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Abstract: In this paper a materially damped linear homogeneous beam-like equation has been considered. The 

viscoelastic beam is simply supported at both ends, whereas general initial conditions are considered. From 

mechanical and physical point of view the problem describes a mathematical model of internally damped 

transversal vibrations of a moving conveyor belt or a viscoelastic chain drive. From Hamilton’s principle, a 

fifth order partial differential equation (PDE) for axially moving continuum has been formulated. The axial 

speed of the beam is considered to be positive, constant and small compared to wave velocity, and it is also 

assumed that the introduced material damping is relatively small. The solutions of equation of motion are based 

upon a two timescales perturbation method. By application of this perturbation method, it has been shown that 

the material damping does in fact affect the solution responses, and it reduces the vibration and noise in the 

system. It has also been shown that the material damping generated in the system depends on the mode number 

n, which is obviously expected from mechanical point of view. 
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I. Introduction 

In world around us, almost all physical, structural, and mechanical systems are generally appearing into 

class of the oscillatory systems. Axially translating systems, for example, are appearing in such category. 

Axially translating systems have received much research attention since last six decades. Axially translating 

systems have been observed in many practical and engineering applications. The energy dissipation, known as 

damping, can easily be associated to axially translating systems, see Refs.[1-3]. Axially translating systems have 

many engineering applications. For example, conveyor belt systems, as given in Refs. [4-6], magnetic tapes, 

pipes conveying fluids, data saving devices, and elevator cable systems, see Ref. [5], and all such kind of 

systems are bound to vibrations. The study of axially translating systems with constant or time-varying velocity 

with viscous, material or boundary damping have received much importance in manufacture and design. It is 

common experience that the vibration causes severe failures to many mechanical or physical structures. From 

this viewpoint, it becomes necessary to design systems where unnecessary noise and vibrations can be reduced 

by means of solid procedures. Tacoma Narrows bridge is a good example being taught in education and research 

institutes for a complete structural collapse. This collapse was due to winds at certain speed. Apart from 

damaging structures, the vibration also causes human problems, that is, vibrations create anxiety to society. 

Keeping in view the effects of vibrations, it is matter of necessity to formulate methods and devise procedures to 

decrease vibrations from the physical and mechanical systems. 

In several cases, damping devices can be kept through the support conditions to control vibrations 

through boundaries as seen in Refs. [4-7]. In Ref. [8] the damping device is introduced through whole spatial 

domain of the translating system. The reflection and damping properties for a wave equation have been studied 

in Ref. [9], where the authors have provided interesting results for a semi-infinite string. For different boundary 

conditions, in Ref. [10], the authors have provided detailed analysis for the energetics of the elevator cable 

systems. The authors, in Ref. [11], studied the energetics of an axially translating continuum, where they studied 

the case for fixed supports for string-like problem and the case for simple supports in case of beam-like 

problem. In Ref. [12], authors have provided detailed analysis of dampers connected at middle of string as well 

as beam. But the position of the damper always plays a significant role. If the damper is introduced at wrong 

spatial position it may increase energy of motion and may destabilize the system, for details see Ref. [13]. 

In this article, a materially damped beam-type equation has been considered. The paper is organized in 

the following way. In Sec. 2 the governing equations of motions are formulated based upon the Hamilton’s 

principle. In Sec. 3 the analytic approximations of the solutions of an initial-boundary value problem have been 

obtained by using method of multiple timescales. Sec. 4 discusses results obtained in Sec. 3, and Sec. 

5represents the concluding remarks and directions for future research. 
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II. The Governing Equations 
The mathematical model of a traveling tensioned beam under material damping is based upon the 

following assumptions:𝑢(𝑥, 𝑡) models the displacement field in vertical direction from equilibrium position, the 

mass of beam per unit length, ρ, is constant, the material damping coefficient 𝛽  is constant, and the effects of 

gravity and other forces are neglected. Thus, the beam-type equation under material damping is given as 

follows, 

 𝜌 𝑢𝑡𝑡 + 2𝑉 𝑢𝑥𝑡 + 𝑉  𝑢𝑥 + 𝑉 2𝑢𝑥𝑥 − 𝑇𝑢𝑥𝑥 + 𝐸𝐼𝑢𝑥𝑥𝑥𝑥 + 𝛽  𝑢𝑥𝑥𝑥𝑥𝑡 + 𝑉 𝑢𝑥𝑥𝑥𝑥𝑥  = 0;  0 < 𝑥 < 𝐿, 𝑡

