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 Abstract : In this paper, State Space approach formulation is developed to obtain the three-dimensional 

solution of thick orthotropic plates with symmetric Clamped-Free edges. All equations of elasticity can be 

satisfied. All the elastic constants are taken into account in this approach. The system Matrix, which is one the 

main part of State Space solution, is derived for symmetric Clamped-Free boundaries. 
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I. Introduction 
As it has described in part I, Kirchhoff-Love theory can not estimate the exact stress-strain relationship 

in thick plate case. Ambartsumyan, Mindlin and Reissner analyses are also incapable to result in an exact 

relationship between stress and strain within thick plate sue to thickness effects nonexistent. Method of Initial 

function and State Space method are two analytical methods which could lead to exact 3-D behavior of thick 

plate under distributed load case and it is applicable to different boundary conditions[1, 2][3]. 

In early 90s, Fan developed State Space solution for different boundary conditions. In this part of 

research, the author considers Three-dimensional elasticity in this research. In addition, a state equation for an 

orthotropic body is used. The boundary condition which formulated in this dissertation refers to two opposite 

Clamped edges and two other edges Free (CFCF). In this paper, exact 3-D analytical solution for elasticity of 

orthotropic thick rectangular plate is used. The exact solution for the bending of static plates with arbitrary 

elastic constants and ratio between thickness and width will be obtained.  

This paper investigates the exact system matrix in State Space solution of thick orthotropic plate with 

CFCF boundary conditions. By using system matrix, the initial lamina stresses and strains could lead to other 

stresses and strains in any point across the thickness. The boundary conditions for state space method equations 

derivations is expressed in Fig. 1. 

 

 

 
Fig. 1 Load & boundary conditions and general geometry of problem. 

 
II. Jia-Rang Fan’s State Equation Derivation for Simply Supported Orthotropic Plate 

The State Space solution for thick orthotropic rectangular plate with simply supported edges developed by Fan 

in 1992. A thick rectangular plate of length a, width of b and uniform thickness of h considered in his solution, 

as shown in Fig. 2. Origin of co-ordinate was located at top corner point of the plate. U, V and W were three 

displacements in x, y and z direction, respectively and Plate was made of orthotropic material. The principle 

material axes and rectangular co-ordinate system, which is shown in Fig. 2, were coincided. 
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Fig. 2 General geometry of orthotropic thick rectangular plate. 

 

 The stress-strain relationship can be written as fallow: 

{
 
 

 
 

σxx
σyy
σzz
τyz
τxz
τxy}
 
 

 
 

=  

[
 
 
 
 
 
C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66]

 
 
 
 
 

{
 
 
 
 

 
 
 
 

∂U

∂x
∂V

∂y

∂W

∂z
∂V

∂z
+
∂W

∂y

∂W

∂x
+
∂U

∂z
∂U

∂y
+
∂V

∂x}
 
 
 
 

 
 
 
 

                                     (1) 

 

Das and Rao (1977) used  matrix form in MIF which they called it “a mixed method“ [4]. They introduced Eq. 

(2) as the basic dynamic equations of equilibrium and stress-strain relations of an elastic body: 

∂  

∂z
{
𝑈
𝑉
𝑍
} = [𝐴] {

𝑊
𝑌
𝑋
}                        

∂  

∂z
{
𝑊
𝑌
𝑋
} = [𝐵] {

𝑈
𝑉
𝑍
}                                            (2) 

 

The way which Das formed the state vector was a bit different with the Fan’s formulation. As Fan [5] 

rearranged Eq. (2), it can be written in a contracted form as:  

d

dz
[U  V   Z   X   Y   W]T = [

0 A
B 0

] [U  V   Z   X   Y   W]T                                      (3) 

 

by simplification of Eq. (3), we can write this equation in the form of Homogenous linear z-invariant systems 

state equation as: 
∂  

∂z
{ f } = [D]{f }                                                                       (4) 

