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Abstract: An approach for interactive bi-criteria smoothing of experimental data is proposed using the system 

(S-G) filter of Salvitzky-Golay. An optimization problem is formulated with the controversial criteria: “total 

absolute error” and “integral smoothness”. For the choice of adjusting parameters of the filter – the degree of 

the approximation of polynomial and the number of the supporting points is used. A Pareto-optimal solution set 

is determined for this problem. Then subsets of Pareto-optimal solutions are found by employing the -selection 

method, which are aranged by their extended efficiency. The solution with the highest rank of efficiency is the 

Salukvadze-optimum of the formulated extremal problem. The proposed approach allows choosing reasonably a 

variant of (S-G) filter parameters having adequate representation and smoothness. An example of smoothing the 

measured values of an acceleration of free damped vibrations in the propulsion mechanism of a vibrobot is 

provided and analyzed. 

Keywords: bi-criteria optimization, data smoothing, Savitzky-Golay filter, -selection, Salukvadze-optimum 

 

I. Introduction 

Very often the data of measured values of the magnitude of a particular variable carry additional noise of 

unknown frequency and source of origin that could compromise the data specified by the characteristics of the 

actual process. For example the parametric identification of one-dimensional damped oscillations of a queasy-

linear object accompanied by a high-frequency disturbance is hampered by an inaccurate determination of 

amplitude values, the queasy-period and the logarithmic decrement of decay of the oscillating process.  

In such cases the analysis of the experimental data and the synthesis of an adequate theoretical model for 

their simulation generally require a prior smoothing of the data. For this reason the already developed methods 

and procedures for processing of signals with the help of smoothing filters are used. Filters are created with 

different complexity, accuracy, degree of smoothness, adaptability and efficiency [1], [2] [3] [4] [5] [6] [7]. The 

existing diversity of filters is conditioned by the above mentioned contradicting characteristics and filters 

inability to be combined together in a universal filter. 

The development of more sophisticated filters cannot solve uniquely the main dilemma in any filtering – 

the achievement of sufficient smoothness by removing much of the noise and the acceptable loss ratio to the 

data of the physical experiment [8]. The choice of unique compromise to the conflicting criteria is always a 

subjective act.  

In this work interactive approach is proposed for solving this problem by selecting valid values of the 

controlled parameters of the subject filter, which are arranged in a compromised efficiency of Pareto-optimal 

solutions. 

II. Filter of Savitzki-Golay 

In the work [9] a classic version of a smoothing filter based on a method proposed by [10] is considered. The 

idea of the method is illustrated in Fig. 1. The smoothed value ai
g
 by the method of least squares (MLS) at the  

point ti is obtained as the value at that point of polynomial pi (t)  p(ti) of n degree, approximating a set of 

creeping fixed number of adjacent measured points, ai
е
, i = 1,

  
2,…,

 
ne. In Fig. 1 with nL the number of points, 

located to the left of the point ti, and with nR – the number of points located on the right of the same point. The 

polynomial pi(t) uses as supporting m
 
=

 
nL+

 
nR+1 points. In the process of smoothing the strip that contains m 

points is moved incrementally to the right. At every new step it includes a new point on the right and the left 

endpoint is excluded. 

Effective methods and computer programs for determining the coefficients bk of the approximation 

polynomial pi (t) =∑
0

 
n

k 

[bk (t – ti)/(ti+1 – ti)]
k
 are described in [2] and [3].  

For the realization of the smoothing process with the (S-G)-filter, in this study the function sgolayfilt of 

the Signal Processing Toolbox of MATLAB system is used [11]. 
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Fig. 1 shows smoothing with the polynomial p

i
 (t) which is determined by the MLS 

 

III. Criteria for Optimality 
The choice of tunable parameters of the filter (S-G)-degree n of the approximating polynomial and number m of 

the supporting points in the smoothing strip is appropriate to be carried out by Pareto-optimal [12] values 

determined for the controversial criteria "total absolute error": 

(1) J = ∑
1

en

i 

| a
i

e
 – a

i

g
 |, 

and the integral smoothness:  

(2) I = ∫
0

ft

 [d
2
a

g
(t)/dt

2
]

2
dt, 

where: ai
e
  a

e
(ti) and ai

g
  a

g
(ti) are the measured and smoothed values of the function a(t) respectively and nе is 

the number of discrete values ai
e
 for ti 

 
[0,

 
tf ],  i = 1, 2, …, ne. 

The criterion (1) is a measure of adequacy of the smoothed values ai
g
 with respect to the measured ai

e
 

ones. The criterion (2) characterizes the degree of smoothing of the approximating function ai
g
.  

