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 Abstract: In this paper an integration technique is resented. In 1985, G.R. Lui and coworkers used this 

technique to integrate weak  form formulation over line support in 1D case or over support-Domain  in 2D 

case in Finite Element and Meshless methods. Present paper shows the results calculus by a Fortran Code, 

written in our laboratory,  in both cases:  regular and irregular nodal distribution. 
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I.    Introduction  
Numerical integration plays an important role in the process of a meshfree weak form method.  Gauss 

integration scheme is commonly used for integration of weak form methods.  As we know, the finite element 

method uses Gauss quadrature in each element to integrate the weak form. For most of meshfree methods based 

on Galerkin weak form, error will be involved in the process of numerical integration due to the complexity 

involved in Gauss integration (Dolbow and Belytschko, 1999). Then some types of nodal integration schemes 

have been developed to perform the numerical integration.  The core idea of a nodal integration scheme is to use 

nodes as the integration sampling points. 

 

II.   Discretized System Equations  

Consider a two-dimensional solid problem defined in domain Ω bounded by )( tu  , the 

governing equations of this problem can be expressed as follows (Liu, 2002).  

 Equilibrium equation: 

   ( 1) 

 Natural boundary condition: 

 ( 2) 

 Essential boundary condition: 

 ( 3) 

Where 
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 is  differential  operator ;  
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T  ,,  is the stress vector; 

 vuuT ,  is the displacement vector;  
yx

T bbb ,  is the body force vector, t is the prescribed traction on 

the natural boundaries, u is the prescribed  displacement  on the  essential  boundaries,  and n is  the  vector  of 

unit outward normal at a point on the natural boundary. 

The unconstrained Galerkin weak form of Equation 1 is as follows (Liu, 2002), 

( 4) 

For linear elasticity, the material matrix D is expressed as follows, 
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( 5) 

( 6) 

where E is Young's modulus and v is Poisson's ratio. Substituting the RPIM approximation equation [1] ,  

( 7) 
into equation 4 we obtain, 

fKd                                                                                                      ( 8) 

  where d is the vector of nodal displacement at all the unconstrained nodes and 

( 9) 

( 10) 

In witch  

( 11) 

To de.ne the global stiffness matrix integration calculus becomes necessary, see equation 9. Usually, Gauss 

points method is used. The nodal integration method can be an alternative technique to carry out the integration 

calculus and it’s more adapted to meshless approach, as it will be presented in following. 

 

III.    Nodal Integration Scheme   
We have an integral  

( 12) 

j

T

i DBB given in Equation 

he problem domain. 

In a nodal integration scheme, the domain Ω is divided into a set of non-overlapping sub-domains 

Ωi , each of them includes a node, and  


N

i i1
 the integrated, 

Equation 12, can then be expressed as 

( 13) 

In a meshfree method based on weak-form, a background mesh is needed for the implementation of numerical 

integration. For the present method, a background mesh is used for constructing the nodal integration domain 

for each node. The background mesh is not used for shape function construction which is constructed using a 

same set of nodes located in a local support domain. The independence of mesh from shape function 

construction has many advantages including the improvement in accuracy, which will be observed later in 

examples. This fact has also been found in many other existing works (Belytschko and al., 1994; Atluri and 

Zhu, 1998; Chen et al., 2001). It is very clear that one does not have to use mesh for shape function 

construction. In the present work, the mesh is also only used for integration purpose. The question now is how 
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to evaluate 




i

idxf )(   over the nodal integration domain Ωi. Here a novel and simple approach based on the 

Taylor series extension is presented. 

The basic idea of this approach is to extend the integral function to some terms of Taylor series, and the 

integration will be approximately performed on these terms. Note that the integrand f(x) is required to be 

differentiable within the integration domain when it is extended to be terms of Taylor series. Therefore, RPIM 

shape functions are constructed using the same set of nodes in each integration domain. A shape function 
constructed is one-piece, and hence is differentiable to any order in the integration domain. Note that the 

discontinuity will occur on the interfaces of the integration domains, and hence causes the non-conformability, 

which is omitted in this work, as it is controlled by the use of RBF shape functions with proper shape 

parameters (Liu, 2002). Note that this kind of non-conformability exists for all the meshfree methods based on 

weak-form and nodal integration even the ones using MLS shape functions, unless strain smoothing technique 

is used (Chen and al., 2001; Liu and al., 2005a; Liu and Zhang, 2006).  
For comparison, the EFG method based on nodal integration is also coded, in which shape functions are 

obtained using the MLS method (Belytschko and al., 1994). For convenience, this method is named as NI-MLS. 

It is known that the MLS shape functions can be constructed to satisfy the compatibility condition and the 

continuity of the field function approximation is ensured (Liu, 2002). 

