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Abstract : In this paper, we study the invariant set of dynamical systems in which attractor and non-attractor 
sets exist. We aim to carve out a small section of the theory of chaotic dynamical systems – that of attractors – 

and outline its fundamental concepts from a computational mathematics perspective. The motivation for this 

paper is primarily to define what an attractor is and to clarify what distinguishes its various types (non-strange, 

strange non-chaotic, and strange chaotic). We discuss the Hénon and Lorenz attractors as important examples 

of this type of chaotic system. 
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I. INTRODUCTION 
A strange attractor is basically a bounded set on which nearby orbits diverge exponentially (i.e. there exists at 

least one positive Lyapunov exponent). To envision such a set, consider a flat rectangle, like a piece of chewing 

gum. Now fold the rectangle over, stretch it, and squash it so that it maintains its original volume. Keep doing 

this. Two points which started out nearby to each other will eventually, after a sufficiently large number of folds 

and stretches, grow far apart. Formally, a strange attractor is a fractal, and may have non-integer Hausdorff 

dimension. (We won’t discuss fractals and Hausdorff dimension here.) 
Most of the examples of chaotic dynamics presented so far deal with dissipative dynamical systems, 

which in many instances generate chaotic attractors. Dissipative systems (i.e. the systems which lose energy by 

friction or diffusion) are often associated with the presence of attractors in the phase space. Roughly speaking, 

attractors are invariant sets to which all nearby orbits converge. They are the sets that one “sees” when a 

dynamical system is iterated on a computer. We have already encountered attracting fixed points and attracting 

periodic orbits. In practice, most of the interesting attractors are strange in the sense that either their structure is 

fractal or the dynamics on them is unpredictable. The interest in strange attractors increased considerably after 

the discovery that the phenomenon of turbulence is indeed caused by the presence of a strange attractor [1].  

The  term  strange  is  most  often  used  as  a  name  for attractors that exhibit chaotic behaviour,  that is, 

sensitivity to initial conditions. Though indeed true, this use of the term is somewhat misleading. It is important 

to clarify   that strangeness is not dependent on the existence of chaos. Though attractors showing extreme 
sensitivity to initial conditions are indeed strange, strange attractors need not be chaotic. 

 

II.      ATTRACTORS 
We discuss the mathematical concept of attractor, restricting ourselves to the case of topological 

dynamical systems  Φ:𝑆 × 𝑀 → 𝑀, acting on a phase space 𝑀, whose topology comes from a metric 𝑑. 

 

2.1. Definition:  A nonempty set 𝒜 of 𝑀 is said to be an attracting set for Φ if it satisfies the following two 
conditions: 

(i) 𝒜 is closed and invariant; 

(ii) 𝒜 possesses an open neighbourhood 𝑈, such that  

lim𝑡→∞ 𝑑 Φ𝑡 𝑥 ,𝒜 → 0 for every 𝑥 ∈ 𝑈. 

The largest open set 𝑈 for which the condition (i) is fulfilled is called the basin of attraction of 𝒜. The 

attracting sets capture the orbits which start at points in their basins of attraction. 

By our definition, the union of two attracting sets is also an attracting set. We shall use the term of attractor 

(more precisely, open basin attractor) to designate an “irreducible” attracting set. Usually, irreducibility means 

topological transitivity. Alternatively, one can require that 𝒜 has no proper attracting subsets, that is, there is no 

attracting set  𝒜′ ⊂ 𝒜 with  ∅ ≠ 𝒜′ ≠ 𝒜.  

 

2.2. Theorem : Let 𝑓:𝑀 → 𝑀 be a homeomorphism on a compact metric space. Then there exists a Lyapunov 

function 𝐿:𝑀 → ℝ such that 𝐿 is strictly decreasing on 𝑀\ℛ(𝑓) and the image 𝐿(ℛ(𝑓)) of  ℛ(𝑓) is a nowhere 

dense set in ℝ. Furthermore, if  𝑥,𝑦 ∈ ℛ(𝑓), then 𝐿 𝑥 = 𝐿(𝑦) if and only if 𝑥 and 𝑦 are in the same chain-
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recurrent class. That is, the chain-recurrent classes of ℛ(𝑓) are all of the form 𝐿−1(𝑐), with 𝑐 taking values in 

some nowhere dense subset of ℝ. 