Since ai
g
 is a discrete function, the integral (2) is replaced with the nearest constant by the differential 

analog I
 


 ∑
1-

2=

en

i

(a
i+1

g 
–

 
2a

i

g 
+

 
a

i–1

g 
)

2
. 

For determining the second derivative [a
g
(ti)]

2
 the MATLAB function “diff” is employed [13]. 

IV. Optimization Task 
The choice of optimal in terms of criteria (1) and (2) compromise values of the tunable parameters n and m of 

the (G-S)-filter can take place after solving the Bi-criteria extreme task (3): 

 u* = arg
 
Pmin

 
uD f(u), 

(3) f = [J(u), I(u)],   u = [n,
 
m], 

 D  {uЕ
2 
: u

–
  u  u

+
}, 

where "Pmin" is the operator for determining the global Pareto-minimum [12] compromise values of the vector 

criterion f in fulfillment of the condition for fitting to the two-dimensional vector u of permitted multiple D – 

being a rectangular area defined by given limiting values – u  and + u of the vector u. 

V. Optimization Procedure 
To solve the task (3) a modified version of the program “psims” for multi-criteria parametric optimization is 

used, as documented in [14]. Optimization is carried out in two stages [9]. 

 In Stage 1 incremental calculation of the criterion vector f (u) for all points of the given net in the 

permissible area D is performed. For those points Pareto-optimal discrete sets D* and P* are determined 

approximately, in the parametric area D and in the reachable criteria region P respectively. 

In Stage 2 arranged by a compromised efficiency Pareto-subsets are selected by using the minimum 

values k*, k
 


 
Ik

 


 
{1,

 
2,

 
3} of the components of the vector criterion 

 
=

 
[1,

 2,
 3]

 
from the multiple M

 

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{(f*)
 


 
E

3
: f*P*}. They correspond to the distances between three characteristic points: positive utopian 

point f
 U

 with components of uncompromised minima of particular criteria; the current compromise point f* and 

its projection f
UN

 on the strait line  UN, which joins both utopian points – the positive f
 U

 and the negative f
 N

  

with components uncompromised maximums of the particular criteria. In General, the minimum distances k* 

correspond to different Pareto-optimal point’s f*. 

With the help of vector criterion 
s
 = [1

s
,
 2

s
,
 3

s
], sIs  {1,

 
2,…,

 
NP}, for each Pareto optimal point 

f*
s 
P* from the set P* is transformed into a point of the multiple M

 


 
{

s
Е

3
: sIs} of the three dimensional 

-space. In M all possible combinations of two criteria {t
s
,
 h

s
}, t  h, t, h

 


 
Ik are investigated. For each pair of 

criteria subsets of Pareto-optimal points M
 


 
{ s

Е
3
:  

 t*
 s,t 


 t 
s 


 t*
 s,h

, h
 


 
t, t,

 
h

 
Ik, s

 


 
Is

 
}

 


 
M, 

 


 
I

 


 
{1,

 
2,…,

 
6} are selected, where the minimization point h*

s,h 
= min sIs {h

s
} of a particular criterion h

s
, 

hIk is used as an upper limit in the selection by another criterion t 
s
, t

 


 
h, tIk , and the minimum point 

t*
s,t

 = min sIs {t 
s
} of the criterion t 

s
 – as a lower limit. Every selected point that way 




 
M, 

 


 
I, and 

therefore its corresponding point f



 
PR*  P* receive as an individual assessment a number RЕ = max {}, 

which specifies its rank of a compromising efficiency. This figure corresponds to the number  of the subsets 

M in the combined multiple MR  { I M}, to which 

  (f


) belongs. The subset of PR* with the highest 

rank RE
 
=

 
6 usually contains only one point f

 S 
 f(u

S
), which corresponds to the Salukvadze- optimal solution 

(u
S
   arg min

 
uD 3(f(u)), f

S
  f(u

S
)) of task (3), as suggested in [15]. This decision reveals the potentials for 

an even approach of the particular criteria to their uncompromised optimal values under the assumption that 

they are equivalent. 

 The final compromise solution (u
#
, f

#
) can be chosen after analysis of the ranged Pareto-optimal subsets 

in PR*. First the Salukvadze optimal solution is analyzed. If it is assessed as unacceptable on the reached level 

of compromise by any of the particular criteria, then the subsets of PR* with a lower rank are consistently 

analyzed until a definite choice is made.  

VI. Example 

The proposed optimization approach will be applied for the smoothing of the measured acceleration of free 

damped oscillations of the propulsion mechanism of a vibrobot studied in [16] and experimentally investigated 

in [8]. The mechanical model of the tested vibrobot is shown schematically in Fig. 2. 

