On A New Class of Numbers

¹P. Rajkhowa, ²Ananta Kumar Bora

Department of Mathematics Gauhati University Guwahati-781014,India

Abstract: The present paper studies a new class of numbers. Results obtained in this paper are a table, recurrence relations, generating functions and Summation formulas for these new class of numbers. Many results reduce to their corresponding results for the Catalan numbers.

I. Definition:

(1.1) Consider the quadratic equation

$$x^2 = 2x + 1$$

Its roots are

$$\alpha = 1 + \sqrt{2}$$

$$\beta = 1 - \sqrt{2}$$

$$\alpha + \beta = 2$$

$$\alpha \beta = -1$$

Let
$$V_n = \alpha^n + \beta^n$$
 for $n \ge 0$, then

$$V_0 = 2, V_1 = 2, V_2 = 6, V_3 = 14, V_4 = 34, V_5 = 82, V_6 = 198, V_7 = 478,$$

$$V_8 = 1154$$
 etc.

These numbers satisfies the following recurrence relation

$$V_{n+1} = 2V_n + V_{n-1} \, ; \, n \geq 1 \, \, \text{with} \, \, \, V_0 \, \, = \, 2 \, , \, V_1 \, \, = \, 2 \, .$$

In view of (1.1) we define a new class of numbers

(1.2)
$$F_{n,k} = (-1)^{n-k} {2n+1 \choose n-k} V_{2k+1}$$
 where n is any non-negative integer and

 $0 \le k \le n$.

Also these numbers generalize the Catalan numbers in a non trivial way.

The catalan numbers C_n are defined by means of the generating relations ([3],p.82)

(1.3)
$$\sum_{n=0}^{\infty} C_n t^n = \frac{1 - \sqrt{1 - 4t}}{2t}$$

Or by the explicit formula ([3],p.101)

$$(1.4) C_n = \frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix}$$

The following relationship is obvious

(1.5)
$$C_{n} = \frac{(-1)^{n}}{2} \frac{F_{n,0}}{2n+1}$$

As usual $\left(\alpha\right)_n$ is Pochhammer's symbol and is defined by

$$(1.6) \quad \left(\alpha\right)_n = \begin{cases} 1 & \text{if} & n=0\\ \alpha(\alpha+1)....(\alpha+n-1), & \text{for all} & n\in\{1,2,3......\} \end{cases}$$

 $_{2}F_{1}$ will denote the hypergeometric function defined by

(1.7)
$${}_{2}F_{1}\begin{bmatrix} a,b; \\ x \\ c; \end{bmatrix} = \sum_{n=0}^{\infty} \frac{(a)_{n}(b_{n})}{(c)_{n}} \frac{x^{n}}{n!}; c \neq 0,1,-2,---$$

The Jacobi Polynomials are defined by

(1.8)
$$P_{n}^{(\alpha,\beta)}(x) = \frac{(1+\beta)_{n}}{n!} \left(\frac{x-1}{2}\right)^{n} 2F_{1}\begin{bmatrix} -n, -\alpha-n ; \\ \frac{x+1}{x-1} \end{bmatrix}$$

(1.9) In [1] A.K.Agarwal studied a new kind ofnumbers

The New kind of Numbers are defined as
$$f(n,k) = (-1)^{n-k} \binom{2n+1}{n-k} L_{2k+1}$$
; $0 \le k \le n$

and n is a non-negative integers and L_{2k+1} is a Lucas number of order 2k+1.