Due to the Theorem 2.2, an attractor is always contained in a chain recurrent class, and conversely, any 

attracting set contained in a chain recurrent class is an attractor [2]. 

In general, an attracting set is not a collection of distinct attractors. An attractor is called global if its basin of 

attractor is the entire phase space. In the context of evolution equations, attractors are usually required to verify 

a stronger version of (ii), namely, 

lim𝑡→∞ sup𝑥∈𝐵 𝑑 Φ𝑡 𝑥 ,𝒜 → 0 for every bounded subset 𝐵 ⊂ 𝑈. 

 

2.3. Examples: (a) The following example shows that even in the one-dimensional case attracting sets can be 

rather complicated. Consider the flow associated with the equation 
𝑑𝑥

𝑑𝑡
= −𝑥4 sin

𝜋

𝑥
. 

It has a countable set of fixed points: 0 and ± 1 𝑛 , 𝑛 ∈ ℕ. The interval  −1, 1  is an attracting set, but it 

contains a countable set of repelling fixed points at ± 1 2𝑛 (𝑛 ∈ ℕ)  and a countable set of attracting fixed 

points at ± 1  2𝑛 − 1 , 𝑛 ∈ ℕ . In fact, the linearized system at ± 1 𝑛  is  
𝑑𝑥

𝑑𝑡
=

𝜋

𝑛2
cos𝑛𝑥. 

However, the fixed point 𝑥 = 0 itself is neither a repeller nor an attracror. 

(b) J. Milnor [3] introduced a more general concept of attractor for continuous maps on smooth manifolds. A 

Milnor attractor is a close set 𝒜 such that (i) the realm of attraction 𝜌 𝒜 =  𝑥 ∈ 𝑀;  𝜔(𝑥) ⊂ 𝒜  is a set of 

positive measure (not necessarily a neighbourhood of 𝒜); (ii) there is no strictly smaller closed subset 𝒜′ ⊂ 𝒜 

such that 𝜌 𝒜′ = 𝜌(𝒜) up to a set of volume measure zero. Consider, for example, the logistic map 𝐹𝜆 =
𝜆𝑥(1 − 𝑥), for 𝜆 = 𝜆∞=3.569…. . The limit of the period-doubling cascade has an invariant Cantor set 𝐾 ⊂
 0,1 , which attracts all points of [0,1], except for count ably many periodic orbits of period 2𝑛 , (𝑛 ∈ ℕ) [4]. 

Therefore 𝐾 is an attractor in the sense of Milnor (known as the Feigenbaum attractor).    
In practice, a way of locating attracting sets for dissipative systems is to first find a trapping region. An open 

subset 𝑈0 of  𝑀 is called a trapping region if  Φ𝑡0
(𝑈0)          ⊂ 𝑈0 for some 𝑡0 > 0 (or, equivalently, if the vector 

field on the boundary of 𝑈0 is pointing toward the interior of 𝑈0). Then the existence of attracting sets is derived 

from the dissipative properties of the system, like the existence of bounded absorbing sets (a variant of volume-

contracting). This mechanism is related to the existence of Lyapunov functions.  

Let 𝐾 be a subset of 𝑀 and let 𝑈 be an open neighbourhood  𝐾. We say that 𝐾 is absorbing in 𝑈 if the orbit of 

every bounded subset ℬ ⊂ 𝑈 enters 𝐾 after a certain, i.e., 

Φ𝑡(ℬ) ⊂ 𝐾 for every 𝑡 ≥ 𝑡(ℬ). 

2.4. Lemma: Suppose that 𝑀 is a complete metric space and  

Φ ∶ 𝑆 × 𝑀 → 𝑀 

Is a topological dynamical system which admits a compact global absorbing set 𝐾. If  𝐾 is contained in a 

connected set 𝑉, then  𝐾 itself is a connected set.  

