K-derivation and symmetric bi-k-derivation on Gamma Banach Algebras

${ }^{1}$ P. Rajkhowa, ${ }^{2}$ Md. Shahidul Islam Khan
Department of Mathematics, Gauhati University, Guwahati-781014

Abstract

In this paper, we define and study k-derivations and symmetric bi-k-derivations on a Γ-Banach algebra. We also define and study $h \otimes k$-derivation d on the projective tensor product $V \otimes_{p} V^{\prime}$ for the h - and k-derivations d_{1} and d_{2} on Γ-Banach Algebras $V(F)$ and $V^{\prime}\left(F^{\prime}\right)$ respectively. AMS subject classification Code: 17D20 (γ, δ) Key words: k-derivation, symmetric bi-k-derivation, centroid.

I. Introduction:

N. Nobusawa [7] introduced the notion of a Γ-ring, more general than a ring. W. E. Barnes [11] weakened slightly the condition in definition of Γ-ring in the sense of Nobusawa. W. E. Barnes [11], J. Luh [4] and S. Kyuno [10] studied the structure of Γ-rings and obtained various generalizations analogous to corresponding parts in ring theory. Bhattacharya and Maity [2] introduced the notion of a Γ-Banach algebra. In recent times, many far reaching results of general algebras have been extended to Γ-algebras by many outstanding research workers. In this paper, we study k-derivation on Γ-Banach algebras V and $\mathrm{k} \otimes \mathrm{h}$ - deviation on $\Gamma \otimes \Gamma$-Banach algebra $V \otimes_{p} V^{\prime}$. We define symmetric bi-k-derivation on Γ-Banach algebras in which k :
$\Gamma \rightarrow \Gamma$ is an additive map such that $k^{n}=k$, where n is a positive integers. Some important results relating to this concepts are proved. For example we show that (a) Let $V(F)$ and $V^{\prime}\left(F^{\prime}\right)$ be two Γ-Banach algebra and $\quad \Gamma^{\prime}$-Banach algebra respectively with $\quad e \delta x=x \delta e=x(\forall x \in V), \quad e \in V, \delta \in \Gamma \quad$ and $e^{\prime} \delta^{\prime} y=y \delta^{\prime} e^{\prime}=y(\forall \mathrm{y} \in \mathrm{V}), e^{\prime} \in V^{\prime}, \delta^{\prime} \in \Gamma^{\prime}$. If d_{1} and d_{2} are k- and h-inner derivation on $V(F)$ and $V^{\prime}\left(F^{\prime}\right)$ respectively implemented by (a, δ) and $\left(\mathrm{b}, \delta^{\prime}\right)$ respectively then d is a $\mathrm{k} \otimes \mathrm{h}$ - inner deviation on $V \otimes_{p} V^{\prime}$ implemented by $\left(\mathrm{a} \otimes \mathrm{e}^{\prime}+\mathrm{e} \otimes \mathrm{b}, \delta \otimes \delta^{\prime}\right)$, (b) Let V be a 2 -torsion free prime Γ-Banach algebra, $D_{1}(.,),. D_{2}(.,$.$) and D_{3}(\ldots)$ and $D_{4}(.,$.$) the symmetric bi-k-derivations on V$ and d_{1}, d_{2}, d_{3} and d_{4} traces of $D_{1}(. .),. D_{2}(. .),. D_{3}(\ldots)$ and $D_{4}(\ldots)$ respectively. If $d_{1}(x) \gamma d_{2}(y)=d_{3}(x) \gamma d_{4}(y)$, for all $x, y \in V$ and $\gamma \in \Gamma$ and $\mathrm{d}_{1} \neq 0 \neq \mathrm{d}_{4}$, then there exists $\lambda \in \mathrm{C}_{\Gamma}$ such that $\mathrm{d}_{2}(\mathrm{x})=\lambda \alpha \mathrm{d}_{1}(\mathrm{x})$ for all $\alpha \in \Gamma$, where C_{Γ} is the extended centroid of V , (c) Let V be a 2-torsion free prime Gamma Banach algebra and U be a non zero ideal of V. Suppose there exist symmetric bi-k-derivations $D_{1}: V \times V \rightarrow V$ and $D_{2}: V \times V \rightarrow V$ such that $D_{1}\left(d_{2}(x), x\right)=0$ holds for all $x \in U$ where d_{2} denotes the trace of D_{2}. In this case $D_{1}=0$ or $D_{2}=0$, (d) Let V be a 2- and 3-torsion free prime Γ-Banach algebra. Let U be a non zero ideal of V and $\mathrm{D}_{1}: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{V}$ and $\mathrm{D}_{2}: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{V}$ be symmetric bi-k- derivations. Suppose further that there exists a symmetric bi-additive mapping B : $V \times V \rightarrow V$ such that $d_{1}\left(d_{2}(x)\right)=f(x)$ holds, for all $x \in U$, where D_{1} and D_{2} are the traces of D_{1} and D_{2} respectively and f is the trace of B. Then either $D_{1}=0$ and $D_{2}=0$.

II. Preliminaries

Let V and Γ be two additive abelian groups. If for all $x, y, z \in V ; \gamma, \mu \in \Gamma$, the following conditions are satisfied, (a) $x \gamma y \in V$, (b) $(x+\gamma) \gamma z=x \gamma z+y \gamma z, x(\gamma+\mu) y=x \gamma y+x \mu y$,
$\mathrm{X} \gamma(\mathrm{y}+\mathrm{z})=\mathrm{X} \gamma \mathrm{y}+\mathrm{X} \gamma \mathrm{Z} \quad$ (c) $x \gamma(y \mu z)=(x \gamma y) \mu z$ then V is called a Γ - ring in the sense of Barnes[11]. If these conditions are strengthened to, $\left(a^{\prime}\right) \quad x \gamma y \in V, \gamma \mu \in \Gamma,\left(b^{\prime}\right)$ is same as(b), (c) $\quad(x+\gamma) \gamma z=x \gamma z+y \gamma z, \quad x(\gamma+\mu) y=x \gamma y+x \mu y, \quad x \gamma(y+z)=x \gamma y+x \gamma z$ $x \gamma(y \mu z)=x(\gamma y \mu) z=(x \gamma y) \mu z \quad$ (d) $x \gamma y=0, \forall x, y \in V$ implies $\quad \gamma=0$, Then V is called a Γ ring in the sense of Nobusawa.
A Γ-ring in the sense of Nobusawa V is called a Γ-Banach algebra over a field F if it satisfies the following postulates:
(a) $\quad \mathrm{a}(\mathrm{x} \gamma \mathrm{y})=(\mathrm{ax}) \gamma \mathrm{y}=\mathrm{x} \gamma(\mathrm{ay}), \mathrm{a} \in \Gamma ; \mathrm{x}, \mathrm{y} \in \mathrm{M} ; \gamma \in \Gamma$.
(b) $\quad \mathrm{M}$ is a Banach space over F with respect to a norm which satisfies
$\|x \gamma y\| \leq\|x\|\|\gamma\|\|y\|, x, y \in V ; \gamma \in \Gamma$
A subset I of a Γ - Banach algebra V is said to be a right (left) ideal of V if
(a) I is a subspace of V (in the vector space sense).
(b) $x \gamma y \in I(y \not x \in I)$ for all $x \in I, \gamma \in \Gamma, y \in V$
i.e. $I \Gamma V \subseteq I(V \Gamma I \subseteq I)$

A right Γ-ideal which is a left Γ-ideal as well as is called a two sided Γ-ideal or simply a Γ ideal.

The notation $I \triangleleft V$ will mean I is an ideal of V .
A Γ-Banach algebra V is called 2-torsion free if $2 x=0$ implies $x=0$, for all $x \in V$.
A Γ-ideal I of a Γ-Banach algebra V is said to be prime Γ-ideal if for any two Γ-ideals A and B , $A \Gamma B \subseteq P \Rightarrow A \subseteq P$ or $B \subseteq P$.