> 0, 

(1) 

With simply supported boundary conditions, 

 𝑢 0, 𝑡 = 𝑢𝑥𝑥  0, 𝑡 = 𝑢 𝐿, 𝑡 = 𝑢𝑥𝑥 (𝐿, 𝑡) = 0;    𝑡 > 0 (2) 

and the general initial conditions, 

 𝑢 𝑥, 0 = 𝑓 𝑥 , and𝑢𝑡 𝑥, 0 = 𝑔 𝑥 ;   0 < 𝑥 < 𝐿. (3) 

The terms in the bracket into Eq. (1) represent acceleration quantities. The equations contained in (1)-(3) can be 

put into a non-dimensional form by using following dimensionless quantities: 

𝑢∗ =
𝑢

𝐿
, 𝑥∗ =

𝑥

𝐿
, 𝑡∗ =

𝑐𝑡

𝐿
,𝑉0 =

𝑉 

𝑐
, 𝜇 =

𝐸𝐼

𝜌𝑐2𝐿2 , 𝛿0 =
𝛽 

𝜌𝑐 𝐿3 , 𝑓∗ =
𝑓

𝐿
,𝑔∗ =

𝑔

𝑐
, where 𝑐 =  𝑇/𝜌 is the wave 

velocity.Thus, the equations (1)-(3) into non-dimensional form become: 

 𝑢𝑡𝑡 + 2𝑉0𝑢𝑥𝑡 + 𝑉 0𝑢𝑥 +  𝑉0
2 − 1 𝑢𝑥𝑥 + 𝜇𝑢𝑥𝑥𝑥𝑥 + 𝛿0 𝑢𝑥𝑥𝑥𝑥𝑡 + 𝑉0𝑢𝑥𝑥𝑥𝑥𝑥  = 0; 

0 < 𝑥 < 1, 𝑡 ≥ 0. 

(4) 

 

The boundary conditions are given as, 

 𝑢 0, 𝑡 = 𝑢𝑥𝑥  0, 𝑡 = 0, and 𝑢 1, 𝑡 = 𝑢𝑥𝑥 (1, 𝑡) = 0; 𝑡 ≥ 0. (5) 

   

The initial conditions are given as, 

 𝑢 𝑥, 0 = 𝑓 𝑥 , and 𝑢𝑡 𝑥, 0 = 𝑔 𝑥 ; 0 < 𝑥 < 1. (6) 

 

III. The Analytic Approximations 
In this section an approximation of the solutions to the IBVP (4)-(6) by using a multiple timescales 

perturbation method is constructed. For a complete overview of this method, see Refs. [14-16]. Following two 

assumptions are made to utilize a this method. The velocity 𝑉  of the beam is assumed to be small compared to 

wave velocity c and that the damping coefficient 𝛽  is small compared to 𝜌𝑐𝐿3. Thus, it is reasonable to write 

𝑉0 =
𝑉

𝑐

 
= 𝑂(𝜀), and 𝛿0 =

𝛽 

𝜌𝑐 𝐿3 = 𝑂(𝜀), that is, 𝑉0 = 𝜀𝑉 and𝛿0 = 𝜀𝛿.The parameter ε is a dimensionless small 

parameter as described by 0 < 𝜀 ≪ 1. Utilizing these assumptions in Eqs. (4)-(6), it follows that 

 𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝜇𝑢𝑥𝑥𝑥𝑥 = −2𝜀𝑉𝑢𝑥𝑡 − 𝜀2𝑉2𝑢𝑥𝑥 − 𝜀𝛿𝑢𝑥𝑥𝑥𝑥𝑡 − 𝜀2𝛿𝑉𝑢𝑥𝑥𝑥𝑥𝑥 , (7) 

 

 𝑢 0, 𝑡; 𝜀 = 𝑢𝑥𝑥  0, 𝑡; 𝜀 = 0, and 𝑢 1, 𝑡; 𝜀 = 𝑢𝑥𝑥 (1, 𝑡; 𝜀) = 0, (8) 