Proof:  If  𝐾 is not connected, then it can be decomposed as 

𝐾 = 𝐾1 ∪ 𝐾2 

Where  𝐾1 , 𝐾2 are nonempty compact sets with 𝐾1 ∩ 𝐾2 = ∅. Then 𝑑 𝐾1 ,𝐾2 > 0 and for 𝜀 > 0 small enough 

we have 𝐾1𝜀 ∩ 𝐾2𝜀 = ∅, where 

𝐾𝑖𝜀 =  𝑥 ∈ 𝑀;𝑑 𝑥,𝐾𝑖 < 𝜀 ,          𝑖 ∈  1, 2 . 
But Φ𝑡𝑉 ⊂ 𝐾1𝜀 ∪𝐾2𝜀  for 𝑡 ≥ 𝑡(𝑉). As Φ𝑡𝑉 is connected and ∅ ≠ 𝐾𝑖 ⊂ Φ𝑡𝑉 ∩𝐾𝑖𝜀  for 𝑖 ∈  1, 2 , we are led to a 

contradiction.  ■ 

In what follows we shall discuss the existence of a global attractor under the presence of an absorbing set. 

 

2.5. Theorem: Let 𝑀 be a complete metric space and let Φ ∶ S × M → M be a topological dynamical system 

which admits a compact absorbing set 𝐾. Then the 𝜔-limit set 𝒜 = 𝜔(𝐾) is a compact global attracting set (in 

fact, the maximal bounded global attracting set of  Φ).  

Proof:  As 𝐾 is bounded and absorbing, there exists a 𝑡0 ∈ 𝑆+ such that 

Φ𝑡(𝐾) ⊂ 𝐾 for every 𝑡 ≥ 𝑡0. 

Put 𝐾1 =  Φ𝑡𝑡≥𝑡0
(𝒜). Then 𝐾1 is positively invariant and included in 𝐾. Consequently the closure 𝐾′  of 𝐾1 is 

a positively invariant compact set and thus  

𝒜 =  Φ𝑡

𝑡≥0

(𝐾′) 

is compact and invariant. 
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We shall show that 𝒜 attracts the bounded subsets of 𝑀. In fact, if the contrary is true, then a bounded subset 𝐶 

of  𝑀, a  𝛿 > 0 and a sequence (𝑡𝑛 )𝑛  of positive elements of 𝑆 would exist such that 𝑡𝑛 → ∞ and 

𝑑 Φ𝑡𝑛
 𝐶 ,𝐴 ≥ 𝛿 for every 𝑛 ∈ ℕ. 

For each 𝑛 ∈ ℕ, choose a point 𝑥𝑛  in 𝐶 such that 

𝑑 Φ𝑡𝑛
 𝑥𝑛 ,𝐴 ≥ 𝛿 2 .                                                                           (1) 

Because 𝐾 is absorbing, it follows that Φ𝑡(𝐶) ⊂ 𝐾 for 𝑡 large enough. In particular, Φ𝑡𝑛
(𝑥𝑛 ) ∈ 𝐾 and Φ𝑡(𝐶) is 

relatively compact for 𝑛 large enough.     Then, passing to a subsequence if necessary, we can assume that the 

limit 

𝑢 = lim
𝑛→∞

Φ𝑡𝑛
(𝑥𝑛) 

exists. Clearly, 𝑢 ∈ 𝜔 𝒜 = 𝒜, which contradicts (1).  

As for the maximality of 𝒜, suppose that ℬ is a bounded global attracting set including 𝒜. Then ℬ ⊂ 𝒜, since 

Φ𝑡 ℬ = ℬ is included in 𝒜 for 𝑡 large enough (𝒜 is absorbing in 𝑈). Consequently, 𝜔 ℬ = ℬ ⊂ 𝜔 𝒜 = 𝒜. 

■   

 

III.    HÉNON ATTRACTOR 
In 1976, the French astronomer M. Hénon [5] has initiated the study of the asymptotic dynamics of a family of 

smooth maps 

𝐻(𝑎 ,𝑏): ℝ2 → ℝ2 ,      𝐻 𝑎 ,𝑏  𝑥,𝑦 = (1 + 𝑦 − 𝑎𝑥2 ,𝑏𝑥) 

where 𝑎 > 0 and 𝑏 are real parameters. 