A Γ - Banach algebra V is said to have a left (right) strong unity if there exists some $d \in V, \delta \in \Gamma$ such that $d \delta x=x(x \delta d=x), \forall x \in V$.
The Projective tensor norm $\|\cdot\|_{\gamma}$ on $\mathrm{X} \otimes \mathrm{Y}$ is defined as $\|\mathrm{u}\|=\inf \left\{\sum_{\mathrm{i}}\left\|\mathrm{x}_{\mathrm{i}}\right\|\left\|\mathrm{y}_{\mathrm{i}}\right\|: u=\sum_{i} x_{i} \otimes y_{i}\right.$; $\left.x_{i} \in X, y_{i} \in Y\right\}$, where the infimum is taken over all (finite) representations of u . The completion of $(\mathrm{X} \otimes \mathrm{Y}$, $\left.\|\cdot\|_{\gamma}\right)$ is called the projective tensor product of X and Y and is denoted by $\mathrm{X} \otimes_{\gamma} \mathrm{Y}$.
Let V and V^{\prime} be Γ-Banach algebras over the fields F_{1} and F_{2} respectively isomorphic to which are a field F. The projective tensor product $V \otimes_{p} V^{\prime}$ (with the projective tensor norm), is a $\Gamma \otimes \Gamma$-Banach algebra over F , where multiplication is defined by the formula:
$(\mathrm{x} \otimes \mathrm{y})(\alpha \otimes \beta)\left(\mathrm{x}^{\prime} \otimes \mathrm{y}^{\prime}\right)=\left(\mathrm{x} \alpha \mathrm{x}^{\prime}\right) \otimes\left(\mathrm{y} \beta \mathrm{y}^{\prime}\right)$, where $x, y \in V ; \mathrm{x}^{\prime}, \mathrm{y}^{\prime} \in V^{\prime} ; \alpha, \beta \in \Gamma$.
An additive operator d on the Γ-Banach algebra V over a field F into itself is called a k-derivation if $\mathrm{d}(\mathrm{x} \gamma \mathrm{y})=\mathrm{d}(\mathrm{x}) \gamma \mathrm{y}+\mathrm{xk}(\gamma) \mathrm{y}+\mathrm{x} \gamma \mathrm{d}(\mathrm{y})$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{V} ; \gamma \in \Gamma$, where $\mathrm{k}: \Gamma \rightarrow \Gamma$ is also a additive map. If $\mathrm{d}(\mathrm{x} \gamma \mathrm{x})=\mathrm{d}(\mathrm{x}) \gamma \mathrm{x}+\mathrm{x}$ $\mathrm{k}(\gamma) \mathrm{x}+\mathrm{x} \gamma \mathrm{d}(\mathrm{x})$ holds for all $\mathrm{x} \in \mathrm{V}$ and $\gamma \in \Gamma$, then d is called a Jordan k -derivation on V .
Let a and γ be nonzero elements of V and Γ respectively. The $\mathrm{d}: \mathrm{V} \rightarrow \mathrm{V}$ defined by $\mathrm{d}(\mathrm{x})=[\mathrm{a}, \mathrm{x}]_{\gamma}$ and $\mathrm{k}: \Gamma \rightarrow \Gamma$ defined by $\mathrm{k}(\beta)=[\gamma, \beta]_{\mathrm{a}}$ are two additive maps and d is a k -derivation on V . Then we call d is an inner k derivation on V .

Let V be a Γ-Banach algebra. A mapping $\mathrm{D}(.,):. \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{V}$ is said to be symmetric bi-additive if it is additive in both arguments and $\mathrm{D}(\mathrm{x}, \mathrm{y})=\mathrm{D}(\mathrm{y}, \mathrm{x})$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{V}$. By the trace of $\mathrm{D}(. .$.$) , we mean a map d: \mathrm{V} \rightarrow \mathrm{V}$ defined by $\mathrm{d}(\mathrm{x})=\mathrm{D}(\mathrm{x}, \mathrm{x}), \forall \mathrm{x} \in \mathrm{V}$. A symmetric bi-additive map is called a symmetric bi-k-derivation if (a) $\mathrm{D}(\mathrm{x} \gamma \mathrm{y}$, $z)=D(x, z) k(\gamma) y+x k(\gamma) D(y, x)(b) D(x, y \gamma z)=D(x, y) k(\gamma) z+y k(\gamma) D(x, z)$, for all $x, y, z \in V ; \gamma \in \Gamma$ and $k: \Gamma \rightarrow \Gamma$ is a additive map. Since a map $D(.,$.$) is symmetric bi-additive, the trace of D(.,$.$) satisfies the relation$ $d(x+y)=d(x)+d(y)+2 D(x, y)$, for all $x, y \in V$ and is an even function.

Let V be a prime Γ - Banach algebra such that $V \Gamma V \neq V$. Denote $£=\{(I, f): I(\neq 0)$ is an ideal of V and f : $\mathrm{I} \rightarrow \mathrm{V}$ is a Γ - Banach algebra homomorphism $\}$

Define a relation \sim on $£$ by $(\mathrm{I}, \mathrm{f}) \sim(\mathrm{J}, \mathrm{g}) \Leftrightarrow \exists \mathrm{K}(\neq 0) \subset \mathrm{I} \cap \mathrm{J}$ such that $\mathrm{f}=\mathrm{g}$ on K . Since V is a prime Γ-Banach algebra, it is possible to find such a K and so " \sim " is an equivalence relation on $£$. This gives a chance for us to get a partition of $£$. We then denote the equivalence class by $C l(1, f)=\hat{f}=\{g: J \rightarrow V \mid(1, f) \sim(J, g)\}$ and denote by Q , the set of all equivalence Classes. Now we define an addition " + " and as follows
$\hat{f}+\hat{g}=C l(I, f)+C l(J, g)=C l(I \cap J, f+g)$.It can be easily shown that the addition "+" is well defined and $(\mathrm{Q},+)$ is an abelian group.
Since $\mathrm{V} \Gamma \mathrm{V} \neq \mathrm{V}$ and since V is a prime Γ - Banach algebra $\mathrm{V} \Gamma \mathrm{V}(\neq 0)$ is an ideal of V . We can take the homomorphism $1_{V \Gamma}: V \Gamma V \rightarrow V$ as a unit Γ - Banach algebra homomorphism. Note that $V \beta V \neq 0$, for all $0 \neq \beta \in \Gamma$. So that $1_{V \beta}: V \beta V \rightarrow V$ is a nonzero Γ - Banach algebra homomorphism. Define $\xi=\left\{\left(V \beta V, 1_{V \beta}\right) \mid 0 \neq \beta \in \Gamma\right\}$ and define a relation " \approx " on ξ by $\left(\mathrm{V} \beta \mathrm{V}, 1_{V \beta}\right) \approx\left(\mathrm{V} \gamma \mathrm{V}, 1_{V \gamma}\right) \Leftrightarrow$ $\exists \mathrm{W}=\mathrm{V} \alpha \mathrm{V}(\neq 0) \subset \mathrm{V} \beta \mathrm{V} \cap \mathrm{V} \gamma \mathrm{V}$ such that $1_{V \beta}=1_{V \gamma}$ on W . we can easily check that " \approx " is an equivalence relation on ξ. Denote by $\mathrm{Cl}\left(\mathrm{V} \beta \mathrm{V}, 1_{V \beta}\right)=\hat{\beta}=\left\{\left(\mathrm{V} \gamma \mathrm{V}, 1_{V \gamma}\right):\left(\mathrm{V} \beta \mathrm{V}, 1_{V \beta}\right) \approx\left(\mathrm{V} \gamma \mathrm{V}, 1_{V \gamma}\right)\right\}$ and $\hat{\Gamma}=\{\hat{\beta} \mid 0 \neq \beta \in \Gamma\}$. Define an addition "+" on $\hat{\Gamma}$ as follows:
$\hat{\beta}+\hat{\delta}=c l\left(V \beta V, 1_{V \beta}\right)+c l\left(V \delta V, 1_{V \delta}\right)$
$=c l\left(V \beta V \cap V \delta V, 1_{V \beta}+1_{V \delta}\right)$, for every $\beta(\neq 0), \delta(\neq 0) \in \Gamma$. Then is an abelian group. Now we define a mapping (-,-,-): $Q \times \hat{\Gamma} \times Q \rightarrow Q,(\hat{f}, \hat{\beta}, \hat{g}) \mapsto \hat{f} \hat{\beta} \hat{g}$, as follows:

$$
\hat{\mathrm{f}} \hat{\beta} \hat{\mathrm{~g}}=\operatorname{cl}(\mathrm{I}, \mathrm{f}) \mathrm{cl}\left(\mathrm{~V} \beta \mathrm{~V}, 1_{\mathrm{V} \beta}\right) \mathrm{cl}(\mathrm{~J}, \mathrm{~g})
$$

$=\mathrm{cl}\left(\mathrm{I} \Gamma \mathrm{V} \beta \vee \Gamma \mathrm{J}, f I_{V \beta} g\right)$
Where $І Г \vee \beta \vee \Gamma \mathrm{~J}=\left\{\sum_{i} u_{i} \alpha_{i} m_{i} \beta n_{i} \beta_{i} v_{i}: u_{i} \in I, v_{i} \in J ; m_{i}, n_{i} \in V ; \alpha_{i} \beta_{i} \in \Gamma\right\}$ is an ideal of V and $f 1_{V \beta} \mathrm{~g}: \quad I \Gamma \mathrm{~V} \beta \vee \Gamma \mathrm{~J} \rightarrow \mathrm{~V}$ is a $\quad \Gamma$ - Banach algebra homomorphism which is define as $f 1_{V \beta} \mathrm{~g}$ $\left(\sum u_{i} \alpha_{i} m_{i} \beta n_{i} \beta_{i} v_{i}\right)=\sum_{i} f\left(u_{i}\right) \alpha_{i} 1_{V \beta}\left(m_{i} \beta n_{i}\right) \beta_{i} g\left(v_{i}\right)$ is a Γ - Banach algebra homomorphism. Then for $\hat{f}, \hat{g}, \hat{h} \in Q ; \hat{\beta}, \hat{\gamma} \in \hat{\Gamma}$, we have

$$
\begin{gathered}
(\hat{f}+\hat{g}) \hat{\beta} \hat{h}=\hat{f} \hat{\beta} \hat{h}+\hat{g} \hat{\beta} \hat{h} \quad \hat{f}(\hat{\beta}+\hat{\gamma}) \hat{g}=\hat{f} \hat{\beta} \hat{g}+\hat{f} \hat{\gamma} \hat{g}, \hat{f} \hat{\beta}(\hat{g}+\hat{h})=\hat{f} \hat{\beta} \hat{g}+\hat{f} \hat{\beta} \hat{h} \\
(\hat{f} \hat{\beta} \hat{g}) \hat{\gamma} \hat{h}=\hat{f}(\hat{\beta} \hat{g} \hat{\gamma}) \hat{h}=\hat{f} \hat{\beta}(\hat{g} \hat{\gamma} \hat{h}), \hat{f} \hat{\beta} \hat{g}=\hat{0}, \forall \hat{f}, \hat{g}, \in Q \text { implies } \hat{\beta}=\hat{0}
\end{gathered}
$$