 

where [D] is the system matrix and {f } is the state vector. [𝐴] and [𝐵] matrices are symmetric about the 

secondary diagonal. By Assuming  X = τxz  , Y = τyz, Z = σzz , α =
∂  

∂x
, β =

∂  

∂y
 , and eliminations of σxx,  σyy 

and  τxy from Eqs. (1), (3) and (4), the state equation can be obtained as: 

∂

∂z

{
 
 

 
 
U
V
Z
X
Y
W}
 
 

 
 

=  

[
 
 
 
 
 
 

0 0 0 C8 0 −α

0 0 0 0 C9 −β

0 0 0 −α −β 0

−C2α2 − C6β
2 −(C3 + C6)αβ C1α 0 0 0

−(C3 + C6)αβ −C6α2 − C4β
2 C5β 0 0 0

C1α C5β C10 0 0 0 ]
 
 
 
 
 
 

{
 
 

 
 
U
V
Z
X
Y
W}
 
 

 
 

                       (5) 

 

C𝑖 (1, 2, 3, … , 9) are all the constants related to the 9 stiffness coefficients of the material [5] as fallow: 

(6) 

C1 = −
C13
C33

           C2 = C2 −
C13

2

C33
         C3 = C12 −

C13C23
C33

C4 = C22 −
C23

2

C33
 

  C5 = −
C23
C33

          C6 = C66            C7 =
1

C33
           C8 =

1

C55
              C9 =

1

C44
 

the elimination stress components can be derived as [5]: 

 

{

σxx
σyy
τxy

} = [

C2α C3β −C1
C3α C4β −C5
C6β C6α 0

] {
U
V
Z
}                                                           (7) 
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To solve state Eqs. (5) and (7), the six state variables of the state vectors in these two equations can be written 

based on boundary conditions (Eqs. 9 and 10) as : 

 

(8) 

U =∑∑Umn(z) cos
mπx

a
sin
nπy

b
nm

 

  V =∑∑Vmn(z) sin
mπx

a
cos

nπy

b
nm

 

Z =∑∑Zmn(z) sin
mπx

a
sin
nπy

b
nm

 

X =∑∑Xmn(z) cos
mπx

a
sin
nπy

b
nm

 

Y =∑∑Ymn(z) sin
mπx

a
cos

nπy

b
nm

 

W =∑∑Wmn(z) sin
mπx

a
sin
nπy

b
nm

 

σxx =∑∑ σxxmn(z) sin
mπx

a
sin
nπy

b
nm

 

σyy =∑∑ σyymn
(z) sin

mπx

a
sin
nπy

b
nm

 

τxy =∑∑ τxymn
(z) cos

mπx

a
cos

nπy

b
nm

 

 

All 9 equations should be satisfied boundary condition of simply supported thick rectangular plate: 

On    x = 0, a    →     σxx = W = V = 0                                                                  (9) 

On   y = 0, b    →     σyy = W = U = 0                                                               (10) 

 

substituting Eq. (8) into state Eq. (5) gives the fallowing result for each combination of m and n:  

(11) 
d

dz
[Umn(z)Vmn(z)Zmn(z)Xmn(z)Ymn(z)Wmn(z)]

T

= [
0 Amn
Bmn 0

] [ Umn(z)Vmn(z)Zmn(z)Xmn(z)Ymn(z)Wmn(z)]
T 

Eq. (11) can also be written as: 

(12) 

[Umn(z)Vmn(z)Zmn(z)Xmn(z)Ymn(z)Wmn(z)] = 𝑒
[
0 Amn

Bmn 0
]
[Umn(0)Vmn(0)Zmn(0)Xmn(0)Ymn(0)Wmn(0)] 

 

Amn and B mn matrixes can be derived based on simply supported boundary conditions as fallow: 

Amn = [

C8 0 −ξ

0 C9 −η

ξ η 0
]                                                                  (13) 
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Bmn = [

C2ξ
2 + C6η2 (C3 + C6)ξη C1ξ

(C3 + C6)ξη C6ξ
2 + C4η2 C5η

−C1ξ −C5η C10

]                                                (14) 

where: 

ξ =
mπ

a
             η =

nπ

b
 

From above state equation, six-order differential equation governing any of six components of (Umn, 

Vmn,  Wmn,  Xmn ,  Ymn,  Zmn) can be obtained. The differential equation for transverse displacement Wmn can be 

expressed in contracted form as: 

d6Wmn

dz6
+ A0

d4Wmn

dz4
+ B0

d2Wmn

dz2
+ C0 Wmn = 0                                                (15) 

 

A0 , B0 and C0  can be determined from the coefficient matrix in Eq. (15). All coefficients were provided by Wu 

and Wardenier (1997). The solution for this six-order differential equation was founded by Wu and Wardenier 

[6]. 