One can show that for  𝑎,𝑏  in a fairly large region of the parameter space, there exists a trapping region 𝑈 with 

𝐻(𝑎 ,𝑏) 𝑈  ⊂ 𝑖𝑛𝑡 𝑈, so that 𝐻(𝑎 ,𝑏) has an attractive set (referred to as the Hénon attractor). Among the parameter 

values (𝑎, 𝑏) for which this happens are those in some small neighbourhood of (1.4, 0.3) and those with 

1 < 𝑎 < 2 and 𝑏 close to zero. 

Hénon found the values of the parameters 𝑎 = 1.4, 𝑏 = 0.3 after some careful explorations. If 𝑏 is too 

small, the area contraction is excessive, and the attractive set is nearly invisible. If 𝑎 is too small, then the 

attractive set consists of one attractive fixed point. Gradually increasing  𝑎, the attractive set successively 

becomes a period-2 attractive orbit, a period-22 attractive orbit, a period-23 attractive orbit, and so on, until it 

eventually grows into a “one piece attractor”. If 𝑎 is too large, almost all trajectories escape to infinity (as in the 

case of the logistic map  𝐹𝜆 = 𝜆𝑥(1 − 𝑥) with  𝜆 > 4), hence there is no attractive set. Nevertheless, there are 

choices of parameters 𝑎 and 𝑏, with 𝑎 large, for which the Hénon map has an invariant set which carries chaotic 

dynamics [6]. 

Let us consider the choice of parameters 𝑎 = 1.4 and 𝑏 = 0.3, which was originally studied by Hénon. The 

quadrilateral 𝑈 of vertices 𝐴 −1.33, 0.42 ,𝐵 1.32, 0.133 ,𝐶 1.245,−0.14 , 𝐷(−1.06,−0.5) constitutes a 

trapping region for 𝐻(𝑎 ,𝑏), so 𝒜 =  𝐻 𝑎 ,𝑏 
𝑛 (𝑈)𝑛≥0  is an attracting set. Since the map is dissipative (it contracts 

area) and invertible, the basin of attractor for the Hénon attractor (Fig. 1) must be unbounded. 

 

 
Figure 1: The basin of attraction for the Hénon attractor. 

 

Numerical experiments suggest that the dynamics on the attractive set 𝒜 is chaotic. They also indicate that 

𝐻(𝑎 ,𝑏) is topologically transitive on 𝒜, since picking a generic initial point in the plane and plotting a few 

thousand of iterates, its orbit always ends up in the Hénon attractor. This suggests that there is a point with 

dense orbit in 𝒜, that is, 𝒜 is an attractor (Fig. 2). Although there is no rigorous proof of these facts yet, the 

attractive set of Hénon is nevertheless called the Hénon attractor.  

 
Figure 2:  The Hénon attractor obtained by iterating one generic point. 
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One can prove that 𝐻(𝑎 ,𝑏) admits a hyperbolic fixed point 𝑝 of coordinates 

𝑥𝑝 =
1

2𝑎
 −1 + 𝑏 +  (1 − 𝑏)2 + 4𝑎 ,  𝑦𝑝 = 𝑏𝑥𝑝 ; 

𝑝 is a saddle point since the eigenvalues of the linearized at 𝑝 are one negative, close to −2, and the other 

positive, close to 0. Then one can show that the closure 𝑊𝑢(𝑝)         , of the unstable manifold of 𝑝 coincides with the 

Hénon attractor 𝒜 (Fig. 3).  

 
Figure 3: The stable and unstable directions at the saddle point. 