Hence Q is a Γ-ring. Now we define scalar multiplication as $a \hat{f}=\operatorname{acl}(U, \hat{f})=\operatorname{cl}(U, a f)$,

$$
\begin{gathered}
a \in F ; \hat{f} \in Q \cdot \text { Then for } \hat{f}, \hat{g} \in Q ; a, b \in F \\
a(\hat{f}+\hat{g})=a \hat{f}+a \hat{g},(a+b) \hat{f}=a \hat{f}+a \hat{g},(a b) \hat{f}=a(b \hat{f}), 1 \cdot \hat{f}=\hat{f}
\end{gathered}
$$

Hence $Q(F)$ is a vector space. Now for $\hat{f}, \hat{g} \in Q ; \hat{\beta} \in \hat{\Gamma} ; a \in F$ we can show that $a(\hat{f} \hat{\beta} \hat{g})=(a \hat{f}) \hat{\beta} \hat{g}=\hat{f} \hat{\beta}(a \hat{g})$.

$$
\text { Next define a norm on } \mathrm{Q} \text { by }\|\hat{f}\|=\|(U, f)\|=\sup \{\|f(x)\|: x \in U,\|x\| \leq 1\}
$$

Then we find that $\left(\|\|, Q)\right.$ is a norm linear space. If $\left\{\hat{f}_{n}\right\}$ is a Cauchy sequence in Q , then for given $\epsilon<0$, ヨ positive integer ${ }_{n_{0}}$ such that $m, n \geq n_{0} \Rightarrow\left\|\hat{f}_{n}-\hat{f}_{m}\right\|_{<\epsilon}$

$$
\begin{aligned}
& \Rightarrow \sup \left\{\left\|\hat{f}_{n}(x)-\hat{f}_{m}(x)\right\|: x \in U_{n} \cap U_{m} \text { and }\|x\| \leq 1\right\}_{<\epsilon} \\
& \Rightarrow\left\|f_{n}(x)-f_{m}(x)\right\|_{<\epsilon}, \quad x \in U_{n} \cap U_{m} \text { and }\|x\| \leq 1
\end{aligned}
$$

$$
\Rightarrow \exists\left(U_{0}, f_{0}\right) \in £ \text { such that } f_{n}(x) \rightarrow f_{0}(x), \text { because the norm in } \mathrm{Q} \text { is uniformly }
$$

continuous. So we can prove easily that $\hat{f}_{n} \rightarrow \hat{f}_{0} \in Q$. Therefore Q is a Banach Algebra over F . Moreover, for $\hat{f}, \hat{g} \in Q ; \hat{\beta} \in \hat{\Gamma}$, we have
$\|\hat{f}\|\|\hat{\beta}\|\|\hat{g}\|=\|c l(I, f)\|\left\|c l\left(V \beta V, 1_{V \beta}\right)\right\|\|c l(J, g)\|$
$=\left\|c l\left(I \Gamma V \beta V \Gamma J, f 1_{V \beta} g\right)\right\|$
$=\sup \{\|f(u)\|: u \in I,\|u\| \leq 1\} . \sup \left\{\left\|1_{V \beta}(x \beta y)\right\|: x \beta y \in V \beta V,\|x \beta y\| \leq 1\right\} \sup \{\|v\|: v \in J,\|v\| \leq 1\}$
$=\sup \left\{\|f(u)\|\left\|1_{V \beta}(x \beta y)\right\|\|g(v)\|: u \in I, x \beta y \in V \beta V, v \in J ;\|u\| \leq 1,\|x \beta y\| \leq 1,\|v\| \leq 1\right\}$
$\geq \sup \left\{\|f(u)\|\|\gamma\|\left\|1_{V \beta}(x \beta y)\right\|\left\|\gamma^{\prime}\right\|\|g(v)\|: u \in I, x \beta y \in V \beta V, v \in J ;\|u\| \leq 1,\|x \beta y\| \leq 1,\|v\| \leq 1,\|\gamma\| \leq 1,\left\|\gamma^{\prime}\right\| \leq 1\right\}$
$=\sup \left\{\left\|f(u) \gamma 1_{V \beta}(x \beta y) \gamma^{\prime} g(v)\right\|: u \in I, x \beta y \in V \beta V, v \in J ;\|u\| \leq 1,\|x \beta y\| \leq 1,\|v\| \leq 1,\|\gamma\| \leq 1,\left\|\gamma^{\prime}\right\| \leq 1\right\}$
$=\sup \left\{\left\|f 1_{V \beta} g\left(u \gamma x \beta y \gamma^{\prime} v\right)\right\|: u \in I, x \beta y \in V \beta V, v \in J ;\left\|u \gamma x \beta y \gamma^{\prime} v\right\| \leq 1\right\}$
$=\left\|c l\left(I \Gamma V \beta V \Gamma J, f 1_{V \beta} g\right)\right\|$
$=\left\|c l(I, f) c l\left(V \beta V, 1_{V \beta}\right) c l(J, g)\right\|$
$=\|\hat{f} \hat{\beta} \hat{g}\|$
Thus Q is a $\hat{\Gamma}$-Banach algebra over F . Noticing that the mapping $\eta(\beta)=\hat{\beta}$ for every $0 \neq \beta \in \Gamma$ is an isomorphism. Therefore $\hat{\Gamma}$-Banach algebra Q is a Γ-Banach algebra.

The set $C_{\Gamma}=\{g \in Q \mid g \gamma f=f \gamma g, \forall f \in Q a n d \gamma \in \Gamma\}$, is called the extended centroid of Γ-Banach algebra V over F. If $a \gamma x \beta b=b \gamma x \beta a$, for all $x \in V$ and $\beta, \gamma \in \Gamma$, where $a(\neq 0), b \in V$ are fixed, then there exists $\lambda \in C_{\Gamma}$ such that $b=\lambda \alpha a$ for $\alpha \in \Gamma$.

