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Abstract: Tracking control of manipulators with joint flexibility is considered to achieve a higher control 

technique performance. An integral variable structure control (IVSC) approach for robot manipulators is 

presented for accurate servo-tracking in the presence of load variation, parameter uncertainty and nonlinear 

dynamic interactions. A procedure is proposed for choosing the control function so that it guarantees the 

existence of the sliding mode and for determining the coefficients of the switching plane and integral control 

gain. Furthermore, a modified proper continuous function is introduced to overcome the chattering problem. 

The proposed (IVSC) approach has been simulated for a two-degree of freedom flexible joint robot, each joint 

modeled by two-equations of second order. Stability is insured by the use of Liapunov's direct method. The 

simulation results demonstrate the potential of the proposed scheme. 

Keywords: Flexible joint robot, Integral variable structure system, Sliding mode, Switching plane, Servo-

tracking, Stability criterion, Dynamic uncertainty, Chatter. 

 

I. Introduction 
Most industrial robots are composed of multi links. Such a case is a highly nonlinear system with 

complicated coupled dynamics and uncertainty (various load, inertia, and gravitational forces etc.). With regard 

to such a complicated system, various controllers have been developed [1], such as adaptive controllers [2-4], 

robust controllers [5-7] and controllers based on the theory of variable structure [8-11]. However, the 

applicability of these controllers to practical robot is limited because the assumption of perfect rigidity is never 

satisfied exactly.  

Sweet and Good [12-13] have identified several problems that limit the performance of a typical robot 

manipulators. One of the main issues is the un modeled dynamics, especially the flexibility of the mechanical 

arm. Rivin [14] determined many sources of flexibility such as harmonic drives, the presence of elastic drive 

belts and the compressibility of hydraulic fluid in hydraulic manipulators. The use of "rigid" control laws in 

such systems has been shown to result in poor tracking performance with a low controller bandwidth and 

instability at higher bandwidth [15]. 

Several control strategies [16-17] have been proposed for the control of manipulators with joint 

flexibility based on reduced-order system models derived in separate time-scales using singular perturbation 

techniques. However, the problems associated with parameter variations have not been addressed in these 

works. Therefore, consideration of the joint flexibility in the course of modelling and control can contribute 

significantly to a better performance for most industrial robots. 

Robust tracking controller for (FJR) is developed using voltage control strategy [18], achieving pre-set 

performance on link position error [19] both are free of manipulator dynamics and nonlinearities. A novel 

observer-based robust dynamic feedback without velocity measurements was developed [20] resulting tracking 

error as small as possible, In case of the set-point regulation problem it can be simplified to a linear time 

invariant controller. A variable structure control method with a mathematical tool is applied [21] to control 

errors in a controller that is robust to the model uncertainties. The proposed scheme is applicable to industrial 

robot for robust position control. 

The integral variable structure control (IVSC) approach previously proposed in [22] considered the 

single-input single-output (SISO) system and has been successfully applied to electrohydraulic servo control 

systems. The (IVSC) approach comprises an integral controller for achieving a zero steady-state error under 

step input and variable structure controller [23-25] for enhancing the robustness. With this special scheme, two 

control loops are obtained, and it yields improved performance when compared to conventional (VSC) and 

linear approaches [22]. 

This paper extends previous results to the multi-input multi-output (MIMO) case, with an application 

to robot manipulators. The position control of a two-degree of freedom flexible joint robot (FJR) manipulators 

using (IVSC) algorithm has been simulated for illustrating the design procedure and demonstrating the 

robustness property. 
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II. Description Of (IVSC) Methodology 
The (IVSC) approach presented here is derived for the class of second-order dynamic equations with a 

positive-definite symmetric inertia matrix. Since the dynamics of most mechanical system can be modelled in 

this form, this approach will have wide application. Consider the dynamic equation [10]. 

  ̈     ̇                                                                                                                                          (1a) 

Where    ̇  ̈ are n x 1 position, velocity and acceleration vectors, respectively; M = M (θ ,   ̇ ) is an n x n 

symmetric positive-definite inertia matrix; B = B ( θ     ̇  is an n x n matrix; D = D(θ ,   ̇ ) is an n x n matrix; W 

=   (θ,    ̇  is an         nx1 vector representing the gravity term;  and U is an n x 1 control  vector.  