These new kind of numbers have the interesting property that

(1.10)
$$\sum_{k=0}^{n} f(n,k) = 1$$

Theorem 1
$$\sum_{k=0}^{n} F_{n,k} = 2^{2n+1}$$

Proof: Let n be an odd positive integer and α,β be the roots of $x^2=2x+1$ as defined in (1.1) Then from the binomial expansion of $(\alpha+\beta)^n$ we get

$$(1.11) \quad 2^{n} = V_{1} - \begin{pmatrix} n \\ 1 \end{pmatrix} V_{n-2} + \begin{pmatrix} n \\ 2 \end{pmatrix} V_{n-4} \dots + \begin{pmatrix} -1 \end{pmatrix}^{\frac{n-1}{2}} \begin{pmatrix} n \\ \frac{n-1}{2} \end{pmatrix} V_{1}$$

where V_n is defined as in (1.1) Setting $\,$ n=2m+1 in (1.11) we obtain

$$2^{2m+1} = \sum_{k=0}^{m} (-1)^{m-k} {2m+1 \choose m-k} V_{2k+1}$$

Remark 1: Theorem 1 is analogues with the following property of Sterling numbers of the first kind [see [10],(6) p. 145]

$$\sum_{k=0}^{m} S_n^k = 0$$

Remark 2: Also theorem 1 is analogues with (1.10)

II Table for $F_{\mathrm{n,k}}$								
n/k	0	1	2	3	4	5	6	7
0	2							
1	-6	14						
2	20	-70	82					
3	-70	294	-574	478				
4	252	-1176	2952	-4302	2786			
5	-924	4620	-13530	26290	-30646	16238		

III. Recurrence Relations

(4.1)
$$(n+k+2)(n+k+1)F_{n,k+1} + 6(n-k)(n+k+1)F_{n,k} + (n-k+1)$$

$$(n{-}k) \ F_{n,\,k-1} {\,=} 0 \quad \text{ for } k \geq 1$$

(4.2)
$$F_{n+r,k} = (-1)^r \frac{(2n+2)_{2r}}{(n-k+1)_r (n+k+2)_r} F_{n,k}$$

where r is a non negative integer.

Proof of (4.1)

The sequence $\left\{V_{2k+1}\right\}$ satisfies the following recurrence relations

$$(4.1.1) \quad V_{2n+3} = 6V_{2k+1} - V_{2k-1}$$

Now using the definition (1.2) and (4.1.1) we arrive at (4.1).

Proof of (4.2)

By definition, we have

(4.2.1)
$$F_{n,k} = (-1)^{n-k} {2n+1 \choose n-k} V_{2k+1}$$

And

(4.2.2)
$$F_{n+1,k} = (-1)^{n-k+1} {2n+3 \choose n-k+1} V_{2k+1}$$

Eliminating V_{2k+1} we have

$$F_{n+1,k} = (-1)\frac{(2n+3)(2n+2)}{(n-k+1)(n+k+2)}F_{n,k}$$

Proceeding in similar manner and using (1.6) we arrive at (4.2)

IV. Generating Relations

(5.1)
$$\sum_{n=0}^{\infty} \frac{F_{n+k,k}}{2(k+n)+1} y^n = \frac{x^{2k+1}}{2k+1} V_{2k+1}$$

$$(5.2) \qquad \sum_{n=0}^{\infty} F_{n+k,k} \ y^n \ = \frac{x^{2k+2}}{2-x} \, V_{2k+1}$$

Where
$$y = (1 - x)x^{-2}$$

Proof of (5. 1)

Here we shall use the identity

(5.1.1)
$$\sum_{n=0}^{\infty} \frac{\alpha}{\alpha + n\beta} {\alpha + n\beta \choose n} y^n = x^{\alpha} ; y = (x-1)x^{-\beta}$$

(see[3]. P. 147)

Setting $\alpha=2k+1$ and $\beta=2$ in (5.1.1) we arrive at (5.1)

Proof of (5.2)

Here we shall use the identity

(5.2.1)
$$\sum_{n=0}^{\infty} {\alpha + n\beta \choose n} y^n = \frac{x^{\alpha+1}}{(1-\beta)x+\beta} ; y = (x-1)x^{-\beta}$$

(see[3]. P. 147)

Setting $\alpha=2k+1$ and $\beta=2$ we arrive at (5.2)

