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Abstract: A biped is a multi-jointed mechanism that performs a human’s motions. It seems more difficult to 

analyze the behavioral character of walking robot due to the complexity of mathematical description. This 
paper focuses on developing a methodology for deriving an inverse kinematic joint solution of a biped robot. 

This work aimed to build the lower side, the locomotion part of a biped robot. It couples a design considerations 

and simplicity of design to provide inverse kinematics analysis of 11 degree-of-freedom (DOF) biped robot. The 

model used consists of 5-links which are connected through revolute joints. The identical legs have hip joint, 

knee joints and ankle joint. This paper addresses symbolic formulation for reducing problem in solving 

univariate polynomial. An effective approach is developed for the solution of inverse kinematics task in 

analytical form for given end-effector position. This method presents a simple and efficient procedure for 

finding the joint solution of bipeds. 
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I. Introduction 
From ancient times, man has tried to create the mechanism that resembles the human body. Bipedal 

locomotion involves a large number of degrees of freedom. Pieper stated two conditions to find a closed-form 

joint solution to a robot manipulator where there are three adjacent joint axes which are parallel to one another 

or they intersect at a same point [1]. This can be either prismatic or revolute joints .but this approach has 

difficulty in developing a consistent procedure for finding a closed-form joint solution for a humanoid robot and 

selecting one required solution from multiple solutions. Biped-robot researchers often use iterative methods for 

modeling humanoid robots. Some of the iterative methods makes use of the jacobian matrix [2].  Error in 

position can result because of velocity based nature of jacobian method due to the iterative nature of the 

algorithm. Computational complexity and singularity are the main shortcomings of using the inverse jacobian 

matrix method [3]. Inverse-transform technique was presented by Paul et al [4]. It leads to inverse kinematic 
joint solution of a 6-DOF robot manipulator. Common method for deriving inverse kinematics used is the 

geometric method [5]. Geometric method requires trigonometric expertise in solving the joint solution of a 

biped. This method is difficult to adopt when joint solution for more than four or five joints are involved. A 

closed-form joint solution for a 6-DOF humanoid robot arm was derived by Cui et al [6]. But singularities were 

not considered.  

In this paper, we proposed a inverse method by viewing the kinematic chain of a leg of a biped in 

reverse order and finally employing the inverse technique in deriving a joint solution for the Biped robot. This 

paper presents the inverse kinematics of biped robot. This paper is organized as follows: An outline of the 

mechanical design of the developed biped robot is given in Section 2. The kinematical model which is 

prerequisite for inverse kinematic is described in Section 3.In Section 4, Inverse kinematic approach is 

explained. Finally, Section 5 contains conclusion. 
 

II. Mechanical Design 
The design of biped is based on human body in terms of ratios, body proportions, and range of motion. 

This paper propose to have sufficient DOF to imitate human motion. The model used consists of 5-links which 

are connected through revolute joints, 2-links for each leg and 1-link for torso. It is considered as a robot with 

waist or torso, linking two legs which are linked together through hip joints to emulate a human’s activities. The 

identical legs have hip joint between torso and thigh, knee joints between the thigh and shank, ankle joint 

between shank and foot, and a rigid body forms the torso. The joint structure of the biped has eleven degrees of 

freedom, 5 DOF for each leg and 1 DOF for waist or torso. DOF for waist is shared between legs. The Hip joint 
has 2-DOF, which allows it motion in the sagittal and the lateral plane. The range of motion in the sagittal plane 

is between +70º to -50º and +50º and -60º in the lateral plane. The Knee joint has 1-DOF, which allows it 

motion in the sagittal and the lateral plane. The mobility for the knee joint is +140º in the sagittal plane. The 
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ankle joint has 2-DOF, which allows it motion in the sagittal and the lateral plane. The range of motion in the 

sagittal plane is between +70º to -50º and +50º and -60º in the lateral plane.  