In other words, based on State Space Solution, the stresses and deflections in state vector {𝑓(𝑧)} can be 

calculated by knowing the top surface values and the state system matrix [𝐷], as fallow: 

 

{f(z)} =  e[D]z{f(0)}                                                                 (16) 

 

III. State Equation for Symmetric Clamped-Free Edges 
An orthotropic thick plate with CFCF boundary conditions is shown in Fig. 2. The free boundaries 

have the length of a and the clamped boundaries have the length of b. All equation derivations can be used for 

laminated thick plate analysis, too. 

As its mention previously, the State Space solution for simply supported orthotropic plate has been 

derived by Fan [5]. To get the solution for CFCF boundary condition, we use the superposition technique. The 

superposition principle applied to get the same structural behavior in clamped boundary condition. This method 

applied by assuming the simply supported structure plus stress distribution at both the clamed boundary 

conditions. For two other free boundaries, the specific relation assumed which will be mentioned later. In fact, 

simply supported plate assumed as the first part of the solution and clamped effect applied on the solution by 

using stress distribution along the two end section (x=0, a). [7] 

 

 
Fig. 3 (Left) Clamped; (right) simply supported with stress distribution. 

 

In Fig. 4, an orthotropic rectangular plate with clamped condition at x=0, a and free conditions at y=0, b is 

shown. At y=0, 𝑈0(𝑥, 𝑧) and 𝑊0(𝑥, 𝑧)  are the displacement in x, z directions, respectively. Also, 𝑈𝑏(𝑥, 𝑧) and 

𝑊𝑏(𝑥, 𝑧)  are the displacement in x, z directions at y= b, respectively. 

 

 
Fig. 4 Boundary conditions and stress distribution. 
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As we mentioned before changed the clamped boundaries to simply supported one, and add the longitudinal 

reactions 𝑃0(𝑦, 𝑧) and 𝑃𝑎(𝑦, 𝑧) at x=zero and X= a, respectively (Fig. 4). Then, we use Unit Impulse function  

[5] as : 

H(x − x0) = {
1, 𝑥 = x0
0, 𝑥 ≠ x0

        x ∈ [0, x0]                                                     (17) 

H(x) = {
1, 𝑥 = x0
0, 𝑥 ≠ x0

        x ∈ [0, x0]                                                          (18) 

from above two equations (17-18), we can get Dirac Delta function as: 

dH (𝑥)

dx
= −δ(x) = {

−∞, 𝑥 = 0
0, 𝑥 ≠ 0

                                                             (19) 

d H(x−x0)

dx
= δ(x − x0) = {

∞, 𝑥 = x0
0, 𝑥 ≠ x0

                                                        (20) 

Due to the reaction that applied on two edges and transverse loading, the in-plane direct stress within the 

material layer of the plate can be written as: 

σxx=σ̅xx+H(x)P(0)(y, z)+H(x-a)P
(a)(y, z)                                                    (21) 

The displacements in three x, y and z directions are U, V and W, respectively. The general equation of 

equilibrium for orthotropic material in rectangular coordinate system in bending case is:              

    (22)                                                                                                 
∂σxx

∂x
+
∂τxy

∂y
+
∂τxz

∂z
= 0 

∂τxy

∂x
+
∂σyy

∂y
+
∂τyz

∂z
= 0 

∂τxz

∂x
+
∂τyz

∂y
+
∂σzz

∂z
= 0 

or by substituting Eq. (21) into Eq. (22), we can get:                                                

