

0.252 0.42 92.237 92.23616 -0.00091 

0.252 0.435 95.469 95.46857 -0.00045 

0.252 0.45 98.694 98.69537 0.001389 
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Increasing the breadth(b) and depth(d) of the beam by 5% 

From the ANSYS the results of natural frequency for increasing the breadth and depth of cantilever beam by 5% 

are calculated. 

ƒ𝑛 = α1+ α2b+ α3d+ α4b
2
+ α5d

2
+ α6bd 

α1= -1.1349090909091647E+01                    α2= 1.4024644664279012E+02 

α3= 1.6696005552713106E+02α4= -2.8701379021631737E+01 

α5= -4.0676557570339845E+01α6= -3.4168308359085330E+01 

 

 
ANSYS answer for 

 

Table 4.4.2(under lined in table) 

Increasing the breadth(b) and depth(d) of the beam by 5% 
Breadth(b) Depth(d) ƒn(ANSYS) ƒn (Regression) %Error 

0.252 0.3 66.177 66.01436 -0.24576 

0.2646 0.315 69.452 69.45904 0.010131 

0.2772 0.33 72.723 72.86338 0.193028 

0.2898 0.345 76.149 76.22738 0.102932 

0.3024 0.36 79.25 79.55105 0.37988 

0.315 0.375 82.506 82.83439 0.398024 

0.3276 0.39 87.304 86.0774 -1.40498 

0.3402 0.405 88.999 89.28007 0.315816 

0.3528 0.42 92.237 92.44241 0.2227 

0.3654 0.435 95.469 95.56442 0.099947 

0.378 0.45 98.694 98.64609 -0.04854 

 

Decreasing the depth(d) of the beam by5% 

From ANSYS the results of natural frequency for decreasing the depth of the cantilever beam by 5% are 

calculated. 

ƒ𝑛 = α1+ α2b+ α3d+ α4b
2
+ α5d

2
+ α6bd 

α1= -1.1399224458860556E-01                     α2= -2.8726045128877331E-02 

α3= 2.0995566247864440E+02α4= -7.2389633729237346E-03 

α5= -7.6094276094307034E+00α6= 5.2908826944618909E+01 
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ANSYS answer for table 4.4.3(under lined in table) 

 

Table : Decreasing the depth of the beam by 5% 

 

 

 

 

 

 

 

 

 

 

 

 

Decreasing the breadth(b) and depth(d) of the beam by 5% 

From ANSYS the results of natural frequency for decreasing the breadth and depth of the cantilever beam by 

5% are calculated. 

ƒ𝑛 = α1+ α2b+ α3d+ α4b
2
+ α5d

2
+ α6bd 

α1= -2.1918705035985325E-01α2= -5.6209432233832217E+00 

α3= 2.2882398353751557E+00α4= 3.9293012483360641E+02 

α5= -5.5896385612114621E+00α6= -3.7390586882739022E+01 

 

 
ANSYS answer for table 4.4.4(under lined in table) 

Breadth(b) Depth(d) ƒn(ANSYS) ƒn (Regression) %Error 

0.252 0.3 66.177 66.177 -3.10606E-06 

0.252 0.285 62.896 62.89751 0.002399 

0.252 0.27 59.612 59.61153 -0.00079 

0.252 0.255 56.323 56.32212 -0.00156 

0.252 0.24 53.03 53.02929 -0.00134 

0.252 0.225 49.734 49.73304 -0.00194 

0.252 0.21 46.434 46.43336 -0.00138 

0.252 0.195 43.131 43.13025 -0.00173 

0.252 0.18 39.82 39.82373 0.00936 

0.252 0.165 36.511 36.51378 0.007603 

0.252 0.15 33.2004 33.2004 -0.01084 



Structural Dynamic Reanalysis of Cantilever Beam Using Polynomial Regression Method 

DOI: 10.9790/1684-1305050114                                            www.iosrjournals.org                                  11 | Page 

Table: Decreasing the breadth(b) and depth(d) of the beam by 5% 
Breadth(b) Depth(d) ƒn(ANSYS) ƒn (Regression) %Error 