 

 𝑢 𝑥, 0; 𝜀 = 𝑓 𝑥 ,   and𝑢𝑡 𝑥, 0; 𝜀 = 𝑔(𝑥). (9) 

According to a two timescales method a function 𝑢(𝑥, 𝑡; 𝜀) is supposed to be a function of spatial variable x, the 

fast timescale t=t and, the slow timescale τ=εt. For this reason, 

 𝑢(𝑥, 𝑡; 𝜀) = 𝑦(𝑥, 𝑡, 𝜏; 𝜀). (10) 

By using Eq. (10), the time derivatives can be transformed as follows, 

 𝑢𝑡 = 𝑦𝑡 + 𝜀𝑦𝜏 , 
𝑢𝑡𝑡 = 𝑦𝑡𝑡 + 2𝜀𝑦𝑡𝜏 + 𝜀2𝑦𝜏𝜏 . 

(11) 

By substituting Eqs. (10)-(11) into Eqs. (7)-(9), the problem in yup to O(ε) is given as follows, 

 𝑦𝑡𝑡 − 𝑦𝑥𝑥 + 𝜇𝑦𝑥𝑥𝑥𝑥 = −2𝜀𝑦𝑡𝜏 − 2𝜀𝑉𝑦𝑥𝑡 − 𝜀𝛿𝑦𝑥𝑥𝑥𝑥𝑡 , 
 𝑦 0, 𝑡, 𝜏; 𝜀 = 𝑦𝑥𝑥  0, 𝑡, 𝜏; 𝜀 = 𝑦 1, 𝑡, 𝜏; 𝜀 = 𝑦𝑥𝑥 (1, 𝑡, 𝜏; 𝜀) = 0, 

𝑦 𝑥, 0,0; 𝜀 = 𝑓 𝑥 , 𝑦𝑡 𝑥, 0,0; 𝜀 = 𝑔 𝑥 − 𝜀𝑦𝜏(𝑥, 0,0; 𝜀) . 
 

(12) 

It is assumed that not only𝑢(𝑥, 𝑡; 𝜀)can be approximated by the asymptotic expansion, but also𝑢(𝑥, 𝑡; 𝜀) =
𝑦(𝑥, 𝑡, 𝜏; 𝜀) can be approximated in the powers of ε in the asymptotic expansion as, 

 𝑦 𝑥, 𝑡, 𝜏; 𝜀 = 𝑦0 𝑥, 𝑡, 𝜏 + 𝜀𝑦1 𝑥, 𝑡, 𝜏 + 𝜀2 ⋯, (13) 

and that all the 𝑦𝑗 ’s for 𝑗 = 0,1,2,⋯, are found in such a way that no unbounded (secular) terms arise. It is also 

assumed that the unknown functions 𝑦𝑗  are 𝑂 1 . Now, by substituting Eq. (13) and its subsequent derivatives 

into Eq. (12), then by equating the powers of 𝜀0and𝜀1, and neglecting the 𝜀2 and the higher powers of 𝜀, the 

𝑂(1)-problem is followed as given by, 

 𝑦0𝑡𝑡
− 𝑦0𝑥𝑥

+ 𝜇𝑦0𝑥𝑥𝑥𝑥
= 0, 

𝑦0 0, 𝑡, 𝜏 = 𝑦0𝑥𝑥
 0, 𝑡, 𝜏 = 𝑦0 1, 𝑡, 𝜏 = 𝑦0𝑥𝑥

(1, 𝑡, 𝜏) = 0, 

(14) 
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𝑦0 𝑥, 0,0 = 𝑓 𝑥 , 𝑦0𝑡
 𝑥, 0,0 = 𝑔 𝑥 . 

 

The 𝑂(𝜀)-problem is given as, 

 𝑦1𝑡𝑡
− 𝑦1𝑥𝑥

+ 𝜇𝑦1𝑥𝑥𝑥𝑥
= −2𝑦0𝑡𝜏

− 2𝑉𝑦0𝑥𝑡
− 𝛿𝑦0𝑥𝑥𝑥𝑥𝑡

, 

𝑦1 0, 𝑡, 𝜏 = 𝑦1𝑥𝑥
 0, 𝑡, 𝜏 = 𝑦1 0, 𝑡, 𝜏 = 𝑦1𝑥𝑥

(1, 𝑡, 𝜏) = 0, 

𝑦1 𝑥, 0,0 = 0, 𝑦1𝑡
 𝑥, 0,0 = −𝑦0𝜏

(𝑥, 0,0). 