Remark 3

For k = 0; (5. 1) and (1.4) yields (1.3)

Remark 4 For k = 0; (5.2) yields the following generating relation for the Catalan numbers

$$\sum_{n=0}^{\infty} (2n+1)C_n y^n = \frac{x^2}{2-x} ; y = (x-1)x^{-2}$$

Theorem (5.3): Let $F_{n,k}$ be defined as in (1.2) then

(5.3.1)
$$\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} F_{n+k,k} y^{n+k} = \frac{2x^3}{(2-x)(x^2-8x+8)}$$

$$(5.3.2) \quad \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{F_{n+k,k}}{2(n+k)+1} y^{n+k} = x F_4 \left[1, \frac{1}{2}; \frac{3}{2}, \frac{1}{2}; 1-x, 2(1-x) \right]$$

Where F₄ is Appell's double hypergeometric function of fourth kind defined by (see[4],p.14)

(5.3.3)
$$F_4[a,b;c,c';x,y] = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(a)_{m+n}(b)_{m+n}}{(c)_m(c^1)_n} \frac{x^m}{m!} \frac{y^n}{n!}$$

$$\sqrt{|x|} + \sqrt{|y|} < 1.$$

Proof of (5.3.1):

The numbers $\left\{ V_{2k+1} \right\}$ Satisfy the following generating relation

(5.3.4)
$$\sum_{k=0}^{\infty} V_{2k+1} x^k = \frac{2+2x}{x^2 - 6x + 1}; |x| < 1$$

Using the definition of $F_{n,k}$ we have

$$\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} F_{n+k,k} y^{n+k} = \sum_{k=0}^{\infty} V_{2k+1} y^{k} \sum_{n=0}^{\infty} {2n+2k+1 \choose n} (-y)^{n}$$

Now summing the inner series with the help of (5.2.1) and using (5.3.4) we arrive at (5.3.1)

Proof of (5.3.2):

From the definition of the sequence $\{V_n\}$ we have.

(5.3.5)
$$V_n = (1 + \sqrt{2})^n + (1 - \sqrt{2})^n$$

Which allows us to use the identity

$${}_{2}F_{1}\begin{bmatrix} & \frac{a}{2}, \frac{a}{2} + \frac{1}{2}; \\ & & z^{2} \\ & & \frac{1}{2}; \end{bmatrix} = \frac{1}{2} \left\{ (1-z)^{-a} + (1+z)^{a} \right\}$$

Setting a = -n, $z = \sqrt{2}$ we see that

(5.3.6)
$${}_{2}F_{1}\begin{bmatrix} -\frac{n}{2}, -\frac{n}{2} + \frac{1}{2}; \\ 2 \\ \frac{1}{2}; \end{bmatrix} = \frac{1}{2} \left\{ \left(1 - \sqrt{2} \right)^{n} + \left(1 + \sqrt{2} \right)^{n} \right\}$$

Comparing (5.3.5) and (5.3.6) we get

$$V_{n} = 2 {}_{2}F_{1}$$

$$\begin{bmatrix}
-\frac{n}{2} - \frac{1}{2}, -n ; \\
\frac{1}{2};
\end{bmatrix}$$

For odd n we have

(5.3.7)
$$\mathbf{V}_{2n+1} = 2 {}_{2}\mathbf{F}_{1} \begin{bmatrix} -n - \frac{1}{2}, -n ; \\ \frac{1}{2}; \end{bmatrix}$$

Again in (1.7) setting $\alpha = \frac{1}{2}$, $\beta = -\frac{1}{2}$ and x=3 we see that

$$V_{2n+1} = \frac{n!}{\left(\frac{1}{2}\right)_n} \rho_n^{\left(\frac{1}{2},-\frac{1}{2}\right)}(3)$$