 

The main geometric feature of the Hénon mapping is the stretching and folding of the plane. Each 

vertical line (𝑥0 ,𝑦) is mapped into a horizontal line  1 + 𝑦 − 𝑎𝑥0
2 ,𝑏𝑥0 , while each horizontal line (𝑥, 𝑦0) is 

mapped into a parabola  1 + 𝑦0 − 𝑎𝑥2 ,𝑏𝑥 , so the quantities 𝑎 and 𝑏 control the amount of folding and 

stretching. Away from the 𝑦-axis, for example in the region   𝑥 >  𝑏 , the dynamics is essentially hyperbolic 

of saddle type. One can construct an unstable cone field around the horizontal direction  1,0 , and a stable cone 

field, about the slanted direction (1, 2𝑎), which are preserved by the derivative of 𝐻(𝑎 ,𝑏), and, respectively, of 

𝐻(𝑎 ,𝑏)
−1 . However these cone fields cannot be extended to the whole phase space, since horizontal segments near 

the 𝑦-axis are mapped to the turns of parabolas, due the folding that takes place in that region. For  𝑥  small, 

nearly horizontal vectors at (𝑥,𝑦), inside the unstable cone, are mapped to vectors at 𝐻 𝑎 ,𝑏 (𝑥,𝑦) inside the 

stable cone. This phenomenon prevents 𝒜 from having a uniformly hyperbolic structure. Nevertheless, it 

appears that there exists a dense set of periodic saddles in 𝒜. 

The following two theorems represent the state-of-art of the current understanding of Hénon attractor: 

 

3.1. Theorem (M. Benedicks and L. Carleson [7]): There exista a subset 𝐸 (of the parameter space) with 

positive Lebesgue measure such that for every (𝑎,𝑏) ∈ 𝐸, the map 𝐻(𝑎 ,𝑏) admits an attractor 𝒜 which verifies 

the following two properties: 

(i) The basin 𝐵 𝒜 =   𝑥, 𝑦 ; lim𝑛→∞ 𝐻 𝑎 ,𝑏 
𝑛  𝑥,𝑦 = 𝒜  has nonempty interior; 

(ii) There exists (𝑥1 ,𝑦1) ∈ 𝒜 whose forward orbit 𝑂+(𝑥1 ,𝑦1) is dense in 𝒜 and there exists 𝑐 > 0 and a 

tangent vector 𝑣 to ℝ2 at (𝑥1 ,𝑦1) such that  

 𝐷𝐻 𝑎 ,𝑏 
𝑛 (𝑥1 ,𝑦1)(𝑣) > 𝑒𝑐𝑛  𝑣  

for every 𝑛 ≥ 1. 

 

3.2. Theorem (M. Benedicks and L.-S. Young [8]): There exists a subset 𝐸 ⊂ ℝ2 of the parameter space with 

positive Lebesgue measure such that for every (𝑎,𝑏) ∈ 𝐸, the map 𝐻(𝑎 ,𝑏) admits an invariant probability 

measure 𝜇 such that: 

(i) The support of 𝜇 is 𝒜; 

(ii) 𝐻(𝑎 ,𝑏) has a positive Lyapunov exponent 𝜇 − 𝑎. 𝑒.; 

(iii) For every continuous function 𝑓 ∶  ℝ2 → ℝ with compact support included in the basin of 𝒜 and for 

𝑎. 𝑒. point (𝑥,𝑦) in the basin of 𝒜, we have 

1

𝑛
 𝑓 𝐻 𝑎 ,𝑏 

𝑖 (𝑥,𝑦) →  𝑓𝑑𝜇
𝒜

𝑛−1

𝑖=0

. 

The measure 𝜇 in the above theorem is “physically relevant” in the sense that it describes the frequencies at 

which the observable orbits will visit different parts of the attractor. Its existence explains why starting with a 

generic point and iterating with a computer we always end up with the same picture of the Hénon attractor.  

The previous two theorems, which emphasize a special kind of chaotic behavior of the dynamics on the Hénon 

attractor, lead to the notion of a strange attractor. 

 

3.3. Definition (M. Viana) : An attractor 𝒜 for a map 𝑓 is called a strange attractor if the following conditions 

are verified: 
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(i) 𝒜 contains a dense orbit along which the derivative of 𝑓 growth exponentially fast (in normal); 

(ii) 𝒜 contains a dense subset of periodic saddles; 

(iii) 𝒜 is the closure of the unstable manifolds of some of these saddles; 

(iv) 𝒜 supports an ergodic Sinai-Ruelle-Bowen measure 𝜇 having some positive Lyapunov exponent, and 

whose basin 𝐵(𝜇) has full Lebesgue measure within the basin of attractor of 𝒜. 