(15) 

It can be observed that the 𝑂 1 -problem has solution only for the positive eigenvalues, 𝜆 = 𝜆𝑛 = 𝑛2𝜋2(1 +
𝑛2𝜋2𝜇),𝑛 ∈ ℕ, Ref. [17,18]. Thus, the solution of 𝑂 1 -problem is given as, 

 
𝑦0(𝑥, 𝑡, 𝜏) =   𝐴𝑛0 𝜏 cos  𝜆𝑛𝑡 + 𝐵𝑛0 𝜏 sin  𝜆𝑛𝑡  

∞

𝑛=1

𝜙𝑛(𝑥), 
(16) 

where 𝜙𝑛 𝑥 = sin 𝛾𝑛𝑥 −
sin  𝛾𝑛  

sinh  𝛽𝑛  
sinh⁡(𝛽𝑛𝑥) are the eigenfunctions with 𝛾𝑛 =  

−1+ 4𝜆𝑛𝜇+1

2𝜇
, and 𝛽𝑛 =

 
1+ 4𝜆𝑛𝜇+1

2𝜇
, and where 𝐴𝑛0and𝐵𝑛0 are undetermined functions. They can be obtained from the 𝑂(𝜀)-

problem.The values of the constants 𝐴𝑛0 0 and𝐵𝑛0(0) can easily be obtained by the initial values as given in 

Eq. (14) and by using the orthogonality properties of the eigenfunctions. The eigenfunctions 𝜙𝑝 𝑥 , 𝑝 ∈ ℕ 

satisfy the following orthogonality properties, 

 
 𝜙𝑝 𝑥 𝜙𝑞(𝑥)𝑑𝑥

1

0

= 0, for 𝑝 ≠ 𝑞 

                                    ≠ 0, for 𝑝 = 𝑞. 

(17) 

Thus, by using the initial values as given in Eq. (14) and the orthogonality properties of the eigenfunctions as 

given in Eq. (17), 𝐴𝑛0and𝐵𝑛0 are given as 

 

𝐴𝑛0 0 =
 𝑓 𝑥 𝜙𝑛 𝑥 

1

0
𝑑𝑥

 𝜙𝑛
2(𝑥)𝑑𝑥

1

0

, 
(18) 

 

 𝜆𝑛𝐵𝑛0 0 =
 𝑔 𝑥 

1

0
𝜙𝑛 𝑥 𝑑𝑥

 𝜙𝑛
2 𝑥 𝑑𝑥

1

0

. 
(19) 

Now, the eigenfunction expansion method is introduced in solving the 𝑂(𝜀)-problem. Following form for the 

solution 𝑦1(𝑥, 𝑡, 𝜏) is assumed,  

 
𝑦1 𝑥, 𝑡, 𝜏 =  𝑤𝑛 𝑡, 𝜏 𝜙𝑛(𝑥)

∞

𝑛=1

, 
(20) 

where 𝑤𝑛(𝑡, 𝜏) are the unknown functions of tandτ, and where 𝜙𝑛(𝑥) are the given eigenfunctions. Thus, by 

substitution of Eq. (20) in the 𝑂(𝜀)-equation, it yields 

 
  𝑤𝑛𝑡𝑡

 𝑡, 𝜏 + 𝜆𝑛𝑤𝑛 𝑡, 𝜏  𝜙𝑛(𝑥)

∞

𝑛=1

= −2𝑦0𝑡𝜏
− 2𝑉𝑦0𝑥𝑡

− 𝛿𝑦0𝑥𝑥𝑥𝑥𝑡
. 