III. The main results:

Theorem3.1. If d_{1} and d_{2} be bounded k - and h -derivations on Γ-Banach algebras $V\left(F_{1}\right)$ and $V^{\prime}\left(F_{2}\right)$ respectively then there exists a bounded $\mathrm{h} \otimes \mathrm{k}$-derivation d on the projective tensor product $V \otimes_{p} V^{\prime}$ defined by the relation $\mathrm{d}(\mathrm{u})=\sum_{\mathrm{i}}\left[\mathrm{d}_{1}\left(\mathrm{x}_{\mathrm{i}}\right) \otimes \mathrm{y}_{\mathrm{i}}+\mathrm{x}_{\mathrm{i}} \otimes \mathrm{d}_{2}\left(\mathrm{y}_{\mathrm{i}}\right)\right]$, where $u=\sum_{i} x_{i} \otimes y_{i} \in V \otimes_{p} V$.
Proof: Since $\quad d: V\left(F_{1}\right) \otimes_{p} V^{\prime}\left(F_{2}\right) \rightarrow V\left(F_{1}\right) \otimes_{p} V^{\prime}\left(F_{2}\right) \quad$ is \quad define \quad as $\mathrm{d}(\mathrm{u})=\sum_{\mathrm{i}}\left[\mathrm{d}_{1}\left(\mathrm{x}_{\mathrm{i}}\right) \otimes \mathrm{y}_{\mathrm{i}}+\mathrm{x}_{\mathrm{i}} \otimes \mathrm{d}_{2}\left(\mathrm{y}_{\mathrm{i}}\right)\right]$, where $u=\sum_{i} x_{i} \otimes y_{i} \in V\left(F_{1}\right) \otimes_{p} V^{\prime}\left(F_{2}\right)$. Clearly d is well defined. For any arbitrary element $u=\sum_{i} x_{i} \otimes y_{i} \in V\left(F_{1}\right) \otimes_{p} V^{\prime}\left(F_{2}\right)$ and $\in>0 \quad$ we have $\|u\|_{p}+\in \geq \sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|$, from the definition of projective norm. Now $\|d(u)\|_{p}=\left\|\sum_{i}\left[d_{1}\left(x_{i}\right) \otimes y_{i}+x_{i} \otimes d_{2}\left(y_{i}\right)\right]\right\|_{p}$. Thus $\leq \sum_{i}\left\lfloor\left\|d_{1}\left(x_{i}\right) \otimes y_{i}\right\|+\left\|x_{i} \otimes d_{2}\left(y_{i}\right)\right\|\right\rfloor$
$=\sum_{i}\left[\left\|d_{1}\left(x_{i}\right)\right\|\left\|y_{i}\right\|+\left\|x_{i}\right\|\left\|d_{2}\left(y_{i}\right)\right\|\right]$
$\leq\left(\left\|\mathrm{d}_{1}\right\|+\left\|\mathrm{d}_{2}\right\|\right) \sum_{\mathrm{i}}\left\|\mathrm{x}_{\mathrm{i}}\right\|\left\|\mathrm{y}_{\mathrm{i}}\right\|$
$\leq \mathrm{k}\left(\|\mathrm{u}\|_{\mathrm{p}}+\in\right)$, where $\mathrm{k}=\left\|\mathrm{d}_{1}\right\|+\left\|\mathrm{d}_{2}\right\|$
Thus $\|\mathrm{d}(\mathrm{u})\|_{\mathrm{p}} \leq \mathrm{k}\left(\|\mathrm{u}\|_{\mathrm{p}}+\in\right)$. Since the left hand side is independent of \in and \in was arbitrary, it follows that $\|\mathrm{d}(\mathrm{u})\|_{\mathrm{p}} \leq \mathrm{k}\|\mathrm{u}\|_{\mathrm{p}}$, for every $u \in V\left(F_{1}\right) \otimes_{p} V^{\prime}\left(F_{2}\right)$. Consequently D is bounded.
To show that d is a $\mathrm{k} \otimes \mathrm{h}$-derivation, we suppose that $\mathrm{u}=\mathrm{x} \otimes \mathrm{y}$ and $\mathrm{v}=\mathrm{x}^{\prime} \otimes \mathrm{y}^{\prime}$ are two elements of $V\left(F_{1}\right) \otimes_{p} V^{\prime}\left(F_{2}\right)$. Then
$d\left((x \otimes y)(\alpha \otimes \beta)\left(x^{\prime} \otimes y^{\prime}\right)\right)$, where $\alpha \otimes \beta \in \Gamma \otimes_{\mathrm{p}} \Gamma^{\prime}$
$=\mathrm{d}\left(\mathrm{x} \alpha \mathrm{x}^{\prime} \otimes \mathrm{y} \beta \mathrm{y}^{\prime}\right)$
$=\mathrm{d}_{1}\left(\mathrm{x}_{\mathrm{x}} \mathrm{x}^{\prime}\right) \otimes \mathrm{y} \beta \mathrm{y}^{\prime}+\mathrm{x} \alpha \mathrm{x}^{\prime} \otimes \mathrm{d}_{2}\left(\mathrm{y} \beta \mathrm{y}^{\prime}\right)$
$=\left[d_{1}(x) \alpha x^{\prime}+x k(\alpha) x^{\prime}+x \alpha d_{1}\left(x^{\prime}\right)\right] \otimes \mathrm{y} \beta \mathrm{y}^{\prime}+\mathrm{x} \alpha \mathrm{x}^{\prime} \otimes\left[d_{2}(y) \beta y^{\prime}+y h(\beta) y^{\prime}+y \beta d_{2}\left(y^{\prime}\right)\right]$
$=\mathrm{d}(\mathrm{x} \otimes \mathrm{y})(\alpha \otimes \beta)\left(\mathrm{x}^{\prime} \otimes \mathrm{y}^{\prime}\right)+(\mathrm{x} \otimes \mathrm{y})(\mathrm{k} \otimes \mathrm{h})(\alpha \otimes \beta)\left(\mathrm{x}^{\prime} \otimes \mathrm{y}^{\prime}\right)+(\mathrm{x} \otimes \mathrm{y})(\alpha \otimes \beta) \mathrm{d}\left(\mathrm{x}^{\prime} \otimes \mathrm{y}^{\prime}\right)$,
where $(\mathrm{k} \otimes \mathrm{h})(\alpha \otimes \beta)=\mathrm{k}(\alpha) \otimes \beta+\alpha \otimes \mathrm{h}(\beta)$
Similarly, if $\mathrm{u}=\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \otimes \mathrm{y}_{\mathrm{i}}$ and $\mathrm{v}=\sum_{\mathrm{j}} \mathrm{x}_{\mathrm{j}}^{\prime} \otimes \mathrm{y}_{\mathrm{j}}^{\prime}$ be two element of $V\left(F_{1}\right) \otimes_{p} V^{\prime}\left(F_{2}\right)$ then summing over i and j we can prove easily that
$d(u(\alpha \otimes \beta) v)=d(u)(\alpha \otimes \beta) v+u[(k \otimes h)(\alpha \otimes \beta)] v+u(\alpha \otimes \beta) d(v)$
So, d is a $\mathrm{k} \otimes \mathrm{h}$-derivation.
Theorem3.2. Let $V(F)$ and $V^{\prime}\left(F^{\prime}\right)$ be two Γ-Banach algebra and Γ^{\prime}-Banach algebra respectively with e $\delta \mathrm{x}$ $=\mathrm{x} \delta \mathrm{e}=\mathrm{x}, \forall \mathrm{x} \in \mathrm{V}, \mathrm{e} \in \mathrm{V}, \delta \in \Gamma$ and $e^{\prime} \delta^{\prime} y=y \delta^{\prime} e^{\prime}=y, \forall y \in V^{\prime}, e^{\prime} \in V^{\prime}, \delta^{\prime} \in \Gamma^{\prime}$. If d_{1} and d_{2} are k-and hinner derivation on $V(F)$ and $V^{\prime}\left(F^{\prime}\right)$ respectively implemented by (a, δ) and ($\mathrm{b}, \delta^{\prime}$) respectively then d is a $\mathrm{k} \otimes \mathrm{h}$ - inner deviation on $V \otimes_{p} V^{\prime}$ implemented by $\left(\mathrm{a} \otimes \mathrm{e}^{\prime}+\mathrm{e} \otimes \mathrm{b}, \delta \otimes \delta^{\prime}\right)$.
Proof: Let d_{1} and d_{2} be k- and h-inner derivations on $V(F)$ and $V^{\prime}\left(F^{\prime}\right)$ respectively implemented by (a, δ) and $\left(b, \delta^{\prime}\right)$ i.e.
$\mathrm{d}_{1}(\mathrm{x})=[\mathrm{a}, \mathrm{x}]_{\delta}$, where $\mathrm{k}(\alpha)=[\delta, \alpha]_{\mathrm{a}}$
$\mathrm{d}_{2}(\mathrm{y})=[\mathrm{b}, \mathrm{y}]_{\delta^{\prime}}$, where $h(\beta)=\left[\delta^{\prime}, \beta\right]_{b}$
Now $d(u)=d\left(\dot{i}_{i} x_{i} \otimes y_{i}\right)$
$=\sum_{i}\left[d_{1}\left(x_{i}\right) \otimes y_{i}+x_{i} \otimes d_{2}\left(y_{i}\right)\right]$
$=\sum_{\mathrm{i}}\left[\left[\mathrm{a}, \mathrm{x}_{\mathrm{i}}\right]_{\delta} \otimes \mathrm{y}_{\mathrm{i}}+\mathrm{x}_{\mathrm{i}} \otimes\left[\mathrm{b}, \mathrm{y}_{\mathrm{i}}\right]_{\delta^{\prime}}\right]$
$=\sum_{\mathrm{i}}\left[\left(\mathrm{a} \delta \mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}} \delta \mathrm{a}\right) \otimes \mathrm{y}_{\mathrm{i}}+\mathrm{x}_{\mathrm{i}} \otimes\left(\mathrm{b} \delta^{\prime} \mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}} \delta^{\prime} \mathrm{b}\right)\right]$
$=\sum_{\mathrm{i}}\left\lfloor\mathrm{a} \delta \mathrm{x}_{\mathrm{i}} \otimes \mathrm{y}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}} \delta \mathrm{a} \otimes \mathrm{y}_{\mathrm{i}}+\mathrm{x}_{\mathrm{i}} \otimes \mathrm{b} \delta^{\prime} \mathrm{y}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}} \otimes \mathrm{y}_{\mathrm{i}} \delta^{\prime} \mathrm{b}\right]$

$$
\begin{aligned}
& =\sum_{\mathrm{i}}\left[\mathrm{a} \delta \mathrm{x}_{\mathrm{i}} \otimes \mathrm{e}^{\prime} \delta^{\prime} \mathrm{y}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}} \delta \mathrm{a} \otimes \mathrm{y}^{\prime} \mathrm{e}^{\prime}+\mathrm{e} \delta \mathrm{x}_{\mathrm{i}} \otimes \mathrm{~b} \delta^{\prime} \mathrm{y}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}} \delta \mathrm{e} \otimes \mathrm{y}_{\mathrm{i}} \delta^{\prime} \mathrm{b}\right] \\
& =\sum_{i}\left[\left(a \otimes e^{\prime}\right)\left(\delta \otimes \delta^{\prime}\right)\left(x_{i} \otimes y_{i}\right)-\left(x_{i} \otimes y_{i}\right)\left(\delta \otimes \delta^{\prime}\right)\left(\mathrm{a} \otimes \mathrm{e}^{\prime}\right)+(\mathrm{e} \otimes \mathrm{~b})\left(\delta \otimes \delta^{\prime}\right)\right. \\
\left(\mathrm{x}_{\mathrm{i}} \otimes\right. & \left.\mathrm{y}_{\mathrm{i}}\right) \\
& \left.-\left(\mathrm{x}_{\mathrm{i}} \otimes \mathrm{y}_{\mathrm{i}}\right)\left(\delta \otimes \delta^{\prime}\right)(\mathrm{e} \otimes \mathrm{~b})\right] \\
& =\sum_{i}\left[\left(a \otimes e^{\prime}+e \otimes b\right)\left(\delta \otimes \delta^{\prime}\right)\left(x_{i} \otimes y_{i}\right)-\left(x_{i} \otimes y_{i}\right)\left(\delta \otimes \delta^{\prime}\right)\left(\mathrm{a} \otimes \mathrm{e}^{\prime}+\mathrm{e} \otimes \mathrm{~b}\right)\right] \\
& =\sum_{i}\left[a \otimes e^{\prime}+e \otimes b, x_{i} \otimes y_{i}\right]_{\delta \otimes \delta^{\prime}} \\
& =\sum_{i}\left[a \otimes e^{\prime}+e \otimes b, u\right]_{\delta \otimes \delta^{\prime}}
\end{aligned}
$$