Servos are mounted on the biped robot serves as actuators for the system. One servo is attached to 
torso. On each leg, two servos are attached to the hip, one servo is attached to the knee and two servos are 

attached to the ankle. The mechanical design of the bipedal robot is modular, making it easy to change and 

replace parts. The frameworks of biped will be fabricated from acrylic in order to obtain light weight, and a 

wide range of motion. 

 

 

Fig.1: CAD model of biped. 

 

III. Kinematic Model 
Kinematic model depending upon above planned movements, can be formulated. Kinematic analysis is 

based on the basic equation of the geometric model that aids in determining the position and orientation of a foot 

with a reference to torso for known values of the joint variables of kinematic chain that compose the robot. 

Denavit-hartenberg formulation is used to model biped. Each part is considered as a link represented by a line 
along its joint axis and common normal to next joint axis. Coordinate system is attached to each link illustrating 

relative position amongst various links. A 4×4 transformation matrix relating i+1 frame to i frame is given by,  

 

ⁱˉ¹Hᵢ = 

cosθᵢ     − sinθᵢ cosαᵢ₋₁         sinθᵢ sin αᵢ₋₁      aᵢ₋₁cosθᵢ 
sinθᵢ          cosθᵢ cosαᵢ₋₁    − cosθ sin αᵢ₋₁      aᵢ₋₁ sinθᵢ
      0                     sin αᵢ₋₁                   cosαᵢ₋₁                   dᵢ

       0                                 0                               0                    1

  …….. (1) 

Where,  

θᵢ = Rotation angle is angle between Xᵢ₋₁ and Xᵢ measured about Zᵢ. 

αᵢ₋₁ = Twist angle is angle between lines along joints i-1 and i measured about common perpendicular X ᵢ₋₁. 
aᵢ₋₁ = link length is the distance between the lines along joints i-1 and i along common perpendicular. 

dᵢ = link offset is distance along Zᵢ from line parallel to Xᵢ₋₁ to the line parallel to Xᵢand are called as Denavit-

hartenberg(D-H)parameters. 

Equation 1 is homogeneous transformation matrix indicating position and orientation of each joint. An 

origin(X₀, Z₀) is established at the torso and each joint has a coordinate frames are attached following D-H 

definition. For the biped robot with all revolute joints, we have formulated θᵢ,αᵢ₋₁,aᵢ₋₁,dᵢ.Table 1 and Table 2 

lists D-H parameter used to solve transformation matrix. Transformation matrix of each joint can be obtained by 

substituting D-H parameters into Equation 1. 
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Fig. 2:  Frame assignment 

 

Table1: Denavait-Hatenberg parameters for left leg 
i 𝛼ᵢ₋₁ 𝑎ᵢ₋₁ dᵢ θᵢ 
1 0 0 0 Ө₁ 

2 90 l₂ 0 Ө₂+90 

3 90 0 0 Ө₃ 
4 0 l₄ 0 Ө₄ 

5 0 l₅ 0 Ө₅ 

6 -90 0 0 Ө₆ 

 

Table2: Denavait-Hatenberg parameters for right leg 
i α ᵢ₋₁ aᵢ₋₁ dᵢ Өᵢ 
1 0 0 0 Ө₁ 

7 -90 l₇ 0 Ө₇+90 

8 -90 0 0 Ө₈ 

9 0 l₉ 0 Ө₉ 
10 0 l₁₀ 0 Ө₁₀ 

11 90 0 0 Ө₁₁ 

 

The continuous homogeneous transformation from ⁰H₁ to ⁵H₆ transform ankle coordinate to base torso 

coordinate, shown in equation 2.Pose of ankle with respect to torso is given by, 

 

⁰H₆= ⁰H₁·¹H₂ ·²H₃ ·³H₄ ·⁴H₅ ·⁵H₆ …….. (2) 
 

P=⁰H₆ =  

r₁₁   r₁₂   r₁₃  Px
r₂₁   r₂₂   r₂₃   Py
r₃₁  r₃₂    r₃₃   Pz
0      0        0       1

  …….. (3) 

 
Equation 3 provides solution of forward kinematics with matrix P being result. The translation 

vector Px,   Py,  Pz  gives position of foot and orientation matrix 

r₁₁ r₁₂ r₁₃
r₂₁ r₂₂ r₂₃
r₃₁ r₃₂  r₃₃

 shows direction of foot. 