(21) 

Now, by substitution of the solution 𝑦0(𝑥, 𝑡, 𝜏) from Eq. (16) into Eq. (21), it follows that 

 
  𝑤𝑛𝑡𝑡

 𝑡, 𝜏 + 𝜆𝑛𝑤𝑛 𝑡, 𝜏  𝜙𝑛 𝑥 

∞

𝑛=1

= −2  𝑅𝑛 𝑡𝜏
 𝑡, 𝜏 

∞

𝑛=1

𝜙𝑛 𝑥 − 2𝑉 𝑅𝑛 𝑡
 𝑡, 𝜏 

∞

𝑛=1

𝜙𝑛
′  𝑥 

− 𝛿 𝑅𝑛 𝑡
 𝑡, 𝜏 

∞

𝑛=1

𝜙𝑛
(𝑖𝑣) 𝑥 , 

 

(22) 

where 𝑅𝑛 𝑡, 𝜏  is given by, 

 𝑅𝑛 𝑡, 𝜏 = 𝐴𝑛0 𝜏 cos  𝜆𝑛𝑡 + 𝐵𝑛0 𝜏 sin  𝜆𝑛 𝑡 . (23) 

By multiplying both sides of Eq. (22) with 𝜙𝑚 (𝑥), then by integrating so-obtained equation from 𝑥 = 0 to 𝑥 =
1 with application of the orthogonality property of eigenfunctions, it follows that 

 𝑤𝑚 𝑡𝑡
 𝑡, 𝜏 + 𝜆𝑚𝑤𝑚  𝑡, 𝜏 

= −2𝑅𝑚𝑡𝜏
− 2𝑉𝑅𝑚𝑡

Θ𝑚𝑚 − 𝛿𝑅𝑚𝑡
𝛥𝑚𝑚 −  (2𝑉𝑅𝑛 𝑡

Θ𝑛𝑚 + 𝛿𝑅𝑛 𝑡
𝛥𝑛𝑚 )

∞

𝑛=1,𝑛≠𝑚

, 

 

(24) 
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where Θ𝑛𝑚 and𝛥𝑛𝑚  are constants depending on the indices m and n, and their values are given as follows 

 

Θ𝑛𝑚 =
 𝜙𝑛

′  𝑥 𝜙𝑚(𝑥)𝑑𝑥
1

0

 𝜙𝑚
2 (𝑥)𝑑𝑥

1

0

, 

𝛥𝑛𝑚 =
 𝜙𝑛

 𝑖𝑣  𝑥 𝜙𝑚(𝑥)𝑑𝑥
1

0

 𝜙𝑚
2 (𝑥)𝑑𝑥

1

0

. 

(25) 

Note that Θ𝑚𝑚 = 0 for all integers m, whereas 𝛥𝑚𝑚 =  𝜙𝑛
′′2(𝑥)𝑑𝑥

1

0
> 0. Thus, by using this value of Θ𝑚𝑚 , 

changing index from m to n and making use of Eq. (23) into Eq. (24), it readily follows that 

 𝑤𝑛 𝑡𝑡
+ 𝜆𝑛𝑤𝑛 =  𝜆𝑛  2𝐴𝑛0

′  𝜏 + 𝛿𝛥𝑛𝑛𝐴𝑛0 𝜏  sin  𝜆𝑛𝑡 

−  𝜆𝑛  2𝐵𝑛0
′  𝜏 + 𝛿𝛥𝑛𝑛𝐵𝑛0 𝜏  cos  𝜆𝑛𝑡 

+  { 2𝑉𝛩𝑚𝑛 + 𝛿𝛥𝑚𝑛   𝜆𝑚

∞

𝑚=1,𝑚≠𝑛

𝐴𝑚0 𝜏 sin  𝜆𝑚 𝑡 

−  2𝑉𝛩𝑚𝑛 + 𝛿𝛥𝑚𝑛   𝜆𝑚𝐵𝑚0(𝜏)cos⁡( 𝜆𝑚 𝑡)}  
 

(26) 

On right hand side of Eq. (26) first two terms are solutions of the homogeneous equation. Such terms will give 

rise to secular terms in 𝑤𝑛(𝑡, 𝜏). Since it is assumed that the functions 𝑦0 𝑥, 𝑡, 𝜏 , 𝑦1 𝑥, 𝑡, 𝜏 ,⋯ are bounded on 

timescale of 𝑂(𝜀−1). Thus, to have secular free behavior, the following solvability conditions are imposed in 

Eq. (26), 

 
𝐴𝑛0

′  𝜏 + 𝛥𝑛𝑛

𝛿

2
𝐴𝑛0 𝜏 = 0, 

𝐵𝑛0
′  𝜏 + 𝛥𝑛𝑛

𝛿

2
𝐵𝑛0 𝜏 = 0. 