       (23) 
∂σ̅xx

∂x
+
∂τxy

∂y
+
∂τxz

∂z
= δ(x) P(0)(y, z) −  δ(x − x0)P

(a)(y, z) 

∂τxy

∂x
+
∂σyy

∂y
+
∂τyz

∂z
= 0 

∂τxz

∂x
+
∂τyz

∂y
+
∂σzz

∂z
= 0 

based on State Space method and superposition principle, we have:   
∂  

∂z
{ f } = [D]{f } + {B }                                                                  (24) 

 

Fan also assumed the displacement of plate fallow below relations:  

(25) 

U(x, y, z) = U̅(x, y, z) + fu(x, y, z) 

V(x, y, z) = V̅(x, y, z) + fv(x, y, z) 

W(x, y, z) = W̅(x, y, z) + fw(x, y, z) 

These three equations state the idea that each displacement in each coordinate direction consists of two parts, 

first part is related to the displacement based on simply supported plate solution and the second part is going to 

define specific equations for different displacement. Those Eqs. (26) are assumed in Fan (1996) for symmetric 

Hinged-Free edges. Fan’s function assumptions are appropriate for Clamped-Free boundaries because the effect 

of clamped conditions will be add to it by using unit impulse and dirac functions. 

The second part of Eqs. (25) are assumed to be [5]: 

(26) 

fu(x, y, z) = (1 −
y

b
)U(0)(x, z) +  

y

b
U(b)(x, z) 

fw(x, y, z) = (1 −
y

b
)W(0)(x, z) +  

y

b
W(b)(x, z) 
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fv(x, y, z) =
bC3
2C4

  . α .  [(1 −
y

b
)
2

U(0)(x, z) −  (
y

b
)
2

 U(b)(x, z) ] 

Formerly, the State Space method can be written a contracted form as: 

∂

∂z
[U̅ V̅ Z X Y W̅] =  D̅[U̅ V̅ Z X Y W̅] +  B̅                                  (27) 

by using X = τxz  , Y = τyz, Z = σzz , α =
∂  

∂x
 , β =

∂  

∂y
 , ξ =

mπ

a
, η =

nπ

b
and eliminating σxx , σyy ,  τxy from 

Eqs. (22) and (1) we can derived each components of system matrix.  

D̅ =

[
 
 
 
 
 
 

0 0 0 C8 0 −α

0 0 0 0 C9 −β

0 0 0 −α −β 0

−C2α2 − C6β
2 −(C3 + C6)αβ C1α 0 0 0

−(C3 + C6)αβ −C6α2 − C4β
2 C5β 0 0 0

C1α C5β C10 0 0 0 ]
 
 
 
 
 
 

                                (28) 

Ci (1, 2, 3, … , 9) are all the constants related to the 9 stiffness coefficients of the material [5] :  

(29) 

C1 = −
C13
C33

           C2 = C2 −
C13

2

C33
         C3 = C12 −

C13C23
C33

C4 = C22 −
C23

2

C33
 

  C5 = −
C23
C33

          C6 = C66            C7 =
1

C33
           C8 =

1

C55
              C9 =

1

C44
 

by using Eq.1 and considering Eqs. (23-29) gives: 

(30) 

∂U̅

∂z
= Simply supported − [(1 −

y

b
)
∂U(0)

∂z
+
y

b

∂U(b)

∂z
] − α [(1 −

y

b
)W(0) +

y

b
W(b)] 

∂U̅

∂z
= Simply supported − [(1 −

y

b
)
∂U(0)

∂z
+
y

b

∂U(b)

∂z
] − α [(1 −

y

b
)W(0) +

y

b
W(b)] 

∂σzz

∂z
= Simply Supported − (

1

C8
−

C3
C4C9

)  α [(1 −
y

b
)
∂U(0)

∂z
+
y

b

∂U(b)

∂z
] − 

1

C8
α

2

[(1 −
y

b
)W(0) +

y

b
W(b)] 

∂τxz

∂z
= Simply supported − [(1 −

y

b
)
∂W(0)

∂z
+
y

b

∂W(b)