 

IV.   Formulation Of Nodal Integration  
4.1. For 1D problems 

To explain the method more clearly, the formulations for one-dimensional problems will be first 

presented. Based on Taylor series extension, a continuous function 

 as follows [2] 

( 14) 

The 3rd order and above are truncated. 

)( 21 xxx  can then be evaluated as: 

( 15) 

Considering now a one-dimensional problem, the problem domain is presented by a set of nodes, as shown in 

Figure 1and Figure 2 . The integrand of f(x) is now a component of the matrix j

T

i DBB (see Equation 9). When 

the field-nodes are regularly distributed, by using Equation (15), the numerical integration for the i
th

 node can 

be performed as follows. 

 
Figure 1 Integration domain with regular nodal distribution. 
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Figure 2 Integration domain with irregular nodal distribution 

Case 1: regularly distributed nodes 

For an internal node 

For an internal node, the integration can be applied as: 

( 16) 

where a is the nodal spacing as shown in Figure 1. 

For the node at the left end 

For the node located at the left end, the integration will as: 

( 17) 

For the end at the right end 

For the node located at the right end of the 1D domain, 

( 18) 

Case 2: irregularly distributed nodes 

When the field nodes are irregularly distributed, Equations (16), (17) and (18) can be expressed as follows. 

For an internal node: 

For internal node, the integration will be applied as: 

( 19) 
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For the node at the left end 

For the node located at the left end, the integration will as: 

( 20) 

For the end at the right end 

For the node located at the right end of the 1D domain, 

( 21) 

where a,b,c and d are nodal spacing for the irregularly distributed nodes as shown in Figure2. 
4.2.  Numerical example 

We calculate  dxxI 23 in domain [0,10]. The domain is divided in eleven nodes in which the integrals are 

calculated as shows table 1. Figure 3 shows the analytical and approximated results which coincide very good. 

These results have been used to plot figure 3. 

 
Table 1 Analytical and approximated integral values for 1D case 
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Figure 3 Analytical and approximated integral values 1D-case 

 

4.3. for 2D problems 

Applying Taylor series extension, a two-dimensional (2D) continuous function f(x,y) can be 

approximated in the vicinity of point (x₀,y₀) as follows, 

( 22) 

Ω can be expressed as, 

( 23) 

where : 

 

 

( 24) 

the area moments of 1 order for the domain of the i node,  

( 25) 

the area moments of 2 order for the domain of the i node . 

4.4. The integration along the boundary line 
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( 26) 

To apply the nodal integration technique, a background cell is needed to divide the problem domain into nodal 

integration domains, each of which includes a node. 

When the nodes are regularly distributed, a rectangular domain can be used as the nodal integration domain 

(illustrated in Figure ), and the union of all the rectangles forms the problem domain. As shown in 5.1, when 

the nodes are irregularly distributed, a tessellation can always be generated automatically by joining the 

centroids of the triangles and the mid-edge points (Ferzige and Peric, 1999). 

 
Figure 4 Background cells in case: Regular distribution of nodes in domain integration. 

 
Figure 5 Background cells in case: Irregular distribution of nodes in domain integration 

The area Ai, the moments Mxi, Myi, Mxxi, Mxyi, and Myyi for  the i
th

 field node can be calculated during the pre-

process stage for later use in the numerical integration, because they depend on only the geometry of the nodal 

integration domain. 
4.5. Numerical example : two-dimension case 
Area test A is chosen, a 2x2 plate with 9 nodes distributed as shows figures 6, regular (a) and irregular (b) 

manner. 

 
Figure 6 Area test plaque 2x2, with regular (a) and irregular (b) nodal distribution 

As a benchmark test, the following integral is chosen  dxdyyxI 222  

A Fortran code, written in our Laboratory, for each area calculates all necessary geometrical characteristics and 

evaluates the integral values in regular and irregular cases. The following table 2 gives the cumulus-results 
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calculated by Maple, Analytical method and by present methods in both cases: regular and irregular nodal 

distribution. The following plot (figure 7) gives comparison between analytical and present methods in regular 

and irregular nodal distribution. 

 
Table 2 Analytical and approximated integral values for 2D case,(by Maple, Analytical calculus, Taylor’s 

series with regular nodal distribution, with irregular distribution) 

 
Figure 7 Integration Results : Red, Analytical - Blue, Present method with regular nodal distribution- 

Black, Present method with irregular nodal distribution. 

 

V. Discussion 

The results given by present integration method, named in this paper nodal integration, are very 

accurate. The error’s calculation gives: 
 For regular nodal distribution: 

( 27) 

 For irregular nodal distribution: 

( 28) 

What proves to pay more attention to this method which will replace classical Gauss one. Don’t forget to note 

that in irregular nodal distribution case it is necessary to determine all geometrical area  characteristics in the 

beginning stage and then to proceed to integral calculation. 
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