Now, we define $\mathrm{k} \otimes \mathrm{h}: \Gamma \otimes \Gamma \rightarrow \Gamma \otimes \Gamma$ by
$(\mathrm{k} \otimes \mathrm{h})(\alpha \otimes \beta)=\left[\delta \otimes \delta^{\prime}, \alpha \otimes \beta\right]_{\mathrm{a} \otimes \mathrm{e}^{\prime}+\mathrm{e} \otimes \mathrm{b}}$
It can be easily prove that
$d\left((x \otimes y)(\alpha \otimes \beta)\left(x^{\prime} \otimes y^{\prime}\right)\right)=d(x \otimes y)(\alpha \otimes \beta)\left(x^{\prime} \otimes y^{\prime}\right)+(x \otimes y)(k \otimes h)(\alpha \otimes \beta)$
$\left(x^{\prime} \otimes y^{\prime}\right)+(x \otimes y)(\alpha \otimes \beta) d\left(x^{\prime} \otimes y^{\prime}\right)$
Therefore d is a $\mathrm{k} \otimes \mathrm{h}$-inner derivation on $V \otimes_{p} V^{\prime}$ implemented by $\left(\mathrm{a} \otimes \mathrm{e}^{\prime}+\mathrm{e} \otimes \mathrm{b}, \delta \otimes \delta^{\prime}\right)$
Theorem3.3. If d_{1} and d_{2} are k-and h-Jordan derivations, then d is an $\mathrm{h} \otimes \mathrm{k}$-Jordan derivation.
Proof: Obvious.

Remarks:

(i) The converse of the above three theorems are also true.
(ii) If $u=a \otimes e^{\prime} \in V(F) \otimes_{p} V^{\prime}\left(F^{\prime}\right)$, then from the definition of d in theorem 3.2 , we get $\mathrm{d}(\mathrm{u})=\mathrm{d}_{1}(\mathrm{a}) \otimes \mathrm{e}^{\prime}$, because $\mathrm{d}_{2}\left(\mathrm{e}^{\prime}\right)=0$
(iii) If $u^{\prime}=e \otimes b \in V(F) \otimes_{p} V^{\prime}\left(F^{\prime}\right)$, then from the definition of d in theorem 3.2, we get
$\mathrm{d}(\mathrm{u})=\mathrm{e} \otimes \mathrm{d}_{2}(\mathrm{~b})$, because $\mathrm{d}_{1}(\mathrm{e})=0$
Theorem3.4. If $\mathrm{d}_{1}, \mathrm{~d}_{2}$ and d are k - ,h- and $\mathrm{k} \otimes \mathrm{h}$-derivations respectively related as in theorem 3.1,3.2 and 3.3, then
$\|\mathrm{d}\| \leq\left\|\mathrm{d}_{1}\right\|+\left\|\mathrm{d}_{2}\right\| \leq 2\|\mathrm{~d}\|$
Proof: we already proof in theorem 3.1 is that
$\|d\| \leq\left(\left\|d_{1}\right\|+\left\|d_{2}\right\|\right)(1+\in)$
Since \in was arbitrary, it follows that

$$
\begin{equation*}
\|\mathrm{d}\| \leq\left\|\mathrm{d}_{1}\right\|+\left\|\mathrm{d}_{2}\right\| \tag{1}
\end{equation*}
$$

Next let $x \in V$ such that $\|x\|=1$.Then

$$
\begin{aligned}
& \left\|\frac{\mathrm{x}}{\mathrm{k}} \otimes \mathrm{e}^{\prime}\right\|=\left\|\frac{\mathrm{x}}{\mathrm{k}}\right\|\left\|\mathrm{e}^{\prime}\right\|=1 \text { where }\left\|\mathrm{e}^{\prime}\right\|=\mathrm{k} \neq 0 \\
& \text { Now }\|\mathrm{d}\|=\sup \left\{\|\mathrm{d}(\mathrm{u})\|_{\mathrm{p}}:\|\mathrm{u}\|_{\mathrm{p}}=1\right\} \\
& \geq\left\|\mathrm{d}\left(\frac{\mathrm{x}}{\mathrm{k}} \otimes \mathrm{e}^{\prime}\right)\right\|_{\mathrm{p}} \\
& =\left\|d_{1}\left(\frac{\mathrm{x}}{\mathrm{k}}\right) \otimes \mathrm{e}^{\prime}\right\|_{\mathrm{p}}, \text { since } \mathrm{d}_{2}\left(\mathrm{e}^{\prime}\right)=0
\end{aligned}
$$

$$
=\left\|\mathrm{d}_{1}(\mathrm{x})\right\|
$$

Thus $\|d\| \geq\left\|d_{1}(x)\right\|$, for every $\mathrm{x} \in \mathrm{V}(\mathrm{F})$ with $\|\mathrm{x}\|=1$ and which implies $\|\mathrm{d}\| \geq\left\|\mathrm{d}_{1}\right\|$
Similarly, we can prove that $\|\mathrm{d}\| \geq\left\|\mathrm{d}_{2}\right\|$
$\therefore\left\|\mathrm{d}_{1}\right\|+\left\|\mathrm{d}_{2}\right\| \leq 2\|\mathrm{~d}\|$
The inequalities (1) and (2) together implies that
$\|\mathrm{d}\| \leq\left\|\mathrm{d}_{1}\right\|+\left\|\mathrm{d}_{2}\right\| \leq 2\|\mathrm{~d}\|$.
Example1. Let V be the set of all 2×2 matrices of the type $\left(\begin{array}{cc}\mathrm{a} & \mathrm{b} \\ -\overline{\mathrm{b}} & \overline{\mathrm{a}}\end{array}\right)$ where a , b are complex numbers and $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ are their conjugates respectively and Γ be the set of all 2×2 matrices of the type $\left(\begin{array}{ll}\mathrm{x} & 0 \\ 0 & \mathrm{x}\end{array}\right)$, where x is a real number. Then V be a Γ-Banach algebra over $\mathrm{F}=\mathrm{R}$ with respect to usual matrix addition and multiplication and the norm is defined by
$\left\|\left(\begin{array}{cc}\mathrm{a} & \mathrm{b} \\ -\overline{\mathrm{b}} & \overline{\mathrm{a}}\end{array}\right)\right\|=\max \{|\mathrm{a}|,|\mathrm{b}|\}$ and $\left\|\left(\begin{array}{cc}\mathrm{x} & 0 \\ 0 & \mathrm{x}\end{array}\right)\right\|=|\mathrm{x}|$.
Let V^{\prime} be the set of all 2×2 matrix of the type $\left(\begin{array}{ll}\mathrm{x} & \mathrm{y} \\ \mathrm{u} & \mathrm{v}\end{array}\right)$, where $\mathrm{x}, \mathrm{y}, \mathrm{u}, \mathrm{v}$ are real numbers and $\Gamma^{\prime}=\Gamma$ and norm is defined as the norm is defined for V and Γ.Then $V^{\prime}\left(F^{\prime}\right)$ is a Γ^{\prime} - Banach algebra, where $F^{\prime}=R$.
Let d_{1} and d_{2} are k - and h -derivations implemented by (A, δ) and $\left(B, \delta^{\prime}\right)$ respectively, where
$A=\left(\begin{array}{cc}3 i & 2 i \\ 2 i & -3 i\end{array}\right) \in V, B=\left(\begin{array}{cc}5 & 3 \\ 2 & 1 i\end{array}\right) \in V^{\prime}$
$\delta=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right) \in \Gamma, \delta^{\prime}=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right) \in \Gamma^{\prime}$
Since $B_{1}=\left\{e_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), e_{2}=\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right), e_{3}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), e_{4}=\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)\right\}$ is a basis for $\mathrm{V}(\mathrm{F})$.
Now $d_{1}\left(e_{1}\right)=\left[A, e_{1}\right]_{\delta}$

$$
=A \delta e_{1}-e_{1} \delta A
$$

$$
=\left(\begin{array}{cc}
3 i & 2 i \\
2 i & -3 i
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
3 i & 2 i \\
2 i & -3 i
\end{array}\right)
$$

$$
=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Similarly, $d_{1}\left(e_{2}\right)=\left(\begin{array}{cc}0 & -4 \\ 4 & 0\end{array}\right), d_{1}\left(e_{3}\right)=\left(\begin{array}{cc}-4 i & 6 i \\ 6 i & 4 i\end{array}\right), d_{1}\left(e_{4}\right)=\left(\begin{array}{cc}0 & 6 \\ -6 & 0\end{array}\right)$.
Hence the matrix representation of d_{1} with respect to B_{1} is

$$
\left[d_{1}\right]_{B_{1}}=\left(\begin{array}{cccc}
0 & 0 & -4 i & 0 \\
0 & -4 & 6 i & 6 \\
0 & 4 & 6 i & -6 \\
0 & 0 & 4 i & 0
\end{array}\right)
$$