∂z
] + (C1 −

C3C5
C5

)  α [(1 −
y

b
)U(0) +

y

b
U(b)]

+ δ(x)P(0)(y, z) − δ(x − a)P(a)(y, z) 

∂τyz

∂z
= Simply supported +

C6
b
 α [U(0) − U(b)] −

C3C6b

2C4
α3 [(1 −

y

b
)
2

U(0) − (
y

b
)
2

U(b)] 

∂W̅

∂z
= Simply supported − (1 −

y

b
)
∂W(0)

∂z
−
y

b

∂W(b)

∂z
+ (C1 −

C3C5
C5

)  α [(1 −
y

b
)U(0) +

y

b
U(b)] 

and for three eliminated stresses  σxx , σyy ,  τxy ,it can be derived as : 

(31) 

σxx = Simply Supported + (C2 −
C3
2

C4
)  α [(1 −

y

b
)U(0) + 

y

b
U(b)] 

σyy = Simply Supported + C3 α [(1 −
y

b
)U(0) +

y

b
U(b)] − C4

C3
C4

α [(1 −
y

b
)U(0) +

y

b
U(b)]

⏟                                      
Zero

 

τxy = Simply supported + C6 (
−1

b
U(0) +

1

b
U(b)) + C6 

bc3
2c4

  . α2. [(1 −
y

b
)
2

U(0) − (
y

b
)
2

U(b)] 
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After derivation of all 9 stresses and displacements through Eqs. (30) and (31), additional matrix [B̅] can be 

written as: 

(32) 

�̅� =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 − [(1 −

y

b
)
∂U(0)

∂z
+
y

b

∂U(b)

∂z
] − α [(1 −

y

b
)W(0) +

y

b
W(b)]

1

b
[W(0) −W(b)] −

C3b

2C4
 α [(1 −

y

b
)
2 ∂U(0)

∂z
−  (

y

b
)2
∂U(b)

∂z
]

− (
1

𝐶8
−

C3
C4C9

)  α [(1 −
y

b
)
∂U(0)

∂z
+
y

b

∂U(b)

∂z
] − 

1

𝐶8
α

2

[(1 −
y

b
)W(0) +

y

b
W(b)]

[
C3(C3 + C6)

C4
− C2] α2 [(1 −

y

b
)U(0) +

y

b
U(b)] + δ(x)P(0)(y, z) − δ(x − a)P(a)(y, z)

C6
b
 α [U(0) − U(b)] −

C3C6b

2C4
α3 [(1 −

y

b
)
2

U(0) − (
y

b
)
2

U(b)]

− (1 −
y

b
)
∂W(0)

∂z
−
y

b

∂W(b)

∂z
+ (C1 −

C3C5
C5

)  α [(1 −
y

b
)U(0) +

y

b
U(b)]

}
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

and: 

(33) 

{

σxx
σyy
τxy

} = [

C2α C3β −C1
C3α C4β −C5
C6β C6α 0

] {
U
V
Z
} +

{
 
 

 
 (𝐶2 −

𝐶3
2

𝐶4
)𝛼 [(1 −

y

b
)U(0) + 

y

b
U(b)]

0
−𝐶6 
𝑏
[U(0) − U(b)] + 𝐶6 

bC3
2C4

α2 [(1 −
y

b
)
2

U(0) − (
y

b
)
2

U(b)]
}
 
 

 
 

 

 

Fan (1996) in Symmetric Hinged-Free orthotropic thick plate solution set 
∂σzz

∂z
 equal to just the simply 

support response of the plate, which is not true. In this paper, the equation for superposition part for Symmetric 

Clamped-Free condition provided by the author. However, Fan assumed this additional part for his Symmetric 

Hinged-Free Boundaries as zero. In both boundary conditions (i. e.Fan and current paper), the equation for 
∂σzz

∂z
 

derived in this paper, should be used. 