 

IV. Inverse Kinematics 
The inverse kinematics problem for biped is fundamental for controlling of robot. Given the pose of 

ankle, problem corresponds to finding joint configuration for that pose. The placement and orientation of the 

legs determines where the feet are placed and also orientation of the torso i.e. the posture of the robot. This 

necessities’ for the inverse kinematics of the legs to include the orientation of the torso as well as the orientation 

of the feet. It is for calculated positions of ankle, finding of joint solutions for these positions. The problem of 

inverse kinematics corresponds to finding joint variables θ₁, θ₂, θ₃, θ₄, θ₅, θ₆ such that, 

⁰H₁•¹H₂ •²H₃ •³H₄ •⁴H₅ •⁵H₆ = ⁰H₆. 
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Inverse kinematics can be solved by using geometric solution. We can draw following figure 3 by viewing biped 

in sagittal plane i.e. plane perpendicular to Z₃, Z₄, and Z₅ axes. 
 

 

 

Fig. 3: Geometrical relationship amongst link in sagittal plane. 

 

Distance from the hip to ankle is given by equation 7. 

 

l₀₆ = Px2 + Py2 + Pz2…….. (7) 

 

The Knee ankle θ₄ can be calculated by law of cosine for known values of link length l₄, l₅ and distance l₀₆ is 

given by equation 8. 

θ₄ = cos−1  
l₀₆2−l₄2−l₅2

2l₄l₅
 …….. (8) 

 

Now, If we viewed in frontal plane i.e. plane perpendicular to the Z₅ axis, we can draw following figure 4. 

 

 
Fig. 4: Geometrical relationship amongst link in frontal plane. 

 

From geometry of figure 4, distance l06yz and l05yz can be calculated using equation 9, 10, 11. 

 

l06yz=  P−1 2,4  
2

+  P−1 3,4  
2
…….. (9) 

 

l06yz=((l₄cos(θ₄) cos(θ₅) sin(θ₃) - l₄ sin(θ₄) sin(θ₅) sin(θ₃) + l₅cos(θ₄)² cos(θ₅) sin(θ₃) + l₅cos(θ₅) sin(θ₄)² 
sin(θ₃))²/(cos(θ₄)² cos(θ₅)² cos(θ₃)²+ cos(θ₄)² cos(θ₅)²sin(θ₃)² + cos(θ₄)² cos(θ₃)² sin(θ₅)²+ cos(θ₄)²sin(θ₅)² 
sin(θ₃)²+ cos(θ₅)² cos(θ₃)² sin(θ₄)² + cos(θ₅)² sin(θ₄)² sin(θ₃)² + cos(θ₃)² sin(θ₄)² sin(θ₅)² + sin(θ₄)² sin(θ₅)² 
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sin(θ₃)²)² + (l₅ sin(θ₅) cos(θ₄)² + l₄ sin(θ₅) cos(θ₄) + l₅ sin(θ₅) sin(θ₄)² + l₄cos(θ₅) sin(θ₄))²/(cos(θ₄)² cos(θ₅)² + 

cos(θ₄)² sin(θ₅)² + cos(θ₅)² sin(θ₄)² + sin(θ₄)² sin(θ₅)²)²)´…….. (10) 
 