0.252 0.3 66.177 66.177 -3.10606E-06 

0.2394 0.285 62.896 62.89683 0.001318021 

0.2268 0.27 59.612 59.61249 0.000817551 

0.2142 0.255 56.327 56.32397 -0.005373847 

0.2016 0.24 53.03 53.03129 0.002425279 

0.189 0.225 49.734 49.73443 0.000857594 

0.1674 0.21 46.434 46.43307 -0.002001758 

0.1548 0.195 43.131 43.13173 0.001691351 

0.1422 0.18 39.824 39.82622 0.00556405 

0.1296 0.165 36.515 36.51653 0.00418868 

0.117 0.15 33.204 33.20267 -0.004004025 

 

Dynamic Analysis Of Cantilever Beam Usingfinite Element Method 

Free vibration Analysis of the Beam using Finite Element  

Method: 

The polynomial regression method is applied to a simple beam structures. In finite element method, 

Discretization means dividing the body into an equivalent system of finite elements with associated nodes. The 

element must be made small enough to view and give usable results and to be large enough to reduce 

computational efforts. Small elements are generally desirable where the results are changing rapidly such as 

where the changes in geometry occur. Large elements can be used where the results are relatively constant. The 

discretized body or mesh is often created with mesh generation program or pre-processor programs available to 

the user. Figure shows an example of creating a finite element for a cantilever beam. 

 
Discretized Element 

 

The values of young‟s modulus(E), density(ρ), length(l), breadth(b), depth(d) for the case study are follows:  

Table: Element Properties 
Young‟s modulus(E) 205×109 

Density(ρ) 7850 Kg/m2 

Length(l) 1.93m 

Breadth(b) 0.252m 

Depth(d) 0.3m 

 

Case study: 

A cantilever beam of length 1.93m, breadth(b) of 0.252m and depth(d) of 0.3m shown in figure(4.1) is 

divided into 12 elements equally. Natural frequencies of the cantilever beam are calculated by considering the 

following situations: 

1. Increasing the depth(d) of the beam by 5% 

2. Increasing the breadth(b) and depth(d) of the beam by 5% 

3. Decreasing the depth(d) of the beam by 5% 

4. Decreasing the breadth(b) and depth(d) of the beam by 5% 

5.  

 
L=1.93m, b=0.252 m, d=0.3m 

FIG: Cantilever Beam 
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Increasing the depth of the beam by 5% 

By using the polynomial regression method the natural frequencies of cantilever beam for increasing the 

depth(d) by 5% are as follows: 

𝑓𝑛 =α1+ α2b+ α3d+ α4b
2
+ α5d

2
+ α6bd 

α1= 4.0431800437165233E+00                                   α2= 1.0188813710176134E+00 

α3= 1.6334663458418589E+02                                    α4= 2.5675810549677180E-01 

α5= 3.7744208961411381E+01 α6=4.1163351915215031E+01 

 

Table: Increasing the depth of the beam by 5% 
Breadth(b) Depth(d) ƒn (FEM) ƒn (Regression) %Error 

0.252 0.3 59.9 59.82916 -0.11826 

0.252 0.315 62.996 62.78315 -0.33788 

0.252 0.33 65.99655 65.75412 -0.36733 

0.252 0.345 67.54248 68.74208 1.776069 

0.252 0.36 71.99541 71.74702 -0.345 

0.252 0.375 74.99559 74.76895 -0.30221 

0.252 0.39 77.99567 77.80786 -0.24079 

0.252 0.405 80.98938 80.86376 -0.15512 

0.252 0.42 83.99401 83.93664 -0.06831 

0.252 0.435 86.99386 87.0265 0.037519 

0.252 0.45 89.99364 90.13336 0.155249 

 

Increasing the breadth(b) and depth(d) by 5% 

By using the polynomial regression method the natural frequencies of cantilever beam for increasing the 

breadth(b) and depth(d) by 5% are as follows: 

ƒ𝑛 =α1+ α2b+ α3d+ α4b
2
+ α5d

2
+ α6bd 

α1= 1.0321982796935379E-02                       α2= 9.8463663462260911E+01 

α3= 1.1721864697888201E+02α4= 2.5061115923598720E-02α5= 3.5517454540212157E-02 

α6=2.9834661813843866E-02 

 

Table: Increasing the breadth(b) and depth(d) by 5% 
Breadth(b) Depth(d) ƒn (FEM) ƒn (Regression) %Error 