The corresponding state-space model can be written as 
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The proposed configuration of the (IVSC) is shown in Fig. 1. It combines an integral controller, a VSC and the 

plant (Eqn. 1), and is described as follows: 
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 ]T represent the desired position;    [        ]

  is an n x 1 vector; I is the n 

x n identity matrix; KI = diag[       ] is the gain matrix of the integral controller; and the control function U 

= [       ]
T
 is piecewise linear of the form 
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                                                                                                           (3) 

Where    is the component of the n-dimensional switching plane σ = 0 and is chosen as 

      (            ̇                                                                                                                            (4a) 

Or, in matrix form, 

    (           ̇                                                                                                                                        (4b) 

Where    [         ]
                                         [              ]        

Design of such a system involves 

1. The choice the functions U
+
 and U

 –
 to guarantee the existence of a sliding mode. 

2. The determination of the switching function σ and the integral control gain Ki, such that the system has 

the desired eigenvalues. 

3. The elimination of chattering of the control input. 

 

CONTROL FUNCTION 
From eqns. (2 and 4), one has 

 ̇                    ̇    ̇      ( 
                                                                             (5) 

Let 

 M = M
0
 +   ∆ M 

 B  = B
0
  +   ∆  B 

 D  = D
0
  +   ∆ D 

 W =  W
0
 +  ∆ W 

Where M
0
, B

0
, D

0
, and W

0
 are nominal values of  M, B, D and W, and∆M, ∆B, ∆D and ∆W are the deviations. 

Let the control function U be decomposed as 

U = Ueq + ∆ U                                                                                                                                                       (6a) 

Where Ueq , called equivalent control, is defined as the solution of the problem  ̇ = 0 under M = M
0
, B = B

0
, D = 

D
0
 and W = W

0
. That is, 

Ueq = D
0
θ + B

0 ̇       ̇         ( 
                                                                                               (6b) 

The function ∆U is used to eliminate the influence due to the plant parameter variations in ∆M, ∆B, ∆D and ∆W 

so as to guarantee the existence of a sliding mode. It is constructed as follows: 

∆U = M
0
  ∆τ                                                                                                                                                         (6c) 

Where 

     (            ̇                                                                                                                    (6d)                                                                                                                   

ᴪ   =  diag [ ᴪ1  ᴪ2  ……. ᴪn ] 

Ф  =diag [ Ф1  Ф2…. …..Фn ] 
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For a mechanical system such as a robot arm, each diagonal component of M
-1

 M
0
 is larger than the absolute 

value of the sum of other components in the same row [10]. Thus the following equation is obtained: 

M
-1

 M
0
=  I + ∆I                                                                                                                                                      (7) 

Where  ∆I = [ ∆iij]   ( i = 1,…,n,  j = 1,…., n )  and each entry ∆iij    
The condition for the existence of a sliding motion on the ith switch plane is [23-25] 

       
 ̇                                                                                                                (8)  

Substituting eqn. 6 into eqn.5 gives 
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              ̇           (                     
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Each component of  ̇is represented as 

 ̇  (                          (         (         ̇  (                                                        (9) 

Then 

       
 ̇    (                          (           (         ̇   (                              (10)                                                               

And the conditions for satisfying the inequality eqn. 8 are 
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Note that gi in eqn. 9 is dependent not only on parameter variations, load variation and coupling effects but also 

on the control parameters Ci, Ki, ∆τi ( i=1,….,n). Since the plant parameter variations ∆             are 

bounded and the term ∆      as described in eqn. 7, one can guarantee the existence of the gain  such that the 

inequality eqn. 11c is held. 

 

DESIGN OF SWITCHING PLANE AND INTEGRAL CONTROL GAIN 
While in the sliding motion, the system described by Eqn. 2 can be reduced to the following linear equations 

[23-25]: 

 ̇      (                                                                                                                                                  (12a) 

 ̇                                                                                                                                                              (12b) 

Since C and K Iare diagonal matrices, the (MIMO) system can be decomposed into n sets of (SISO) systems, as 

follows: 
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                                                                                                                       (13)  

The closed-loop transfer function of the system described by eqn. 13 is 

  (    
  (  

  
   

    

             
                                                                                                                              (14)  

Where θi (S) and  
 (S) are the Laplace transforms of           

 , respectively. The characteristic equations of 

the systems are 

                                                                                                                                                            (15) 

Since these characteristic equations are independent of the plant parameters, the (IVSC) approach is robust to 

the plant parameter variations. It can achieve a zero steady-state error, and its eigenvalues can be set arbitrarily. 