Again in (1.8) setting $\gamma=1,\ \delta=\frac{1}{2},\ \alpha=\frac{1}{2}, \beta=-\frac{1}{2}$ and x=3 we get

$$\sum_{n=0}^{\infty} \frac{(1)_n \left(\frac{1}{2}\right)_n}{\left(\frac{3}{2}\right)_n \left(\frac{1}{2}\right)_n} \rho_n^{\left(\frac{1}{2}, -\frac{1}{2}\right)} (3) t^n = F_4 \left[1, \frac{1}{2}; \frac{3}{2}, \frac{1}{2}; t, 2t\right]$$

$$\Rightarrow \sum_{n=0}^{\infty} \frac{n! \left(\frac{1}{2}\right)_{n}}{\left(\frac{1}{2}\right)_{n} (2n+1) \left(\frac{1}{2}\right)_{n}} \rho_{n}^{\left(\frac{1}{2},-\frac{1}{2}\right)} (3) t^{n} = F_{4} \left[1,\frac{1}{2};\frac{3}{2},\frac{1}{2};t,2t\right]$$

$$\Rightarrow \sum_{n=0}^{\infty} \frac{V_{2n+1}}{2n+1} t^{n} = F_{4} \left[1, \frac{1}{2}; \frac{3}{2}, \frac{1}{2}; t, 2t \right]$$

Now, Starting with L.H.S. we get

$$\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{F_{n+k,k}}{2(n+k)+1} y^{n+k} = \sum_{k=0}^{\infty} V_{2k+1} y^{k}$$

$$\sum_{n=0}^{\infty} \frac{1}{2(n+k)+1} {2n+2k+1 \choose n} (-y)^n$$

Now summing the inner series with the help of (5.1.1) we get

$$\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{F_{n+k}}{2(n+k)+1} y^{n+k} = \sum_{k=0}^{\infty} V_{2k+1} y^k \frac{x^{2k+1}}{2k+1}$$

$$= x \sum_{k=0}^{\infty} \frac{V_{2k+1}}{2k+1} (x^2 y)^k$$

=
$$xF_4 \left[1, \frac{1}{2}; \frac{3}{2}; \frac{1}{2}; 1 - x, 2(1 - x) \right]$$

V. Summation Formulae

(6.1)
$$\sum_{m=0}^{n-1} \left\{ F_{n+k-m-1,k} + \frac{V_{2k+1}}{V_{2k-1}} F_{n+k-m-1,k-1} \right\} F_{m,0} = 2F_{n+k,k}$$

$$F_{n,0}V_{2k+1}; k \ge 1$$

(6.2)
$$\sum_{m=0}^{n-1} \frac{F_{m,o}}{2m+1} \frac{F_{n-m-l,o}}{2(n-m)-1} = \frac{2F_{n,0}}{2n+1}$$

$$(6.3) \qquad \sum_{m=0}^{n} \frac{n-2m(k+1)}{(2m+1)\{2(n+k-m)+1\}} F_{m,0} \ F_{n+k-m,k} = 0$$

(6.4)
$$\sum_{m=0}^{n} \left(-1\right)^{k} \left[\frac{F_{n,n-k}}{V_{2(n-k)+1}} + \frac{F_{n,n-k+1}}{V_{2(n-k)+3}} \right] = (2n+1)C_{n}$$

Proof of (6.1):

Replacing k by k-1 in (5. 2) we obtain

(6.1.1)
$$\sum_{n=0}^{\infty} F_{n+k-1,k-1} y^n = \frac{x^{2k}}{2-x} V_{2k-1}$$

Again putting k = 0 in (5. 2) we obtain

(6.1.2)
$$\sum_{n=0}^{\infty} F_{n,0} y^n = \frac{x^{2k}}{2-x}$$

From (5. 2) and (6.1.1) we obtain.