Therefore $\left\|d_{1}\right\|=6$
Also $B_{2}=\left\{e_{1}^{\prime}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), e_{2}^{\prime}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), e_{3}^{\prime}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), e_{4}^{\prime}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ is a basis for V^{\prime}. Similarly, with respect to this basis, we find

$$
\left[d_{2}\right]_{B_{2}}=\left(\begin{array}{cccc}
0 & -6 & 4 & 0 \\
-4 & 8 & 0 & 4 \\
6 & 0 & -8 & -6 \\
0 & 6 & -4 & 0
\end{array}\right) \text { and }\left\|d_{2}\right\|=8
$$

Next we wish to find the matrix representation of $k \otimes h$-derivation d. Clearly $B_{3}=\left\{e_{i} \otimes e_{j}: i=1,2,3,4 ; j=1,2,3,4\right\}$ is a basis for $V(F) \otimes_{p} V^{\prime}\left(F^{\prime}\right)$.

$$
\left.\begin{array}{rl}
d\left(e_{1} \otimes\right. & \left.e_{1}^{\prime}\right)
\end{array}\right)=d_{1}\left(e_{1}\right) \otimes e_{1}^{\prime}+e_{1} \otimes d_{2}\left(e_{1}^{\prime}\right) .
$$

Similarly,

$$
\begin{aligned}
& d\left(e_{4} \otimes e_{2}^{\prime}\right)=\left(\begin{array}{cccc}
0 & -4 i & 0 & 6+8 i \\
0 & 0 & 0 & 4 i \\
-4 i & 0 & -6+8 i & 0 \\
0 & 0 & 4 i & 0
\end{array}\right), d\left(e_{4} \otimes e_{3}^{\prime}\right)=\left(\begin{array}{cccc}
0 & 6 i & 0 & 0 \\
0 & 6-8 i & 0 & -6 i \\
6 i & 0 & 0 & 0 \\
-6-8 i & 0 & -6 i & 0
\end{array}\right), d\left(e_{4} \otimes e_{4}^{\prime}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 6 i \\
0 & -4 i & 0 & 6 \\
0 & 0 & 6 i & 0 \\
-4 i & 0 & -6 & 0
\end{array}\right) \\
& d\left(e_{1} \otimes e_{2}^{\prime}\right)=\left(\begin{array}{cccc}
-4 & 0 & 8 & 0 \\
0 & 0 & 4 & 0 \\
0 & -4 & 0 & 8 \\
0 & 0 & 0 & 4
\end{array}\right), d\left(e_{1} \otimes e_{3}^{\prime}\right)=\left(\begin{array}{cccc}
6 & 0 & 0 & 0 \\
-8 & 0 & -6 & 0 \\
0 & 6 & 0 & 0 \\
0 & -8 & 0 & -6
\end{array}\right), d\left(e_{1} \otimes e_{4}^{\prime}\right)=\left(\begin{array}{cccc}
0 & 0 & 6 & 0 \\
-4 & 0 & 0 & 0 \\
0 & 0 & 0 & 6 \\
0 & -4 & 0 & 0
\end{array}\right) \\
& d\left(e_{2} \otimes e_{1}^{\prime}\right)=\left(\begin{array}{cccc}
0 & -4 & -6 i & 0 \\
4 i & 0 & 0 & 0 \\
4 & 0 & 0 & 6 i \\
0 & -4 i & 0 & 0
\end{array}\right), d\left(e_{2} \otimes e_{2}^{\prime}\right)=\left(\begin{array}{cccc}
-4 i & 0 & 8 i & -4 \\
0 & 0 & 4 i & 0 \\
0 & 4 i & 4 & 0 \\
0 & 0 & 0 & -4 i
\end{array}\right), d\left(e_{2} \otimes e_{3}^{\prime}\right)=\left(\begin{array}{cccc}
6 i & 0 & 0 & 0 \\
-8 i & -4 & -6 i & 0 \\
0 & -6 i & 0 & 0 \\
4 & 8 i & 0 & 6 i
\end{array}\right)
\end{aligned}
$$

$$
d\left(e_{2} \otimes e_{4}^{\prime}\right)=\left(\begin{array}{cccc}
0 & 0 & 6 i & 0 \\
-4 i & 0 & 0 & 0 \\
0 & 0 & 0 & -6 i \\
0 & 4 i & 4 & 0
\end{array}\right), d\left(e_{3} \otimes e_{1}^{\prime}\right)=\left(\begin{array}{cccc}
-4 i & 6 i & 0 & 6 \\
0 & -4 & 0 & 0 \\
6 i & 4 i & -6 & 0 \\
4 & 0 & 4 & 4
\end{array}\right), d\left(e_{3} \otimes e_{2}^{\prime}\right)=\left(\begin{array}{cccc}
0 & 4 & -4 i & 6 i-8 \\
0 & 0 & 0 & -4 \\
-4 & 0 & 8+6 i & 4 i \\
0 & 0 & 4 & 0
\end{array}\right)
$$

$$
d\left(e_{3} \otimes e_{3}^{\prime}\right)=\left(\begin{array}{cccc}
0 & -6 & 0 & 0 \\
-4 i & 8+6 i & 0 & -6 \\
6 & 0 & 0 & 0 \\
-8+6 i & 4 i & -6 & 0
\end{array}\right), d\left(e_{3} \otimes e_{4}^{\prime}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & -6 \\
0 & 4 & -4 i & 6 i \\
0 & 0 & 6 & 0 \\
-4 & 0 & 6 i & 4 i
\end{array}\right), d\left(e_{4} \otimes e_{1}^{\prime}\right)=\left(\begin{array}{cccc}
0 & 6 & 0 & -6 i \\
0 & 4 i & 0 & 0 \\
-6 & 0 & -6 i & 0 \\
4 i & 0 & 0 & 0
\end{array}\right)
$$

The matrix representation of d with respect to the basis B_{3} is
$[d]_{B_{3}}=\left(\begin{array}{cccccccccccccccc}0 & -4 & 6 & 0 & 0 & -4 i & 6 i & 0 & -4 i & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 4 & 0 & -8 & -4 & -4 i & 0 & -8 i & -4 i & 0 & 0 & -4 i & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 6 i & -4 & 6 & 0 & -6 & -4 i & 6 i & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 4 & 0 & -8+6 i & -4 & 4 i & 0 & -6-8 i & -4 i \\ 0 & 0 & 0 & 0 & -4 & 0 & 0 & 0 & 6 i & 4 & -6 & 0 & 6 & -4 i & 6 i & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -4 & 0 & -4 & 0 & 8+6 i & 4 & 4 i & 0 & 6-8 i & -4 i \\ 0 & -4 & 6 & 0 & 0 & 4 i & -6 i & 0 & 4 i & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -4 & 0 & -8 & -4 & -4 i & 0 & 8 i & 4 i & 0 & 0 & 4 i & 0 & 0 & 0 & 0 & 0 \\ -6 & 8 & 0 & 6 & -6 i & 8 i & 0 & 6 i & 0 & -4 i & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & -6 & 0 & 0 & 4 i & -6 i & 0 & 0 & 0 & 0 & -4 i & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & -6 & 8+6 i & 0 & 6 & -6 i & -6+8 i & 0 & 6 i \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 4 & -6 & 6 i & 0 & 4 i & -6 i & -6 \\ 0 & 0 & 0 & 0 & 0 & -4 & 0 & 0 & 6 & -8+6 i & 0 & -6 & -6 i & 6+8 i & 0 & 6 i \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -4 & -6 & 6 i & 0 & 4 i & -6 i & 6 \\ -6 & 4 & 0 & 6 & 6 i & -8 i & 0 & -6 i & 0 & 4 i & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 8 & -6 & 0 & 0 & -4 i & 6 i & 0 & 0 & 0 & 0 & 4 i & 0 & 0 & 0 & 0\end{array}\right)$