Let the desired eigenvalues of the systems be        (          or the equivalent desired characteristic 

equations 

                                                                                                                                                    (16)
 

Then the switching plane coefficients ci and the integral control gains ki can be chosen as follows: 
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CHATTERING CONSIDERATION 
For the control law given by eqn. 6d, if              (          are chosen as 

      
      

  

      
      

  

      
      

  

Then the control function ∆τ can be represented as 

    (  |        |    | ̇|     )     (                                                                                                     (17) 

Since the control ∆   contains the sign function sign (σi), direct application of such control signals to the plant 

may give rise to chattering. To obtain continuous control signals, the sign function sign (σ i), in eqn. 17 can be 

replaced by a modified proper continuous function as Eqn. (18) 

  (     
  

|  |    
                                                                                                                                                   (18) 

Where    is chosen as a function of |     
 | as 

            |      
 |                                                                                                                                (19) 

Where             are positive constants. 

 

DYNAMIC MODEL FOR (FJR) 
The dynamic mathematical model for flexible joint robot developed by  [26] is adopted. It is derived for the 

experimental two-degree of freedom articulated robot using Euler-Lagrange equation [27], and it is given by the 

following equations: 

M(θ)  ̈   +  W ( θ ,  ̇)  +  B   ̇  -  D  (    -  θ )  =  -J
T
F                                                                                     (20a) 

Im ̈m     +  Bm ̇m    +  D  (  θm  -  θ )  =  U                                                                                                           (20b) 

Where θ is the  2 x 1  link angular  position vector, θm is the  2 x 1  motor angular  position vector,   M (θ) is the 

2x2 manipulator inertia matrix, W (θ, ̇ )  is the 2x1 coriolos and centrifugal forces vector, D is 2x2 diagonal 

matrix with entries equal to the joint stiffness, J
T
 is the 2x2 transpose of the manipulator Jacobian, F is 2x1 

forces vector at the end effector expressed in the reference frame, Im is the 2x2 diagonal matrix with entries 

equal to the rotors inertia, Bm is the 2x2 diagonal matrix with entries equal to the coefficient of viscous damping 

at the motors, and U is 2x1 applied motor torque vector. The inertia matrix and the coriolos and centrifugal 

forces vector are given by: 

M(θ)       =  [
         (           (   
         (     

]  

   

W(θ, ̇    =  [
  ̇ (  ̇   ̇     (   
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Where I1 , I2 , m1 , m2 , a1 , a2 , l1 , l2 , and mr2 are the moment of inertia about an axis parallel to the axis of 

rotation passing through the center of mass, the mass, the distance from the center of rotation to the center of 

mass, length of the first and second link, respectively, and the mass of the second rotor. The system undamped 

natural frequencies are given by the following characteristic equation: 

|[
   
   

]    [
 (   
   

]|    

The system has four natural frequencies. The first two correspond to the rigid body modes which are the free 

rotation of the two rotors. The remaining two natural frequencies are due to joint flexibility and are used in the 

design of the flexible joints. 

 

PROBLEM FORMULATION 
 The process of controlling the dynamic model given by equations (20) is difficult because the system is 

multi-input multi-output (MIMO) nonlinear. However, considering each link and its driving motor only reduces 

the system to two single input multi-output linear subsystems, which simplifies the identification and control 

process.  [28] Has implemented this identification technique on a two-link flexible joint experimental robot. The 

first subsystem is the first joint (the first motor and the first link) and the second subsystem is the second joint 
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(the second motor and the second link). The following procedures are performed to control these two 

subsystems. 

a) First, constrain the first subsystem by clamping the first link to the fixed table, and thus the second 

subsystem characteristic can be isolated, identified, and control. 

b) To identify and control the first subsystem, the brake of the second motor is applied. Hence, the second 

subsystem is considered as extra mass add to the end of the first link. 

 

STEPS OF THE PROPOSED CONTROL (IVSC) 
1. Based on the block diagram shown in Fig. 1, by combining eqn. 20 and the (IVSC), one obtains a set of 

state equations of  the integral-variable structure-controlled two-link manipulator control system as in 

eqn. 2. 

2. Compute the control signal (U) following the design procedure using eqn. 6 (using the modified form 

for [∆τ] eqn. (17-19). 

3. The control gains [ᴪ, Ф, υ] are chosen according to eqn. 11, also the proper function (Pi) is calculated 

using the [ σ ] function obtained from eqn. 4. 

