G-I-Lc^{*} Sets and Decompositions of ***** - Continuity

S. Jafari¹, K. Viswanathan², J. Jayasudha³

¹College of Vestsjaelland South, Herrestrade 11, 4200 Slagelse, Denmark ^{2,3}Post-Graduate and Research Department of Mathematics, N G M College, Pollachi - 642 001, Tamil Nadu, INDIA

Abstract: In this paper, we introduce and investigate the notions of I_g^* -closed sets and Ig^* -continuous maps in ideal topological spaces. Also we introduce the notion of G-I-LC^{*}-sets and G-I-LC^{*}-continuous maps to obtain decompositions of *-continuity. Further, we introduce the notions of weakly GLC^{*}-sets, rg^* -closed sets and weakly GLC^{*}-continuous maps, rg^* -continuous maps in topological spaces to obtain decompositions of continuity.

Keywords: G-I-LC^{*}-sets, weakly G-I-LC^{*}-sets, I_g^* -closed sets, I_{rg}^* -closed sets.

I. Introduction And Preliminaries

The concept of ideals in topological spaces is treated in the classic text by Kuratowski [1] and Vaidyanathaswamy [2]. The notion of I -open sets in topological spaces was introduced by Jankovic and Hamlett [3]. Dontchev et al. [4] introduced and studied the notion of I_g -closed sets. An ideal I on a topological space (X, τ) is a non-empty collection of subsets of X satisfying the following properties: (1) $A \in I$ and $B \subset A$ imply $B \in I$ (heredity), (2) $A \in I$ and $B \in I$ imply $A \cup B \in I$ (finite additivity). A topological space (X, τ) with an ideal I on X is called an ideal topological space and is denoted by (X, τ, I) . For a subset $A \subset X$, $A^*(I) = \{x \in X : U \cap A \notin I \text{ for every } U \in \tau (x)\}$ is called the local function [1] of A with respect to I and τ . We simply write A^* in case there is no chance for confusion. A Kuratowski closure operator cl^{*}(.) for a topology $\tau^*(I)$ called the * -topology finer than τ is defined by cl^{*}(A) = $A \cup A^*$ [2]. Let (X, τ) denote a topological space on which no separation axioms are assumed unless explicitly stated. In a topological space (X, τ) , the closure and the interior of any subset A of X will be denoted by cl(A) and int(A), respectively. A subset A of a space is said to be regular-open [5] if A = int(cl(A)).

Definition 1.1. A subset A of an ideal topological space (X, τ) is said to be

1. g-closed [6] if $cl(A) \subset U$ whenever $A \subset U$ and U is open.

2. rg-closed [7] if $cl(A) \subset U$ whenever $A \subset U$ and U is regular-open.

3. g^* -closed [8] if cl(A) \subset U whenever A \subset U and U is g-open.

The complements of the above sets are their respective open sets.

Definition 1.2. A subset A of an ideal topological space (X, τ) is said to be

1. locally closed [9] (briefly LC) if $A = U \cap V$ where U is open and V is closed.

2. GLC^{*}-set [10] if $A = U \cap V$ where U is g-open and V is closed.

Definition 1.3. A subset A of an ideal topological space (X, τ , I) is *-closed [3] (resp. *-dense in itself [11]) if $A^* \subset A$ (resp. $A \subset A^*$).

Lemma 1.4. [12] Let (X, τ, I) be a topological space with an ideal I on X and A is a subset of X. If $A \subset A^*$, then $A^* = cl(A^*) = cl(A) = cl^*(A)$.

Definition 1.5. A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be GLC^{*}-continuous [10] (resp. g^{*}-continuous [8]) if f⁻¹(A) is a GLC^{*}-set (resp. g^{*}-closed set) in (X, τ) for every closed set A of (Y, σ) .

Definition 1.6. [13] A function f: $(X, \tau, I) \rightarrow (Y, \sigma)$ is said to be *-continuous if f⁻¹(A) is *-closed in (X, τ, I) for every closed set A in (Y, σ) .

II. I_g^{*}-closed sets

Definition 2.1. A subset A of an ideal topological space (X, τ , I) is said to be Ig^* -closed if $A^* \subset U$ whenever $A \subset U$ and U is g-open in X.

Theorem 2.2. Let (X, τ, I) be an ideal topological space and $A \subset X$. Then A is $\{\phi\}_g^*$ -closed if and only if A is g^* -closed.

Proof. Follows from the fact that $A^*(\{\phi\}) = cl(A)$.

Theorem 2.3. Let (X, τ, I) be an ideal topological space with $A \subset X$ and $B \subset X$. If A and B are I_g^* -closed sets, then their union $A \cup B$ is also I_g^* -closed.

www.iosrjournals.org

Proof. Suppose $A \cup B \subset U$ and U is g-open in (X, τ, I) . Then $A \subset U$ and $B \subset U$. Since A and B are I_g^* -closed sets, $A^* \subset U$ and $B^* \subset U$ and hence $(A \cup B)^* = A^* \cup B^* \subset U$. Thus $A \cup B$ is I_g^* -closed.