(v) 𝒜 is persistent under small perturbation, in the sense that a generic perturbation 𝑓𝜖 , with 𝑓0 = 𝑓, will 

exhibit a similar attractor for a positive Lebesgue measure set of parameters  𝜖. 

 

The fact, the Hénon attractor satisfies (i), (ii) and (iii) from above, has already been explained in this section. 

Condition (iv) has been explained partially here (Theorem 3.2), but for more details [9]. Condition (v) is 

partially justified by Theorem 3.1. This type of behavior is shared by many other attractors. Moreover, these 

strange attractors seem to be the building blocks of any type of chaotic dynamics. It has been conjectured by J. 

Palis that the diffeomorphism having finitely many attractors are dense. More precisely, any diffeomorphism 𝑓 

on a compact manifold 𝑀 may be approximated by another one 𝑔, for which there exist positively invariant 

open sets 𝑈1 ,𝑈2 ,⋯ ,𝑈𝑘 , with 𝑈1 ∪. . .∪𝑈𝑘  of full measure in  𝑀, such that each point in 𝑈𝑖  converges under 

positive iteration of  𝑔 to either an attractive periodic orbit or to a strange attractor.  

 

IV. LORENZ ATTRACTOR 
In 1963, the meteorologist E. N. Lorenz [10], while studying the limits of predictability of weather condition, 

discovered and analyzed, with the aid of a computer, a dynamical system which exhibits sensitive dependence 
on initial conditions. The system considered by E. N. Lorenz is  

   
𝑥 = 𝜍(𝑦 − 𝑥)
𝑦 = 𝑟𝑥 − 𝑦 − 𝑥𝑧
𝑧 = 𝑥𝑦 − 𝑏𝑧

                                                                                (2)  

where  𝜍, 𝑟, 𝑏 are parameters.  

This system is a simplified model of the convective motion of a two dimensional fluid cell warmed 

from above and cooled from below, as in Fig. 4 . In brief, 𝑥 measures the rate of convective overturning, 𝑦 

measures the horizontal overturning, and 𝑧 measures the vertical overturning of the fluid across the cell. The 

parameter 𝜍 is proportional to the Prandtl number, which represents the ratio of the kinematic viscosity to its 

thermal conductivity, the parameter 𝑟 is proportional to the Rayleigh number, which represents the difference in 

temperature between the top and bottom of the system, and the parameter 𝑏 is proportional to the physical 

proportions of the cell. All three parameters are thus positive since they represent physical quantities.  

The most commonly studied values of the parameters are 𝜍 = 10, 𝑟 = 28, 𝑏 = 8 3 . It is however important to 

observe the structural changes in the dynamics for fixed  𝜍 = 10 and 𝑏 = 𝑏 3 , while increasing 𝑟 from  0 to ∞.  
 

 
Figure 4: Lorenz cells. 

The divergence of the flow 

∇ ∙  𝑥 , 𝑦 ,𝑧  = 𝜕𝑥 𝜕𝑥 + 𝜕𝑦 𝜕𝑦 + 𝜕𝑧 𝜕𝑧 = −(𝜍 + 𝑏 + 1) 

is negative, so the volume element 𝑑(Vol) is contracted by the flow to 𝑑 Φ 𝑡 Vol = 𝑒− 𝜍+𝑏+1 𝑑(Vol) in a time 

interval of  𝑡. This shows that the system is dissipative, which is a strange indication for the existence of some 

attractive set. In order to find a trapping region, we define a Lyapunov function 

𝑉 𝑥,𝑦, 𝑧 = 𝑟𝑥2 + 𝜍𝑦2 + 𝜍(𝑧 − 2𝑟)2 . 
Its derivative along solution curves is  

𝑑𝑉

𝑑𝑡
= −2𝜍 𝑟𝑥2 + 𝑦2 + 𝑏𝑧2 − 2𝑏𝑟𝑧 . 