(27) 

The solutions to above system of two uncoupled ordinary differential equations in (27) are given as follows 

 
𝐴𝑛0 𝜏 = 𝐴𝑛0 0 e−𝛥𝑛𝑛

𝛿

2
𝜏 , 

𝐵𝑛0 𝜏 = 𝐵𝑛0 0 e−𝛥𝑛𝑛
𝛿

2
𝜏 , 

(28) 

where 𝐴𝑛0 0 and𝐵𝑛0(0) are given in Eqs. (18) and (19), respectively. Thus, by using Eq. (28) into Eq. (16), the 

complete solution to the𝑂(1)-problem is given as follows, 

 
𝑦0 𝑥, 𝑡, 𝜏 =  e−𝛥𝑛𝑛

𝛿

2
𝜏 𝐴𝑛0 0 cos  𝜆𝑛𝑡 + 𝐵𝑛0 0 sin  𝜆𝑛𝑡  

∞

𝑛=1

𝜙𝑛(𝑥). 
(29) 

Now, by substituting 𝜏 = 𝜀𝑡 into the expression,−𝛥𝑛𝑛
𝛿

2
𝜏, and then dividing the so-obtained expression by t, the 

damping parameter Γ𝑛  for all the oscillation modes can be approximated by, 

 
Γ𝑛 = −𝜀𝛥𝑛𝑛

𝛿

2
. 

(30) 

From Eq. (26) with Eq. (27), it follows that 

 
𝑤𝑛 𝑡𝑡

+  𝑛𝜋 2𝑤𝑛 =   2𝑉𝛩𝑚𝑛 + 𝛿𝛥𝑚𝑛   𝜆𝑚 (

∞

𝑚=1,𝑚≠𝑛

𝐴𝑚0 𝜏 sin  𝜆𝑚 𝑡 

− 𝐵𝑚0(𝜏)cos⁡( 𝜆𝑚 𝑡)). 
 

(31) 

Now, it can be seen that the Eq. (31) is a second order nonhomogeneous ODE in 𝑤𝑛(𝑡, 𝜏). Thus, the solution to 

Eq. (31) is given as 

 𝑤𝑛 𝑡, 𝜏 = 𝐴𝑛1 𝜏 cos  𝜆𝑛𝑡 + 𝐵𝑛1 𝜏 sin  𝜆𝑛𝑡 

+  
 2𝑉𝛩𝑚𝑛 + 𝛿𝛥𝑚𝑛   𝜆𝑚

𝜆𝑛 − 𝜆𝑚

∞

𝑚=1,𝑚≠𝑛

 𝐴𝑚0 𝜏 cos  𝜆𝑚 𝑡 

− 𝐵𝑚0 𝜏 sin  𝜆𝑚 𝑡  , 

(32) 

 

where 𝐴𝑛1 𝜏 and𝐵𝑛1(𝜏) areyet undetermined functions of a slow variable τ, these functions can be obtained 

from the 𝑂(𝜀2)-problem. Thus, the Eq. (20) with Eq. (32) can be expressed as 
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𝑦1 𝑥, 𝑡, 𝜏 =   𝐴𝑛1 𝜏 cos  𝜆𝑛𝑡 + 𝐵𝑛1 𝜏 sin  𝜆𝑛𝑡 

∞

𝑛=1

+  
 2𝑉𝛩𝑚𝑛 + 𝛿𝛥𝑚𝑛   𝜆𝑚

𝜆𝑛 − 𝜆𝑚

∞

𝑚=1,𝑚≠𝑛

 𝐴𝑚0 𝜏 cos  𝜆𝑚 𝑡 

− 𝐵𝑚0 𝜏 sin  𝜆𝑚 𝑡   𝜙𝑛(𝑥). 