In order to solve Eq. (24) , by using Eq. (27) and Eq. (32) we can expressed the each components of 

state vector {f}in terms of Fourier series expansion by introducing [5] : 

(34) 

U̅ = ∑∑U̅mn(z) cos
mπx

a
sin
nπy

b
nm

 

V̅ = ∑∑V̅mn(z) sin
mπx

a
cos

nπy

b
nm

 

Z =∑∑Z̅mn(z) sin
mπx

a
sin
nπy

b
nm

 

X =∑∑X̅mn(z) cos
mπx

a
sin
nπy

b
nm

 

Y =∑∑Y̅mn(z) sin
mπx

a
cos

nπy

b
nm

 

W̅ =∑∑W̅mn(z) sin
mπx

a
sin
nπy

b
nm

 

 

All six above equations are related to simply support thick plate conditions and can satisfy all 

boundaries condition that Fan introduced in 1996. 
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Other assumptions which we have to be introduced in Fourier series due to solving the Eq. (27) and 

(32) are related to fu, fv and  fw. On the other hand, all variables in these three parts should be written in Fourier 

series, as fallow: 

 

(35) 

U(0) = U(0)(x, z) =∑Um
(0)(z) cos

mπx

a
m

 

W(0) = W(0)(x, z) = ∑Wm
(0)(z) sin

mπx

a
m

 

U(b) = U(b)(x, z) =∑Um
(b)(z) cos

mπx

a
m

 

W(b) = W(b)(x, z) = ∑Wm
(b)(z) sin

mπx

a
m

 

(36) 

y

b
= −

2

π
∑

cosnπ

n

∞

n=1

sin
nπy

b
 

(
y

b
)
2

=
1

3
+
4

π2
∑

cosnπ

n2

∞

n=1

cos
nπy

b
 

1 =
2

π
∑

1− cos nπ

n

∞

n=1

sin
nπy

b
 

(1 −
y

b
)
2

=
1

3
+
4

π2
∑

1

n2

∞

n=1

cos
nπy

b
 

(37) 

δ(x)P(0)(y, z) = (
1

a
+
2

a
∑ cos

mπx

a

∞

m=1

)∑Pn
(0)(z) sin

nπy

b

∞

n=1

 

δ(x − a)P(a)(y, z) = (
1

a
+
2

a
∑ (−1)m . cos

mπx

a

∞

m=1

)∑Pn
(a)(z) sin

nπy

b

∞

n=1

 

by using Eqs. (35-39) and Eq. (27) and (32) for each combination of m and n, it can be written as: 

∂  

∂z
{ f } = [D]{f } + {B }                                                                 (38) 

(39) 
d

dz
[U̅mn(z) V̅mn(z) Zmn(z) Xmn(z) Ymn(z) W̅mn(z)]

T

= [
0 Amn
Bmn 0

] [U̅mn(z) V̅mn(z) Zmn(z) Xmn(z) Ymn(z) W̅mn(z)]
T + Bmn(z) 

 

where: 

 

Amn = [

C8 0 −ξ

0 C9 −η

ξ η 0
]                                                                 (40) 

Bmn = [

C2ξ
2 + C6η2 (C3 + C6)ξη C1ξ

(C3 + C6)ξη C6ξ
2 + C4η2 C5η

−C1ξ −C5η C10

]                                                (41) 
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   𝐁𝐦𝐧(𝐳)𝐧≠𝟎
𝐦=𝟎 =

{
 
 
 
 
 

 
 
 
 
 
2

nπ
[ cos nπ 

d

dz
Um

(b)(z) −
d

dz
Um

(0)(z)]

0

0

1

a
[Pn

(0)(z) + Pn
(a)(z)]

0

2

nπ

d

dz
[cos nπ Wm

(b)(z) − Wm
(0)(z)] }

 
 
 
 
 

 
 
 
 
 

                                              (42) 

  𝐁𝐦𝐧(𝐳)𝐧=𝟎
𝐦≠𝟎 =

{
 
 
 
 
 
 

 
 
 
 
 
 

0

−
1

b
[Wm

(b)(z) −Wm
(0)(z)] −

C3ξb

6C4

d

dz
[ Um

(b)(z) − Um
(0)(z)]