There is a bounded region 𝐷, given by the equation 

𝑟𝑥2 + 𝑦2 + 𝑏𝑧2 ≤ 2𝑏𝑟𝑧, 
on which 𝑑𝑉 𝑑𝑡 ≥ 0. Let 𝑐 be the maximum value of 𝑉 on this region and let 𝑈 be an ellipsoid defined by 

𝑉 < 𝑐 + 𝜀, containing 𝐷, for some small 𝜀. So we have  𝑑𝑉 𝑑𝑡 < −𝛿, for some 𝛿 > 0 depending on 𝜀, and for 

all points outside 𝑈. For the forward orbit Φ𝑡(𝑥) of any point outside the ellipsoid, the Lyapunov function 

𝑉(Φ𝑡(𝑥)) will decrease at a rate bounded away from zero. This says that all trajectories starting outside of 𝑈 
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will eventually meet the surface of the ellipsoid, then immediately enter its interior, and then remain there for 

ever. In other words, 𝑈 is a trapping region, and moreover, a global absorbing set.  

Then Theorem 2.5 implies the existence of a global attractive set for the trajectories of the system 4. 

Considering a sequence of instants 𝑡 = 1 < 2 < ⋯ approaching infinity, we notice that the flow successively 

takes the ellipsoid 𝑈 into the regions Φ1 𝑈 , Φ2 𝑈 ,…, for which we have  𝑉𝑜𝑙 Φ𝑛  𝑈  = 𝑒− 𝜍+𝑏+1 𝑛𝑉𝑜𝑙(𝑈). 

Since on the surface of the ellipsoid 𝑈 the flow lines point inwards, we have  Φ1(𝑈 ) ⊂ 𝑈, thus 

𝑈 ⊃ Φ1 𝑈 ⊃ Φ2 𝑈 ⊃ ⋯  ⊃ Φ𝑛 𝑈 …. 
Hence the attractor  𝒜 =  Φ𝑛 (𝑈)𝑛≥0  has zero volume. 

It is clear that the origin is a fixed of the flow. If  0 < 𝑟 ≤ 1, one can easily check that it is the only fixed point. 

We now show that for 0 < 𝑟 < 1 the origin is a globally asymptotically stable equilibrium point. To this end, 

we consider a different Lyapunov function 

𝑊 𝑥, 𝑦, 𝑧 = 𝑥2 + 𝜍𝑦2 + 𝜍𝑧2 . 
Its derivative along solution curves is  

𝑑𝑊

𝑑𝑡
= 2𝜍 (1 + 𝑟)𝑥𝑦 − 𝑥2 − 𝑦2 − 𝑏𝑧2 . 

By completing the square, it follows that 𝑑𝑊 𝑑𝑡 < 0 for all points (𝑥,𝑦, 𝑧) ≠ (0,0,0). Thus the desired 

conclusion is achieved. The same conclusion can be achieved by using characteristic exponents, as below. The 

case of 0 < 𝑟 < 1 corresponds physically to the case of no motion and steady heat conduction across the cell. 

If  𝑟 > 1, then there exist 3 fixed points, the origin and the points  𝑝1 ,𝑝2 of  coordinates 

𝑥 = 𝑦 = ± 𝑏(𝑟 − 1), 𝑧 = 𝑟 − 1                                                         (3) 

The stability of these points can be analyzed using characteristic exponents. The system (2) linearized at the 

origin becomes 

   
𝑥 = 𝜍(𝑦 − 𝑥)
𝑦 = 𝑟𝑥 − 𝑦
𝑧 = −𝑏𝑧

                                                                                   (4) 

and its eigenvalues are  

𝜆1 ,𝜆2 =
1

2
 −𝜍 − 1 ± ( 𝜍 − 1 2 + 4𝑟𝜍)1 2  ,   𝜆3 = −𝑏. 