l05yz =((l₄cos(θ₄) cos(θ₅) sin(θ₃) - l₄ sin(θ₄) sin(θ₅) sin(θ₃) + l₅cos(θ₄)² cos(θ₅) sin(θ₃) + l₅cos(θ₅) sin(θ₄)² 
sin(θ₃))²/(cos(θ₄)² cos(θ₅)² cos(θ₃)²+ cos(θ₄)² cos(θ₅)²sin(θ₃)² + cos(θ₄)² cos(θ₃)² sin(θ₅)²+ cos(θ₄)²sin(θ₅)² 
sin(θ₃)²+ cos(θ₅)² cos(θ₃)² sin(θ₄)² + cos(θ₅)² sin(θ₄)² sin(θ₃)² + cos(θ₃)² sin(θ₄)² sin(θ₅)² + sin(θ₄)² sin(θ₅)² 
sin(θ₃)²)² + (l₅ sin(θ₅) cos(θ₄)² + l₄ sin(θ₅) cos(θ₄) + l₅ sin(θ₅) sin(θ₄)² + l₄cos(θ₅) sin(θ₄))²/(cos(θ₄)² cos(θ₅)² + 

cos(θ₄)² sin(θ₅)² + cos(θ₅)² sin(θ₄)² + sin(θ₄)² sin(θ₅)²)²)´…….. (11) 

The law of cosine can be used to calculate ankle angle as, 
 

θ₆ = sign P−1 2,4  cos−1  
l06yz 2−l05yz 2−l₆

2 l05yz  l₆
 …….. (12) 

 

θ₆ = (π sin((l₄cos(θ₄) cos(θ₅) sin(θ₃) - l₄ sin(θ₄) sin(θ₅) sin(θ₃) + l₅cos(θ₄)² cos(θ₅) sin(θ₃) + l₅cos(θ₅) sin(θ₃)² 
sin(θ₃))/(cos(θ₄)² cos(θ₅)² cos(θ₃)²+ cos(θ₄)² cos(θ₅ )² sin(θ₃ )² + cos(θ₄ )² cos(θ₃ )² sin(θ₅ )² + cos(θ₄ )² 
sin(θ₅ )² sin(θ₃ )² + cos(θ₅ )² cos(θ₃ )² sin(θ₄ )² + cos(θ₅ )² sin(θ₄ )² sin(θ₃ )² + cos(θ₃ )² sin(θ₄ )² sin(θ₅ )²+ 

sin(θ₄ )² sin(θ₅ )² sin(θ₃ )²)))/2…….. (13) 

If we inverse ⁵ H₆  and multiply it by P, we get equation 14, 

 

⁰ H₁ ·¹H₂  ·²H₃  ·³H₄  ·⁴ H₅  = P (⁵ H₆)−1 …….. (14) 

 

From element (3, 3), Hip angle can be calculated as, 

θ₂ = sin−1((cos(θ₆ ) (cos(θ₆ ) sin(θ₅ ) + sin(θ₆ ) (cos(θ₅ ) (cos(θ₅ ) sin(θ₃ ) sin(θ₄ ) - cos(θ₅ ) cos(θ₃ ) 

cos(θ₄ )) + sin(θ₅ ) (cos(θ₅ ) cos(θ₃ ) sin(θ₄ ) + cos(θ₅ ) cos(θ₄ ) sin(θ₃ )))))/(cos(θ₆ )²- sin(θ₆ )²) - (sin(θ₆ ) 

(sin(θ₅ ) sin(θ₆ ) + cos(θ₆ ) (cos(θ₅ )(cos(θ₅ ) sin(θ₃ ) sin(θ₄ ) - cos(θ₅ ) cos(θ₃ ) cos(θ₄ )) + sin(θ₅ ) (cos(θ₅ ) 

cos(θ₃ ) sin(θ₄ ) + cos(θ₅ ) cos(θ₄ ) sin(θ₃ )))))/(cos(θ₆ )²- sin(θ₆ )²))…….. (15) 

 

From element (1, 3) and (2, 3) torso angle can be calculated by equation, 
 

θ₁  =cos⁻ ¹((sin(θ₆ ) (cos(θ₆ ) (cos(θ₅ ) (cos(θ₄ )  (sin(θ₄ ) sin(θ₃ ) - cos(θ₄ ) cos(θ₃ ) sin(θ₂ )) + sin(θ₄  