Therefore $\|\mathrm{d}\|=10$.Thus the strict inequality $\|\mathrm{d}\|<\left\|\mathrm{d}_{1}\right\|+\left\|\mathrm{d}_{2}\right\|<2\|\mathrm{~d}\| \quad$ holds.
Lemma3.5 Let V be a 2-torsion free prime Γ-Banach algebra, $\mathrm{D}(.,$.$) the symmetric bi-k-derivation of \mathrm{V}$ and d the trace of $\mathrm{D}(.,$.$) . If \mathrm{a} \gamma \mathrm{d}(\mathrm{x})=0$ for all $\mathrm{x} \in \mathrm{V}$ and $\gamma \in \Gamma$, where a is a fixed element of V , then $\mathrm{a}=0$ or $\mathrm{D}=0$.
Lemma3.6 Let V be a 2-torsion free prime Γ-Banach algebra, $D_{1}(.,$.$) and \mathrm{D}_{2}(.,$.$) the symmetric bi-k-$ derivations on V and d_{1} and d_{2} the traces of $D_{1}(\ldots)$ and $D_{2}(.,$.$) respectively. If d_{1}(x) \gamma d_{2}(y)=d_{2}(x) \gamma$ d_{1} (y) for all $x, y \in V$ and $\gamma \in \Gamma$ and $d_{1} \neq 0$, then there exists $\lambda \in C_{\Gamma}$ such that $d_{2}(x)=\lambda \alpha d_{1}(x)$ for $\alpha \in \Gamma$, where C_{Γ} is the extended centroid of V .
Theorem3.7. Let V be a 2-torsion free prime Γ-Banach algebra, $\mathrm{D}_{1}(.,),. \mathrm{D}_{2}(.,$.$) and \mathrm{D}_{3}(.,$.$) and \mathrm{D}_{4}(.,$. the symmetric bi-k-derivations on V and $\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}$ and d_{4} traces of $\mathrm{D}_{1}(\ldots,),. \mathrm{D}_{2}(\ldots),, \mathrm{D}_{3}(\ldots)$ and $\mathrm{D}_{4}(\ldots)$ respectively. If

$$
\begin{equation*}
\mathrm{d}_{1}(\mathrm{x}) \gamma \mathrm{d}_{2}(\mathrm{y})=\mathrm{d}_{3}(\mathrm{x}) \gamma \mathrm{d}_{4}(\mathrm{y}) \tag{3}
\end{equation*}
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{V}$ and $\gamma \in \Gamma$ and $\mathrm{d}_{1} \neq 0 \neq \mathrm{d}_{4}$, then there exists $\lambda \in \mathrm{C}_{\Gamma}$ such that $\mathrm{d}_{2}(\mathrm{x})=\lambda \alpha \mathrm{d}_{1}(\mathrm{x})$ for all $\alpha \in \Gamma$, where C_{Γ} is the extended centroid of V .
Proof: Let $z \in V$. Replacing y by $y+z$ in (3), we get
$d_{1}(x) \gamma D_{2}(y, z)=d_{3}(x) \gamma D_{4}(y, z)$
If we replace z by $z \delta y \operatorname{In}(4)$, then
$\mathrm{d}_{1}(\mathrm{x}) \gamma \mathrm{zk}(\delta) \mathrm{d}_{2}(\mathrm{y})=\mathrm{d}_{3}(\mathrm{x}) \gamma \mathrm{zk}(\delta) \mathrm{d}_{4}(\mathrm{y})$
If $w \in V$ then
$\mathrm{d}_{1}(\mathrm{x}) \gamma \mathrm{zk}(\alpha) \mathrm{d}_{2}(\mathrm{w})=\mathrm{d}_{3}(\mathrm{x}) \gamma \mathrm{zk}(\alpha) \mathrm{d}_{4}(\mathrm{w})$
Substituting $\mathrm{zk}(\alpha) \mathrm{d}_{4}(\mathrm{w})$ for z in (5), we have
$d_{1}(\mathrm{x}) \gamma \mathrm{z} k(\alpha) \mathrm{d}_{4}(\mathrm{w}) \mathrm{k}(\delta) \mathrm{d}_{2}(\mathrm{y})=\mathrm{d}_{3}(\mathrm{x}) \gamma \mathrm{zk}(\alpha) \mathrm{d}_{4}(\mathrm{w}) \mathrm{k}(\delta) \mathrm{d}_{4}(\mathrm{y})$
From (4) and (6), we have
$\mathrm{d}_{1}(\mathrm{x}) \gamma \mathrm{zk}(\alpha) \mathrm{d}_{4}(\mathrm{w}) \mathrm{k}(\delta) \mathrm{d}_{2}(\mathrm{y})=\mathrm{d}_{1}(\mathrm{x}) \gamma \mathrm{zk}(\alpha) \mathrm{d}_{2}(\mathrm{w}) \mathrm{k}(\delta) \mathrm{d}_{4}(\mathrm{y})$
$\Rightarrow \mathrm{d}_{1}(\mathrm{x}) \gamma \mathrm{zk}(\alpha)\left(\mathrm{d}_{4}(\mathrm{w}) \mathrm{k}(\delta) \mathrm{d}_{2}(\mathrm{y})-\mathrm{d}_{2}(\mathrm{w}) \mathrm{k}(\delta) \mathrm{d}_{4}(\mathrm{y})\right)=0$
Since $\mathrm{d}_{1} \neq 0$ and V is a prime Γ-Banach algebra. So equation (8) implies that
$\mathrm{d}_{4}(\mathrm{w}) \mathrm{k}(\delta) \mathrm{d}_{2}(\mathrm{y})=\mathrm{d}_{2}(\mathrm{w}) \mathrm{k}(\delta) \mathrm{d}_{4}(\mathrm{y})$
It follows from $d_{4} \neq 0$ and lemma 3.5 that $d_{2}(y)=\lambda \alpha d_{4}(y)$ for some $\lambda \in C_{\Gamma}$. Hence by (4), we have $d_{1}(x) \gamma z$
$\mathrm{k}(\delta) \lambda \alpha \mathrm{d}_{4}(\mathrm{y})=\mathrm{d}_{3}(\mathrm{x}) \gamma \mathrm{zk}(\delta) \mathrm{d}_{4}(\mathrm{y})$
Since $\lambda \in \mathrm{C}_{\Gamma}$.Therefore
$\mathrm{d}_{1}(\mathrm{x}) \gamma \mathrm{k}(\delta) \mathrm{d}_{4}(\mathrm{y}) \alpha \lambda=\mathrm{d}_{3}(\mathrm{x}) \gamma \mathrm{zk}(\delta) \mathrm{d}_{4}(\mathrm{y})$
$\Rightarrow \lambda \alpha \mathrm{d}_{1}(\mathrm{x}) \gamma \mathrm{k}(\delta) \mathrm{d}_{4}(\mathrm{y})=\mathrm{d}_{3}(\mathrm{x}) \gamma \mathrm{zk}(\delta) \mathrm{d}_{4}(\mathrm{y})$
$\Rightarrow\left[\lambda \alpha \mathrm{d}_{1}(\mathrm{x})-\mathrm{d}_{3}(\mathrm{x})\right] \gamma \mathrm{zk}(\delta) \mathrm{d}_{4}(\mathrm{y})=0$
It follows from $d_{4} \neq 0$ that $d_{3}(x)=\lambda \alpha d_{1}(x)$.
Lemma3.8. Let V be a 2-torsion free prime Gamma Banach algebra and let U be a nonzero ideal of V . Let a, $b \in V$ be fixed elements. If $a \gamma x \beta b+b \gamma x \beta a=0$ is fulfilled for all $x \in U, \alpha, \beta \in \Gamma$ then either $a=0$ or $b=0$.
Theorem3.9. Let V be a 2-torsion free prime Gamma Banach algebra and U be a non zero ideal of V . Suppose there exist symmetric bi-k-derivations $D_{1}: V \times V \rightarrow V$ and $D_{2}: V \times V \rightarrow V$ such that
$\mathrm{D}_{1}\left(\mathrm{~d}_{2}(\mathrm{x}), \mathrm{x}\right)=0$
holds for all $x \in U$ where d_{2} denotes the trace of D_{2}. In this case $D_{1}=0$ or $D_{2}=0$.
Proof: let $\mathrm{y} \in \mathrm{U}$. Replacing x by $\mathrm{x}+\mathrm{y}$ in (9) we get
$D_{1}\left(d_{2}(x), y\right)+2 D_{1}\left(D_{2}(x, y), x\right)+D_{1}\left(d_{2}(y), x\right)+2 D_{1}\left(D_{2}(x, y), y\right)=0$
substituting x by $-x$ in (10) we get,
$D_{1}\left(d_{2}(x), y\right)+2 D_{1}\left(D_{2}(x, y), x\right)=D_{1}\left(d_{2}(y), x\right)+2 D_{1}\left(D_{2}(x, y), y\right)$
Comparing (10) and (11) we have
$D_{1}\left(d_{2}(x), y\right)+2 D_{1}\left(D_{2}(x, y), x\right)=0$
Let us replace in (12) y by $x \alpha y, \alpha \in \Gamma$ and use (10) and (12) we get,
$d_{2}(x) k(\alpha) D_{1}(y, x)+d_{1}(x) k(\alpha) D_{2}(x, y)=0$
Let us write in (13) $y \beta x$ instead of y we have
$d_{2}(x) k(\alpha) v k(\beta) d_{1}(x)+d_{1}(x) k(\alpha) \operatorname{vk}(\beta) d_{2}(x)=0$
Let $d_{1} \neq 0, d_{2} \neq 0$. Then there exist elements $x_{1}, x_{2} \in U$ such that $d_{1}\left(x_{1}\right) \neq 0$ and $d_{2}\left(x_{2}\right) \neq 0$. From (14) and lemma3.8 it follows that $d_{1}\left(x_{2}\right)=d_{2}\left(x_{1}\right)=0$. Since $d_{1}\left(x_{2}\right)=0$ the relation (13) reduces to $d_{2}\left(x_{2}\right) k(\alpha) D_{1}\left(y, x_{2}\right)=0$. Using this relation and lemma3.5, we obtain that $\mathrm{D}_{1}\left(\mathrm{y}, \mathrm{x}_{2}\right)=0$ holds for all $y \in U$ since $d_{2}\left(x_{2}\right) \neq 0$. In particular, we have $D_{1}\left(x_{1}, x_{2}\right)=0$ and so
$\mathrm{d}_{1}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)=\mathrm{d}_{1}\left(\mathrm{x}_{1}\right)+\mathrm{d}_{1}\left(\mathrm{x}_{2}\right)+2 \mathrm{D}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$
$=\mathrm{d}_{1}\left(\mathrm{x}_{1}\right) \neq 0$
Similarly we obtain $d_{2}(y) \neq 0$. But $d_{1}(y)$ and $d_{2}(y)$ cannot be both different from zero according to (14) and lemma 3.8. Therefore we have either $\mathrm{d}_{1}=0$ or $\mathrm{d}_{2}=0$.

