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I.         Introduction 

 We shall study in this paper the fractional integral operators [1] defined by means of the following 

equations: 
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The operator defined by (1.1) exists under the following set of conditions: 
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The generalized Riemann Zeta function [z,,] occurring in the equations (1.1) and (1.2) is defined in the 
following manner [2, p.27, eq.(1): 3, p.1075, eq. (9.550)] 
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Equivalently, it has the integral expression 

 dte z1e t
1

z, 1tt1

0







      …(1.4) 

provided that Re() > 0 and either | z |  1, z  1 and Re() > 0 or z = 1 and       Re() > 1. 
The above mentioned function (1.3) is general in nature and yields a number of known functions as its special 

cases. 

In particular,  = 1 reduces the function  [z,1,] to hypergeometric function [2, p.30, eq.(10)] 
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About four decades ago, Srivastava [4] defined a general class of polynomials 
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and two interesting special cases of the polynomial are given in [5]. 

The series representation of the H-function of several complex variable studied by Olkha and Chaurasia [6] is 

given as follows: 
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The multivariable H-function due to Srivastava and Panda [7] will be required in the proof. 

 

II.        Mellin-Transforms 

The well-known Mellin-transform of the function f(x) defined by the following equation 
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The conditions under which the above Theorems are valid can easily be obtained from the conditions (i) through 

(vi) and (1.3). 

Proof. To prove Theorem 1, first we write the Mellin-transform of the R-operator with the help of the equation 

(2.1), then we change the order of t and x-integrals. Now we express the series expansions for the function 
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integrals [7]. Then changing the order of integration and summations and evaluate the x-integral with the help of 

a known result [2, p.10, eq. (17)] and reinterpreting the resulting Mellin-Barnes contour integrals in terms of the 

multivariable H-function, we easily arrive at the desired Theorem. 

 Theorem 2 is established with the help of (1.2) and (2.1) and proceeding on similar lines as indicated in 

the proof of Theorem 1 and make use of another well-known result [3, p.295, eq.(3)]. 

 

III.        Special Cases 

 On specializing the parameters involved in (1.1) and (1.2), we derive some interesting special cases, 

which will be useful in the literature on applied Mathematics. 
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This result is valid under conditions obtainable from those given earlier for (1.1). 

If we set n = 0 in (2.3), then similar change will be obtained. 

II. On giving suitable values to the parameters involved in polynomial in main theorem (i.e. Theorem 1 

and Theorem 2), a number of interesting cases can be derived as special cases. 

III. If we set  = 1 in (2.2), then the function [z,1,] reduces to hypergeometric function [2, p.30, Eq.(10)] 
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This result is valid under conditions obtainable from those given earlier for (1.1). 

If we set  = 1 in (2.3), then similar changes will be observed. 
IV. On giving suitable values to the parameters of multivariable H-function, we get the operators due to 

Parashar [8, p.141], Kalla and Saxena [9,p.231], Erdélyi [10,p.293] and Kober [11, p.193] and then a number of 

interesting cases can be derived as special cases of (2.2) and (2.3). 
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