0.252 0.3 59.99529 59.9958 0.000852 

0.2646 0.315 62.99601 62.99545 -0.0009 

0.2772 0.33 65.99655 65.99513 -0.00216 

0.2898 0.345 68.99509 68.99484 -0.00036 

0.3024 0.36 71.99013 71.99459 -0.006197 

0.315 0.375 74.99593 74.99437 -0.00207 

0.3276 0.39 77.99567 77.99419 -0.00189 

0.3402 0.405 80.99407 80.99405 -3.1E-05 

0.3528 0.42 83.99401 83.99394 -8.6E-05 

0.3654 0.435 86.99366 86.99387 0.00023 

0.378 0.45 89.99364 89.99383 0.000205 

 

Decreasing the depth(d) of the beam by 5%  

By using the polynomial regression method the natural frequencies of cantilever beam for decreasing the 

depth(d) by 5% are as follows: 

ƒ𝑛 =α1+ α2b+ α3d+ α4b
2
+ α5d

2
+ α6bd 

α1= -3.2325620284851558E-02                                   α2= -8.1460563085897775E-03 

α3= 2.0868197121130873E+02                      α4= -2.0528061901838868E-03 

α5= -5.4208754208936583E-01α6=5.2587856745250306E+01 

 

Table: Decreasing the depth(d) of the beam by 5% 
Breadth(b) Depth(d) ƒn (FEM) ƒn (Regression) %Error 

0.252 0.3 59.99529 59.99549 0.00033 

0.252 0.285 56.99658 56.99608 -0.00088 

0.252 0.27 53.99553 53.99634 0.0015 

0.252 0.255 50.99668 50.99658 -0.00019 

0.252 0.24 47.99703 47.99682 -0.00043 

0.252 0.225 44.99724 44.99704 -0.00046 

0.252 0.21 41.99731 41.99724 -0.00015 

0.252 0.195 38.99751 38.99744 -0.00017 

0.252 0.18 35.99753 35.99762 0.000267 

0.252 0.165 32.9977 32.99779 0.000288 

0.252 0.15 29.99807 29.99795 -0.00039 
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Decreasing the Breadth(b) and Depth(d) of the beam by 5% 

By using the polynomial regression method the natural frequencies of cantilever beam for decreasing the 

breadth(b) and depth(d) by 5% are as follows: 

ƒ𝑛 = α1+ α2b+ α3d+ α4b
2
+ α5d

2
+ α6bd 

α1= -4.5607194547678632E-05                     α2= 6.3630095325351022E-01 

α3= 1.9946185738721016E+02                     α4= 2.3860827295949868E+01 

α5= 1.8618245239608640E+01  α6=-4.2252242462718542E+01 

 

Table: Decreasing the Breadth(b) and Depth(d) of the beam by 5% 
Breadth(b) Depth(d) ƒn (FEM) ƒn (Regression) %Error 

0.252 0.3 59.99529 59.99549 0.00033 

0.2394 0.285 56.99658 56.99587 -0.00124 

0.2268 0.27 53.99553 53.99624 0.001318 

0.2142 0.255 50.99668 50.99659 -0.00018 

0.2016 0.24 47.99703 47.99682 -0.00021 

0.189 0.225 44.99724 44.99724 -1.1E-05 

0.1674 0.21 41.99731 41.99784 0.00126 

0.1548 0.195 38.99881 38.99783 -0.00251 

0.1422 0.18 35.99753 35.9978 0.000757 

0.1296 0.165 32.99693 32.99776 0.002499 

0.117 0.15 29.99807 29.99769 -0.00124 

 

III. Results 
From this work the following results are drawn. Natural frequencies of the cantilever beam are obtained 

for dynamic analysis of the beam from conventional equations, ANSYS 10.0 software, FEM using MAT LAB 

and polynomial regression method by considering the various situations. The maximum and minimum errors are 

obtained when the results of regression method are compared with conventional equations, FEM and ANSYS. 

 

Table: Results Comparison For Cantilever Beam 

Table 6.1 Results Comparison For Cantilever Beam 

 

IV. Conclusions & Future Scope 
Conclusions 

The following are the conclusions drawn from the work 

a. The Natural frequencies of the Cantilever beam by using conventional equations and ANSYS 10.0 software 

are exactly equal. 

b. The results obtained from FEM are approximately nearer to conventional results. By considering more 

number of elements we get nearer values. 

c. The Reanalysis was carried out using Polynomial Regression Method for the four situations considered in 

the case study. 
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