Corollary3.10. Let V be a 2-torsion free semi-prime gamma banach algebra and U be non zero ideal of V . Suppose there exists a symmetric bi-k-derivation $\mathrm{D}: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{V}$ such that $\mathrm{D}(\mathrm{d}(\mathrm{x}), \mathrm{x})=0$ holds for all $\mathrm{x} \in \mathrm{U}$, where d denotes the trace of D . In this case we have $\mathrm{d}=0$.
Theorem3.11. Let V be a 2- and 3-torsion free prime Γ-Banach algebra. Let U be a non zero ideal of V and $D_{1}: V \times V \rightarrow V$ and $D_{2}: V \times V \rightarrow V$ be symmetric bi-k- derivations. Suppose further that there exists a symmetric bi-additive mapping $\mathrm{B}: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{V}$ such that $\mathrm{d}_{1}\left(\mathrm{~d}_{2}(\mathrm{x})\right)=\mathrm{f}(\mathrm{x})$ holds, for all $\mathrm{x} \in \mathrm{U}$, where d_{1} and d_{2} are the traces of D_{1} and D_{2} respectively and f is the trace of B. Then either $D_{1}=0$ and $D_{2}=0$.
Proof: Putting $x+y$ in place of x in $d_{1}\left(d_{2}(x)\right)=f(x)$, we get
$2 d_{1}\left(D_{2}(x, y)\right)+D_{1}\left(\left(d_{2}(x), d_{2}(y)\right)+2 D_{1}\left(d_{2}(x), D_{2}(x, y)\right)\right.$
$+2 D_{1}\left(d_{2}(y), D_{2}(x, y)\right)=B(x, y)$
Let us replace in (15) x by $-x$. We have
$2 d_{1}\left(D_{2}(x, y)\right)+D_{1}\left(\left(d_{2}(x), d_{2}(y)\right)-2 D_{1}\left(d_{2}(x), D_{2}(x, y)\right)\right.$
$-2 \mathrm{D}_{1}\left(\mathrm{~d}_{2}(\mathrm{y}), \mathrm{D}_{2}(\mathrm{x}, \mathrm{y})\right)=-\mathrm{B}(\mathrm{x}, \mathrm{y})$
Adding (15) and (16) we get,
$2 \mathrm{~d}_{1}\left(\mathrm{D}_{2}(\mathrm{x}, \mathrm{y})\right)+\mathrm{D}_{1}\left(\left(\mathrm{~d}_{2}(\mathrm{x}), \mathrm{d}_{2}(\mathrm{y})\right)=0\right.$
Then equation (15) reduces
$2 D_{1}\left(d_{2}(x), D_{2}(x, y)\right)+2 D_{1}\left(d_{2}(y), D_{2}(x, y)\right)=B(x, y)$
Let us write in (17) 2 x instead of x . we get

$$
8 D_{1}\left(d_{2}(x), D_{2}(x, y)\right)+2 \mathrm{D}_{1}\left(\mathrm{~d}_{2}(\mathrm{y}), \mathrm{D}_{2}(\mathrm{x}, \mathrm{y})\right)=\mathrm{B}(\mathrm{x}, \mathrm{y})
$$

Now substitute (17) from (18) we get
${ }_{6} \mathrm{D}_{1}\left(\mathrm{~d}_{2}(\mathrm{x}), \mathrm{D}_{2}(\mathrm{x}, \mathrm{y})\right)=0$
$\Rightarrow D_{1}\left(d_{2}(x), D_{2}(x, y)\right)=0$
Since V is a 2- and 3-torsion free Gamma Banach algebra. It follows that both terms on the left side of relation (17) are zero, which means that $\mathrm{B}=0$. Then
$\mathrm{d}_{1}\left(\mathrm{~d}_{2}(\mathrm{x})\right)=0, \mathrm{x} \in \mathrm{U}$.
Substituting y $\alpha x, \alpha \in \Gamma$ for y in (19) we get
$D_{1}\left(d_{2}(x), y\right) k(\alpha) d_{2}(x)+D_{2}(x, y) k(\alpha) D_{1}\left(d_{2}(x), x\right)=0$
Let us write $\mathrm{x} \beta \mathrm{y}, \beta \in \Gamma$ instead of y we have
$D_{1}\left(d_{2}(x), x\right) k(\beta) y k(\alpha) d_{2}(x)+d_{2}(x) k(\beta) y k(\alpha) D_{1}\left(d_{2}(x), x\right)=0$
From the relation above one can conclude that
$D_{1}\left(d_{2}(x), x\right)=0$ or $d_{2}(x)=0$
If $D_{1}\left(d_{2}(x), x\right) \neq 0$ for some $x \in U$, then $d_{2}(x)=0$
Contrary to the assumption $\mathrm{D}_{1}\left(\mathrm{~d}_{2}(\mathrm{x}), \mathrm{x}\right) \neq 0$
There $D_{1}\left(d_{2}(x), x\right)=0$, for all $x \in U$, the proof of the theorem is complete since all the requirements of theorem 3.10 are fulfilled.

Corollary3.12 Let V be a semi-prime gamma ring which is 2 -and 3-torsion free. Let U be a nonzero ideal of V and $\mathrm{d}(\mathrm{U}) \subset \mathrm{U}$. Let $\mathrm{D}: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{V}$ be a symmetric bi-k-derivation and $\mathrm{B}: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{V}$ be a symmetric bi-additive mapping. Suppose that $d(d(x))=f(x)$ holds for all $x \in U$, where d is the trace of D and f is the trace of B. In this case we have $\mathrm{D}=0$.
Example2. Let $V=\left\{\left(\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right): x \in R\right\}$ and $\Gamma=\left\{\left(\begin{array}{ll}\mathrm{n} & 0 \\ 0 & \mathrm{n}\end{array}\right): \mathrm{x} \in \mathrm{R}\right\}$
Then $\mathrm{V}(\mathrm{F}=\mathrm{R})$ is a Γ-Banach algebra.
$\mathrm{D}: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{V}$ define as $\mathrm{D}(\mathrm{A}, \mathrm{B})=\mathrm{AB}$, for all $\mathrm{A}, \mathrm{B} \in \mathrm{V}$ and $\mathrm{k}: \Gamma \rightarrow \Gamma$ define as $\mathrm{k}(\alpha)=\frac{1}{\mathrm{n}} \alpha$, where $\alpha=\left\{\left(\begin{array}{ll}\mathrm{n} & 0 \\ 0 & \mathrm{n}\end{array}\right) \in \Gamma\right\}$. Then it is easy to show that D is a symmetric bi-k-derivation.

References:

[1] C.Selvaraj and S.Petchimuthu, On strongly Prime Gamma Rings, International J. of Algebra, 2(2008), 933-943
[2] D. K. Bhattacharya and A. K. Maity, Semilinear tensor product of Gamma Banach Algebras, Ganita, 140(1989), 75-80.
[3] H.Kandamar, The k-derivation of a Gamma-Ring, Jurk.J. Math, 24 (2000), 221-231.
[4] J. Luh, On the theory of simple Gamma rings,Michigan Math. 16(1969), 65-75.
[5] M. Ali Ozturk and y-Imaz Ceven, On (σ, τ)-Gamma-Derivations in Gamma-Near-Rings, Advances in Algebra, 1(2008),1-10
[6] M. Ali Ozturk and Young Bae Jun, On the Centroid of the prime Gamma rings, Comm. Korean Math. Soc., 15 (2000), 469-479
[7] N. Nobusawa, on a generalization of the ring theory, Osaka J. Math. 1(1964), 81-89.
[8] N.B.Okelo, M.O. Okongo and S.A. Nyoukiti, On projective Tensor Norm and Norm-Attainable α - derivation, Int. J.Contemp. Math. Sciences, 5 (2010), 1969-1975
[9] S.Chakraborty and A.Ch. paul, On Jordan k-derivation of 2-torsion free prime Γ_{N}-Rings, Journal of Mathematics, 40 (2008), 97-101
[10] S.Kyuno, On prime Gamma Rings, Pacific J. of Mathematics, 75(1978), 185-190.
[11] W. E. Barnes, On the rings of Nobusawa, Pacific J. Math. 18(1966), 411-422.
[12] Y.Ceven and M.Ali Qzturk, On Jordan Generalized Derivations in gamma rings, Hacettepe Journal of Mathematics and statistic, 33(2004), 11-14