)(cos(θ₃ ) sin(θ₄ ) + cos(θ₄ ) sin(θ₂ ) sin(θ₃ ))) + sin(θ₅ ) (cos(θ₄ ) (cos(θ₃ ) sin(θ₄ ) + cos(θ₄ ) sin(θ₂ ) 

sin(θ₃ )) - sin(θ₄  ) (sin(θ₄ ) sin(θ₃ ) - cos(θ₄ ) cos(θ₃ ) sin(θ₂ )))) - cos(θ₄ ) cos(θ₂ ) sin(θ₆ )))/(cos(θ₆ )² - 

sin(θ₆ )²) - (cos(θ₆ ) (sin(θ₆ ) (cos(θ₅ ) (cos(θ₄  ) (sin(θ₄ ) sin(θ₃ ) - cos(θ₄ ) cos(θ₃ ) sin(θ₂ )) + sin(θ₄ ) 

(cos(θ₃ ) sin(θ₄ ) + cos(θ₄ ) sin(θ₂ ) sin(θ₃ ))) + sin(θ₅ ) (cos(θ₄ ) (cos(θ₃ ) sin(θ₄ ) + cos(θ₄ ) sin(θ₂ ) sin(θ₃ )) 

- sin(θ₄ ) (sin(θ₄ ) sin(θ₃ ) - cos(θ₄ ) cos(θ₃ ) sin(θ₂ )))) - cos(θ₄ ) cos(θ₂ ) cos(θ₆ )))/(cos(θ₆ )² - sin(θ₆ )²)) / 

cos(θ₂ ).…….. (16) 

 

or 

 
θ₁ =sin⁻ ¹(cos(θ₆ ) (sin(θ₆ ) (cos(θ₅ ) (cos(θ₄ ) (cos(θ₄ ) sin(θ₃ ) + cos(θ₃ ) sin(θ₄ ) sin(θ₂ )) + sin(θ₄  ) 

(cos(θ₄ ) cos(θ₃ ) - sin(θ₄ ) sin(θ₂ ) sin(θ₃ ))) + sin(θ₅ ) (cos(θ₄ ) (cos(θ₄ ) cos(θ₃ ) - sin(θ₄ ) sin(θ₂ ) sin(θ₃ )) 

- sin(θ₄ ) (cos(θ₄ ) sin(θ₃ ) + cos(θ₃ ) sin(θ₄ ) sin(θ₂ )))) + cos(θ₂ ) cos(θ₆ ) sin(θ₄ )))/(cos(θ₆ )² - sin(θ₆ )²) - 

(sin(θ₆ ) (cos(θ₆ ) (cos(θ₅ ) (cos(θ₄  ) (cos(θ₄ ) sin(θ₃ ) + cos(θ₃ ) sin(θ₄ ) sin(θ₂ )) + sin(θ₄ ) (cos(θ₄ ) 

cos(θ₃ ) - sin(θ₄ ) sin(θ₂ ) sin(θ₃ ))) + sin(θ₅ ) (cos(θ₄  ) (cos(θ₄ ) cos(θ₃ ) - sin(θ₄ ) sin(θ₂ ) sin(θ₃ )) - sin(θ₄ ) 

(cos(θ₄ ) sin(θ₃ ) + cos(θ₃ ) sin(θ₄ ) sin(θ₂ )))) + cos(θ₂ ) sin(θ₄ ) sin(θ₆ )))/(cos(θ₆ )² - sin(θ₆ )²)/ 

cos(θ₂ )).…….. (17) 

 

If we inverse ⁰ H₁ ·¹H₂  and multiply it by P then we get equation 18. 