 

 

Fig. 2 displays the mechanical model of the vibrobot, where: 1 – is the propulsion mechanism; 2- equivalent 

spring; 3 – equivalent damper; 4 – temporary fixed chassis just for the experiments 

Fig. 3 shows the diagram of the measured acceleration ai
е
  a

е
(ti) at discrete instants of time ti depicted 

with constant step 0.001 s after deviating and releasing the propulsion mechanism from its equilibrium position. 

It may be seen that the measured data contain a high-frequency disturbance, which fades gradually together with 

the main oscillating process [8].  

Fig. 4 presents a fragment of the amended absolute values | ai
е
 |, which illustrates a close-up of the high 

frequency disturbance observed in the acceleration record. 

For compromise smoothing of the acceleration ai
е
 with the (G-S)-filter the task (3) is solved in area D 

with boundary values u
–
 = [2, 31], u

+
 = [10, 71] of the parametric vector u. In the area D a net of 189 trial points 

is built of which 33 are Pareto-optimal.  

The established utopian points f
 U 

=
 
[202.4,

 
0.2815], f

 N 
=

 
[288.7,

 
6.173] specify a straight line UN 

located into the criteria space that defines the direction of the coordinated improvement of the values of the 

partial criteria (in the direction of N to U). The components of the ideal point f
 U

 are the uncompromised 

minimums J* and I* of the introduced partial criteria (1) and (2). 
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With the help of -selection technique from the Pareto-optimal multitude five un-empty subsets with 

rank RE
 


 
{6,

 
5,

 
4,

 
2,

 
1} are found. The results of this selection are presented partially in Table 1. The 

compromised solution S with the highest rank RE = 6 is the Salukvadze-optimum of the task (3). 

Table1. Ranged Pareto-Optimal Solutions 
Solution RE u f 

n m J,  m/s2 I,  m2/s4 

S 6 8 57 229.4 1.411 

А 5 6 41 229.0 1.867 

 5 8 71 236.1 0.8768 

 4 7 51 231.5 1.327 

 4 7 71 238.4 0.5843 

 2 10 51 225.3 2.474 

 2 5 59 241.3 0.5009 

B 1 10 49 221.1     2.739 

C 1 5 71 246.7 0.3988 

 Fig. 5 illustrates the achieved smoothness and closeness of the Salukvadze-optimal solution in 

comparison to the measured acceleration. 

 The Fig. 6 shows all test points in the field D after realization of Stage 2 of the optimization procedure. 

In this and the following figures the point with the highest rank RE = 6 is marked with the symbol ( ■ ) and the 

points of rank 5, 4, 2, 1 – with ( ●, ▲, ◄, ♦ ), respectively. 

 Fig. 7 gives visual appreciation for the location of the Pareto-optimal points in the -space relative to 

the utopian points 
U
 and 

N
 in this space, marked by the symbol (●) and the straight line which connects them. 

This figure allows to make a visual assessment of the nearness (proximity) of the ranged points to the utopian 

point 
U
 and to identify alternative options of solutions in the criteria space. 

 In Fig. 8 the normalized by the scheme J
 

 = J/(J
 N 

–
 
J

 U 
), I

 
 = I/(I

 N 
–

 
I

 U 
) Pareto-front and  the ranged 

points of the conducted -selection is depicted.  

 

From Fig. 9 we find out that the solutions a
S
 and a

A
 are explicitly hard to distinguish from each other. 

This could be the basis of an alternative to the solution S for the final compromise solution (u
#
, f

#
) of the task (3) 

to prefer selecting the option A.  

Fig. 5 illustrates the measured a
e
 and 

smoothed Salukvadze optimum 

acceleration a
S
. 

Fig. 6 illustrates the permissible (●),  

Pareto-optimal (●) and the ranked 

points in area D 

Fig. 4 illustrates absolute values |
 
a

e
(ti)

 
| 

of the measured acceleration a
e
(t) за t 

[0, 0.4] 

 

Fig. 3 shows the measured values (  ) of 

the acceleration a
e
(t) 
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VII. Conclusions 

The proposed approach for interactive bi-criteria smoothing of experimental data with the system filter 

(S-G) allows practically approximating experimental data with selected smoothness and adequacy. This method 

may be used in using experimental data for any theoretical analysis and also for practical purposes when the 

period, logarithmic decrement and amplitudes need to be determined from experiments with high precision.  

There are many practical applications of the proposed approach when high accuracy is required, for 

example, whenever resonance frequency has to be determined, like for sonic inertia-powered pumps, vibration-

driven robots, hammer drills, vibration screens and many other machineries operating in resonance. 
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