(33) 

Now, by using the inner product (17) and the initial values in Eq. (15) with Eq. (16) into Eq. (33), it follows that 

𝐴𝑛1 0 and𝐵𝑛1(0) are given by 

 
𝐴𝑛1 0 = −  

 2𝑉𝛩𝑚𝑛 + 𝛿𝛥𝑚𝑛   𝜆𝑚
𝜆𝑛 − 𝜆𝑚

𝐴𝑚0 0 

∞

𝑚=1,𝑚≠𝑛

, 
(34) 

 

 
 𝜆𝑛𝐵𝑛1 0 =  

 2𝑉𝛩𝑚𝑛 + 𝛿𝛥𝑚𝑛  𝜆𝑚
𝜆𝑛 − 𝜆𝑚

𝐵𝑚0 0 

∞

𝑚=1,𝑚≠𝑛

− 𝐴𝑛0
′  0 . 

(35) 

It can be seen that the solution 𝑦1(𝑥, 𝑡, 𝜏) still contains infinitely many undetermined functions 

𝐴𝑛1 𝜏 and𝐵𝑛1 𝜏 , for 𝑛 ∈ ℕ. These unknown functions can be used to avoid secular terms in solution 

𝑦2(𝑥, 𝑡, 𝜏). At this time, it is not reasonable to construct the higher order calculations. This is a reason, we can 

take 𝐴𝑛1 𝜏 = 𝐴𝑛1 0 and𝐵𝑛1 𝜏 = 𝐵𝑛1(0). So far, a asymptotic expansion 𝑦 𝑥, 𝑡, 𝜏 = 𝑦0 𝑥, 𝑡, 𝜏 +
𝜀𝑦1(𝑥, 𝑡, 𝜏) has been constructed for 𝑢(𝑥, 𝑡). 

 

IV. Results and Discussion 
This section is all about to comment, to interpret and to explain the results obtained in Sec. 3. Using the 

complete analytical solution of the 𝑂(1)-problem, the influence of small parameter 𝜀 and the damping 

parameter on the axially moving system will be discussed in detail. By using the 𝑂(1)-solution and the 𝑂(𝜀)-

solution, it yields 

𝑢 𝑥, 𝑡 =  e−𝛥𝑛𝑛
𝛿

2
𝜀𝑡  𝐴𝑛0 0 cos  𝜆𝑛𝑡 + 𝐵𝑛0 0 sin  𝜆𝑛𝑡  

∞

𝑛=1

𝜙𝑛 𝑥 , 

where 𝐴𝑛0 0 and𝐵𝑛0(0) are given by Eqs. (18) and (19). From physical point of view, all terms can be 

explained in above solution to the IBVP (4)-(6).The terms𝐴𝑛0 0 cos  𝜆𝑛𝑡 + 𝐵𝑛0 0 sin  𝜆𝑛𝑡  arethe 

oscillation terms obtained from a time-dependent part of the equation. These terms oscillate with frequencies 

𝑛𝜋 1 + 𝑛2𝜋2𝜇 for𝑛 ∈ 𝑁. The term e−𝛥𝑛𝑛
𝛿

2
𝜀𝑡

is occurring due to material damping. This term shows that as the 

time parameter t will increase for fixed values of   and   the size of the oscillation amplitudes An0(0) and 

Bn0(0) will start to decrease and it is also shown that as mode number n starts to increase the oscillation 

amplitudes tend to decrease for fixed 𝛿,𝜀, and t. The last term 𝜙𝑛(𝑥) is the solution of the space-dependent part 

which describes the shapes of the oscillation curves along x-axis. 

 

V. Conclusions and Future Work 
In this paper, an initial-boundary value problem (IBVP) for the materially damped axially translating 

continuum has been studied. Solving the IBVP a method of two timescales has successfully been applied to 

obtain the analytic solutions of a mathematical model which describes the transversal vibrations of a conveyor 

belt system. It has been shown, in this paper, that all oscillation modes are damped for the system. It has also 

been shown that damping rates are, in fact, depending on mode numbers n. From mechanical point of view, this 

response is reasonable because as oscillations increase the more heat is generated in the system which internally 

damps the vibratory energy of motion. As modes increase the oscillation amplitudes decrease and the belt 

system gets stable. This research problem can further be extended to internal damping of an axially translating 

string as well as axially translating beam with time-dependent axial velocities. 
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