³H₄  ·⁴ H₅  ·⁵ H₆  = (⁰ H₁ ·¹H₂ )⁻ ¹ P…….. (18) 

 

From element (1, 4) and (2, 4), Roll angle of hip is given by equation 19, 20. 
θ₃  = cos⁻ ¹(((l₅  (cos(θ₅ ) cos(θ₄ ) (cos(θ₁ ) sin(θ₂ ) + cos(θ₂ ) sin(θ₁ )) - sin(θ₅ ) sin(θ₄ ) (cos(θ₁ ) sin(θ₂ ) + 

cos(θ₂ ) sin(θ₁ ))) +l₄ cos(θ₅ ) (cos(θ₁ ) sin(θ₂ ) + cos(θ₂ ) sin(θ₁ ))) (cos(θ₁ ) sin(θ₂ ) + cos(θ₂ ) 

sin(θ₁ )))/(cos(θ₁ )² cos(θ₂ )² + cos(θ₁ )² sin(θ₂ )² + cos(θ₂ )² sin(θ₁ )² + sin(θ₁ )² sin(θ₂ )²) + ((l₅  (cos(θ₅ ) 

cos(θ₄ ) (cos(θ₁ ) cos(θ₂ ) - sin(θ₁ ) sin(θ₂ )) - sin(θ₅ ) sin(θ₄ ) (cos(θ₁ ) cos(θ₂ ) - sin(θ₁ ) sin(θ₂ ))) 

+l₄ cos(θ₅ ) (cos(θ₁ ) cos(θ₂ ) - sin(θ₁ ) sin(θ₂ ))) (cos(θ₁ ) cos(θ₂ ) - sin(θ₁ ) sin(θ₂ )))/(cos(θ₁ )² cos(θ₂ )² + 

cos(θ₁ )² sin(θ₂ )² + cos(θ₂ )² sin(θ₁ )² + sin(θ₁ )² sin(θ₂ )²)-l₄ /l₅ )…….. (19) 

 

or 
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θ₃  = sin⁻ ¹(((l₅  (cos(θ₅ ) cos(θ₄ ) (cos(θ₁ ) sin(θ₂ ) + cos(θ₂ ) sin(θ₁ )) - sin(θ₅ ) sin(θ₄ ) (cos(θ₁ ) sin(θ₂ ) + 

cos(θ₂ )sin(θ₁ ))) + l₄ cos(θ₅ ) (cos(θ₁ ) sin(θ₂ ) + cos(θ₂ ) sin(θ₁ ))) (cos(θ₁ ) cos(θ₂ ) - sin(θ₁ ) 
sin(θ₂ )))/(cos(θ₁ )² cos(θ₂ )² + cos(θ₁ )² sin(θ₂ )² + cos(θ₂ )² sin(θ₁ )² + sin(θ₁ )² sin(θ₂ )²) - ((l₅  (cos(θ₅ ) 

cos(θ₄ ) (cos(θ₁ ) cos(θ₂ ) - sin(θ₁ ) sin(θ₂ )) - sin(θ₅ ) sin(θ₄ ) (cos(θ₁ ) cos(θ₂ ) - sin(θ₁ ) sin(θ₂ ))) + 

l₄ cos(θ₅ ) (cos(θ₁ ) cos(θ₂ ) - sin(θ₁ ) sin(θ₂ ))) (cos(θ₁ ) sin(θ₂ ) + cos(θ₂ ) sin(θ₁ )))/(cos(θ₁ )² cos(θ₂ )² + 

cos(θ₁ )² sin(θ₂ )² + cos(θ₂ )² sin(θ₁ )² + sin(θ₁ )² sin(θ₂ )²)/ l₅ )…….. (20) 

 

The squat down motion only involves movement of pitch angle of hip, knee and ankle. The analysis is 

simplified as 3R manipulator with three joints are parallel with each other. To ensure that robot will not fall 

down, the origin of biped always lie along the x axis of reference frame during the motion shown in figure 5. 

 

 
Fig. 5: Leg chain in squat down motion. 

l= l₄ 2 − l₀ ₆ 2
 + l₅ 2 − l₀ ₆ 2

 

 

By using sine law, Pitch angle of knee is given by, 

 

θ₅ = sin⁻ ¹ 
l

l₄
  

 

V. Conclusion 
This paper presented an easy way to visualize movement of a 5-link biped .It supports design of the 

associated complex mathematical models using inverse kinematics have been presented. Complexity of inverse 

kinematics is due to geometry of biped. There can be difficulty in finding all possible solutions. 
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