0

0

C6ξ

b
[Um

(b)(z) − Um
(0)(z)] +

 C3C6b ξ
3

6C4
[Um

(b)(z) − Um
(0)(z)]

0 }
 
 
 
 
 
 

 
 
 
 
 
 

                            (43) 

 
(44) 

  𝐁𝐦𝐧(𝐳)𝐧≠𝟎
𝐦≠𝟎 =

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

2

nπ
[ξ cos nπ  Wm

(b)(z) − ξWm
(0)(z) + cos nπ 

d

dz
Um

(b)(z) −
d

dz
Um

(0)(z)]

−
2C3ξb

C4n
2π2

[cos nπ 
d

dz
Um

(b)(z) −
d

dz
Um

(0)(z)]

(
1

C8
−

C3
C4C9

) [
2m

na

d

dz
Um

(0)(z) −
m

a

2 cos nπ

n

d

dz
Um

(b)(z)] +

1

C8
[
2m2π

n a2
Wm

(0)(z) −
2m2π 

a2
cos nπ

n
Wm

(b)(z)]

[
C3(C3 + C6)

C4
− C2]

2ξ
2

nπ
[cos nπ  Um

(b)(z) − Um
(0)(z) ] +

2

a
[Pn

(0)(z) − ((−1)mPn
(a)(z))]

2 C3C6b ξ
3

C4n
2π2

[cos nπ  Um
(b)(z) − Um

(0)(z)]

2

nπ

d

dz
[cos nπ Wm

(b)(z) − Wm
(0)(z)] + 2(C1 −

C3C5
C4

)
ξ

nπ
[cos nπ  Um

(b)(z) − Um
(0)(z) ]

}
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

   Bmn(z)n=0
m=0 = [0 0 0 0 0 0] 𝑇                                                  (45) 

 

Eq. (39) is called a variable coefficient nonhomogeneous state equation. If the solution of Eq. (39) is 

found and the boundary conditions are satisfied, all mechanical quantities can be determined from Eqs. (21), 

(25), (26), (33) and (34). 
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The six unknowns Pn
(0)(z), Pn

(a)(z), Um
(0)(z), Um

(b)(z)Wm
(0)(z) and Wm

(b)(z) could be found by 

applying boundary conditions in table. 1. 

 

Table 1.Boundary condition that should be satisfied 

x=0 
Need to 

Check? 
x=a 

Need to 

Check? 
y=0 

Need to 

Check? 
y=0 

Need to 

Check? 

U=0 YES U=0 YES τyz = Y = 0 YES 
τyz = 0 

Y = 0 
YES 

V=0 
Automatically 

Satisfied 
V=0 

Automatically 

Satisfied 
τxy = 0 YES τxy = 0 YES 

W=0 
Automatically 

Satisfied 
W=0 

Automatically 

Satisfied 
σyy=0 

Automatically 

Satisfied 
σyy = 0 

Automatically 

Satisfied 

 

IV. Conclusion 
Study of thick orthotropic plate shows that two-dimensional analysis based on CLPT plate assumptions 

can not be true for thick orthotropic plate with symmetric Clamped-Free boundary conditions[8]. As it is 

explained in this paper, the State Space equations show that all mechanical behaviors in thick orthotropic plate 

should be changed with the location. The equation for vertical displacement (w) is related to variable z. 

However, thickness effect was neglected in Kirchhoff two-dimensional plate analysis method. 

In the derivation of the equation of state space (Eq. (11)) for 
∂σzz

∂z
 component, Fan (1996) set it equal to 

the simply support response of the plate for Symmetric Hinged-Free orthotropic thick plate, which is not true. 

Fan assumed this additional part for his Symmetric Hinged-Free Boundaries as zero. In this paper, the equation 

for superposition part for symmetric Clamped-Free condition provided by the author. However, in both 

boundary conditions, Fan and current paper equation for 
∂σzz

∂z
 should be the same.  

Further numerical analysis based on Eqs.(32-33) and Eqs. (40-45) , which developed by the author in 

this paper, would help in identifying the unknowns and improving the usages of State Space exact solution in 

case of thick plate analysis. 
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