$$\begin{split} &\sum_{n=0}^{\infty} F_{n+k,k} \ y^n = \frac{V_{2k+1}}{V_{2k-1}} \, x^2 \quad \sum_{n=0}^{\infty} F_{n+k-1,k-1} \, y^n \\ &\Rightarrow \frac{1}{2-x} \sum_{n=0}^{\infty} F_{n+k,k} \, y^n = \frac{V_{2k+1}}{V_{2k-1}} \frac{x^2}{2-x} \, \sum_{n=0}^{\infty} F_{n+k-1,k-1} \, y^n \\ &\Rightarrow 2 \bigg(1 - \frac{x^2 y}{2-x} \bigg) \, \sum_{n=0}^{\infty} F_{n+k,k} \, y^n = \frac{V_{2k+1}}{V_{2k-1}} \frac{2x^2}{2-x} \, \sum_{n=0}^{\infty} F_{n+k-1,k-1} \, y^n \\ &\Rightarrow \bigg[2 - \, \sum_{m=0}^{\infty} F_{m,0} \, y^{m+1} \, \bigg] \sum_{n=0}^{\infty} F_{n+k,k} \, y^n \\ &= \frac{V_{2k+1}}{V_{2k-1}} \, \sum_{m=0}^{\infty} F_{m,0} \, y^m \sum_{n=0}^{\infty} F_{n+k-1,k-1} \, y^n \end{split}$$

Now equating the coefficients of y^n we arrive at (6.1)

Proof of (6.2)

Putting k = 0 in (5.1) we obtain

$$\begin{split} &\sum_{n=0}^{\infty} \ \frac{F_{n,0}}{2n+1} \, y^n \, = 2x \\ &\Rightarrow \sum_{n=0}^{\infty} \ \frac{F_{n,0}}{2n+1} \, y^n \, = 2 \Big(1 - x^2 y \Big) \\ &= 2 - \frac{y}{2} \sum_{m=0}^{\infty} \frac{F_{m,0}}{2m+1} \, y^m \sum_{n=0}^{\infty} \frac{F_{n,0}}{2n+1} \, y^n \end{split}$$

Now equating the coefficients of y^n we arrive at (6.2)

Proof of (6.3):

From (5.1) and (5.2) we obtain.

$$\sum_{n=0}^{\infty} F_{n+k,k} y^n = (2k+1) \frac{x}{2-x} \sum_{n=0}^{\infty} \frac{F_{n+k,k}}{2(n+k)+1} y^n$$

$$\Rightarrow 2x \sum_{n=0}^{\infty} F_{n+k,k} y^n = (2k+1) \frac{2x^2}{2-x} \sum_{n=0}^{\infty} \frac{F_{n+k,k}}{2(n+k)+1} y^n$$

$$\begin{split} & \Longrightarrow \sum_{m=0}^{\infty} \frac{F_{m,0}}{2m+1} \; y^m \; \sum_{n=0}^{\infty} \; F_{n+k,k} \; y^n \\ = & (2k+1) \! \sum_{m=0}^{\infty} \! F_{m,0} \; y^m \; \sum_{n=0}^{\infty} \; \frac{F_{n+k,k}}{2(n+k)+1} \; y^n \end{split}$$

Now equating the coefficients of y^n we arrive at (6.3)

Proof of (6.4):

Using the following identity (see[3] p.65)

$$\binom{2n+1}{n} = \sum_{k=0}^{n} \left[\binom{2n+1}{k} - \binom{2n+1}{k-1} \right]$$

We arrive at (6.4)

Remark 5: In view of (1.5), (6.2) yields the following formula for Catalan numbers

$$\sum_{m=0}^{n-1} C_m \ C_{n-m-1} \, = \, C_n$$

References

- [1] A.K.Agarwal, ``On a new kind of numbers", The Fibonacci Quarterly, Vol 28(3), (1990), 194-199.
- [2] C.Jordan. "Calculus of Finite Differences". New York: Chelsea, 1950.
- [3] J.Riordan. "Cambinatorial Identities". Huntington. New York: Krieger, 1979
- [4] E.D. Rainville. "Special Functions", New York: Macmillan, 1967.