4. In the sliding motion, the controlled system eqn. 2 can be reduced to simple linear form (the MIMO 

system can be decomposed into two SISO systems) as shown eqn. 12-15, second order characteristic 

equations. 

5. The dynamic performance can now be determined by simply choosing the coefficients [CI  and K I], let 

        are the desired eigenvalues of the characteristic equation. Then Ci & KI as follows. 

     (                                                        
       
(        

 

 

SIMULATION STUDY 
 To evaluate the robustness of the proposed (IVSC) approach against large variations of plant 

parameters and load disturbances, a simulation studies was carried out for demonstration. The nominal values of 

the system parameters used in simulation {the two-degree of freedom flexible joint robot [FJR]} are given in 

Table 1, [28].  

Table 1.  Robot parameter from design and Sin Sweep Identification 
 Jl1 

(Kg.m2) 

Jl2 

(Kg.m2) 

d1 

(Kg.m2) 

d2 

(Kg.m2) 

b1 

(N.m.s/rad) 

b2 

(N.m.s/rad) 

Sin Sweep   2.087 0.216 2.041 0.242 

I - DEAS 0.2269 0.0429 2.110 0.223   

 
 bm1 

(N.m.s/rad) 

bm2 

(N.m.s/rad) 

k1 

(N.m/rad) 

k2 

(N.m/rad) 

Jm1 

(Kg.m2) 

Jm2 

(Kg.m2) 

Sin Sweep 1.254 0.119 125.56 31.27 0.1224 0.0168 

I - DEAS   198.49 51.11 0.1226 0.017 

 

Evaluation of the control methodology was carried out for: 

Different external load disturbance 

 Zero load 

 Load case  (A), [ 200% change in m2, and 500% change in J12 ] 

 Load case  (B), [ random deviation of  m2 from 0 to 200%, and J12 from 0 to 500%] 

Different control function 

 Without Pi (σi), δi = 0 [sign-function]. 

 With Pi (σi),             |      
 | 

Choosing the eigenvalues of the system eqn. 13 as                                                 

The coefficients of the switching plane and the integral control gain given by eqn. 16 

K   =   diag[ 15.625  15.625 ]        and      C  =   diag  [40  40  ] 

The control gains must be chosen to satisfy eqn. 11and, based on simulations, one possible set of the switching 

gains is chosen as follows: 

ᴪ=  diag [-500  -500]               Ф =  diag [-10  -10]                     and           υ =  diag [-1  -1] 

The control function [∆τ]calculated using eqn. 17-19, taking    δ1i  =  0.1    and   δ2i=  10. 

 

III. Results And Discussion 
Series of simulation studies have been carried out to demonstrate the performance of the proposed (IVSC). The 

simulation results of the dynamic responses are plotted for a comparison purpose. 
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Effect of the load variation on the output response 

 Fig. 2a and Fig. 2b show the output response of link-1 and link-2 respectively for zero load and load 

case (A). Obviously, the effect of load variation is eliminated and good tracking performance is obtained using 

the proposed method. Increasing the load effect as mentioned previously, i.e. the load case (B). The output 

tracking responses for this case are shown in Fig. 3a and Fig. 3b for link-1 and link-2 respectively. It is clear that 

the desired response can almost be maintained under sever variations of the load disturbance using the proposed 

scheme. 

 

Effectiveness of the proposed control function (Pi) regarding chatter of the control input 

 Fig. 4 and Fig. 5 show the waveforms of the control signal of the two links respectively. Fig. 4a shows 

the control signal U without using the function Pi with zero load case. Smooth control signal without chattering 

is obtained when using the function Pi in spite of increasing the load to case (B). The same result was obtained 

for link-2 as seen in Fig. 5. So, it is clear that the chattering phenomena can be eliminated by using a modified 

proper continuous function Pi. Thus, the (IVSC) approach seems amenable for practical implementation. 

 

IV. Conclusion 
 The problem of tracking control of a two-link direct drive with flexible joint robot (FJR) is presented. 

An (IVSC) design methodology for MIMO system is applied to improve the performance of the control system. 

It has been shown that the (IVSC) approach is robust to the plant parameter variations. It can achieve a zero 

steady-state error for step input and is possible for arbitrary eigenvalue assignment. The control of the robot arm 

is considered for demonstrating the design procedure and the potential of the (IVSC) approach. Simulations 

show that the proposed approach can give an almost accurate servo-tracking response in the face of large plant 

parameter variations, load variations and nonlinear dynamic interactions. It is a robust and practical control law 

for robot manipulators. 
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