For 𝑟 < 1 all eigenvalues are negative, so the origin is stable; for 𝑟 > 1, 𝜆1is positive and 𝜆2 ,𝜆3 are negative, so 

the origin is unstable. Thus the origin is a hyperbolic fixed point of saddle type, with the unstable manifold 1-

dimensional, and the stable manifold 2-dimensional. The stable manifold contains the 𝑧-axis, looks flat near the 

origin and it cannot intersect the trajectories starting on the unstable manifold of the origin, but other than that it 

is hard to describe. The system (2) linearized at the fixed points 𝑝1 ,𝑝2 is  

   
𝑥 = 𝜍(𝑦 − 𝑥)

𝑦 = 𝑟𝑥 − 𝑦 ∓ 𝑏 𝑟 − 1

𝑧 = ±𝑏 𝑟 − 1𝑥 ± 𝑏 𝑟 − 1 − 𝑏𝑧

                                                             (5) 

and its characteristic polynomial is  

𝑃 𝜆 = 𝜆3 +  𝜍 + 𝑏 + 1 𝜍2 + 𝑏 𝜍 + 𝑟 𝜆 + 2𝜍𝑏 𝑟 − 1 . 
The roots of this polynomial may be all real or one real and two complex, depending on the value of 𝑟. In any 

case, there exists a special value 

𝑟𝑕 = 𝜍(𝜍 + 𝑏 + 3) (𝜍 − 𝑏 − 1) ≈ 24.74 

of 𝑟 (usually referred as a critical 𝑟-value), such that for all 1 < 𝑟 < 𝑟𝑕 , all of the eigenvalues of the linearized 

system at 𝑝1 and 𝑝2 have negative real part. Accordingly, these two fixed points are asymptotically stable. The 

corresponding maximal attractor consists of 𝑝1 ,𝑝2 and the unstable manifold of the origin, which gets arbitrarily 

near the fixed points 𝑝1 and 𝑝2 ( Fig. 5). 

 

 
Figure 5: The unstable manifold of the origin. 
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There exists an intermediate value 𝑟0 ∈  1, 𝑟𝑕 ,  𝑟0 ≈ 1.346, such that for 1 < 𝑟 < 𝑟0 , the characteristic 

exponents of 𝑝1 and  𝑝2 are negative, while for 𝑟0 < 𝑟 < 𝑟𝑕 , two of them are conjugate complex numbers, with a 

negative real part, in which case the unstable manifold of the origin circles around 𝑝1 and 𝑝2. There exists 

another intermediate value 𝑝1 ≈ 13.296 for which the unstable manifold of the origin connects to the stable 

manifold of the origin, forming a homoclinic loop. Thus, trajectories starting from the unstable manifold of the 
origin will eventually land in the stable manifold of the origin, and will then tend, in both forward and backward 

time, to the origin (Fig. 6). The case of 1 < 𝑟 < 𝑟𝑕  corresponds physically to a motion of the fluid governed by 

steady convection rolls in either of two senses. 

 

 
Figure 6: A homoclinic orbit. 

 

 
Figure 7: A trajectory starting nearby the origin and trapped by the Lorenz attractor. 

 

For 𝑟 > 𝑟𝑕  all the three fixed points are unstable and a chaotic attractor is observable. The attractor lies on an 

infinitely ramified surface, with trajectories running from one branch to another in a chaotic fashion (Fig. 7). 

This situation corresponds physically to the destruction of the steady convection rolls by a turbulent, large 

amplitude motion. If we increase  𝑟 > 28, the chaotic features of the Lorenz attractor  seems to persist for a 

wide range of 𝑟. For very large values of  𝑟  (𝑟 > 313), the trajectories tend to become relatively simpler and 
attractive periodic orbits appear. 

 

V. CONCLUSION 
The  primary  focus  of  this  paper  is  to  gain  an  understanding  of  what  it  means  to  be  an  

attractor  and how this idea relates to chaos. In particular, we explore the meaning of strangeness. It is a 

common misconception that the term strange attractor is simply another way of saying chaotic attractor. Though 

a chaotic attractor is certainly a strange attractor, the reverse is not necessarily true. Indeed, there exist examples 

of strange attractors which are non-chaotic. 
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