Theorem 2.4. If A is an I_g^* -closed set of (X, τ, I) such that $A \subset B \subset cl^*(A)$, then B is also an I_g^* -closed set. **Proof.** Let U be any g-open set of (X, τ, I) such that $B \subset U$ and so $A \subset U$. Since A is I_g^* -closed, we have $A^* \subset U$ and $cl^*(A) = A^* \cup A \subset U$. Now $B^* \subset cl^*(B) \subset cl^*(A) \subset U$. Therefore, B is I_g^* -closed.

Theorem 2.5. A subset of an ideal topological space (X, τ, I) is I_g^* -closed if and only if $A^* - A$ does not contains any nonempty g-closed set.

Proof. Suppose that A is I_g^* -closed. Let U be a g-closed subset of $A^* - A$. Then $A \subset U^C$, the complement of U. Since A is I_g^* -closed, we have $A^* \cap U^C$. Consequently $U \subset (A^*)^C$. Hence $U \subset A^* \cap (A^*)^C = \phi$. Conversely, suppose that $A^* - A$ contains no nonempty g-closed set. Let $A \subset U$ and U be g-open. If

Conversely, suppose that $A^* - A$ contains no nonempty g-closed set. Let $A \subset U$ and U be g-open. If $A^* \not\subset U$, then $A^* \cap U^C \neq \phi$. A^* is closed and U^C is a g-closed set of X. Thus $A^* \cap U^C$ is a nonempty g-closed set. Therefore, $A^* \cap U^C \subset A^* - A$. This is a contradiction to the hypothesis. So, $A^* \subset U^C$. This implies that A is I_g^* -closed.

Theorem 2.6. Let (X, τ, I) be an ideal topological space and $A \subset X$, then the following are equivalent:

- 1. A is I_g^* -closed;
- 2. $cl^*(A) \subset U$ whenever $A \subset U$ and U is g-open in X;
- 3. For all $x \in cl^*(A)$, $cl(\{x\}) \cap A \neq \phi$;
- 4. $cl^*(A) A$ contains no nonempty g-closed set;
- 5. $A^* A$ contains no nonempty g-closed set.

Proof. (1) \Rightarrow (2): If A is I_g^* -closed, then $A^* \subset U$ whenever $A \subset U$ and U is g-open in X and so $cl^*(A) = A^* \cup A \subset U$ whenever $A \subset U$ and U is g-open in X. This proves (2).

(2) \Rightarrow (3): Suppose $x \in cl^*(A)$. If $cl(\{x\}) \cap A = \phi$, then $A \subset X - cl(\{x\})$. By (2) $cl^*(A) \subset X - cl(\{x\})$, a contradiction, since $x \in cl^*(A)$.

(3) \Rightarrow (4): Suppose $F \subset cl^*(A) - A$, F is g-closed and $x \in F$. Since $F \subset X - A$ and F is g-closed $cl(\{x\}) \cap A = \phi$. Also since $x \in cl^*(A)$ by (3), $cl(\{x\}) \cap A \neq \phi$, a contradiction.

(4) \Rightarrow (5): Follows from the fact that $cl^*(A) - A = A^* - A$.

(5) \Rightarrow (1): Follows from Theorem 2.5.

From Theorem 2.6 (2), it follows that every *-closed set is I_g^* -closed. The following Example 2.7 shows that the converse need not be true.

Example 2.7. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, \{b\}, \{b, c, d\}, X\}$ and $I = \{\phi, \{a\}\}$. Then $A = \{a, b\}$ is I_g^* -closed but not *-closed.

Theorem 2.8. If (X, τ, I) is an ideal topological space and A is a *-dense in itself, I_g^* -closed subset of X, then A is g *-closed.

Proof. Suppose A is a *-dense in itself, I_g^* -closed subset of X. If U is any g-open set containing A, then by Theorem 2.6(2), $cl^*(A) \subset U$. Since A is *-dense in itself, by Lemma 1.4, $cl(A) \subset U$ and so A is g^* -closed.

III. G-I-LC^{*} SETS

Definition 3.1. A subset A of an ideal topological space (X, τ, I) is said to be *G*-I-LC^{*}-set if A = C \cap D, where C is g-open and D is *-closed.

Definition 3.2. A subset A of an ideal topological space (X, τ, I) is said to be weakly G-I-LC^{*}-set if $A = C \cap D$, where C is rg-open and D is *-closed.

Proposition 3.3. For a subset A of an ideal topological space (X, τ, I) , the following hold:

- 1. If A is g-open, then A is a G-I-LC^{*}-set;
- 2. If A is *-closed, then A is a G-I-LC^{*}-set;
- 3. If A is a $G-I-LC^*$ -set, then A is a weakly $G-I-LC^*$ -set.

The converse of Proposition 3.3 need not be true as seen from the following examples.

Example 3.4. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a,b\}, X\}$ and $I = \{\phi, \{c\}\}$. Then,

1. $A = \{c\}$ is a G-I-LC^{*}-set but not a g-open set.

 $A = \{a\}$ is a G-I-LC^{*}-set but not a *-closed set. 2

Example 3.5. Let $X = \{a, b, c, d, e\}$, $\tau = \{\phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$ and $I = \{\phi, \{a\}\}$. Then $A = \{b, e\}$ is a weakly G-I-LC^{*}-set but not a G-I-LC^{*}-set.

Theorem 3.6. Let (X, τ, I) be an ideal topological space and A be a G-I-LC^{*}-subset of X. Then the following hold:

- 1. If B is a *-closed set, then $A \cap B$ is a G-I-LC^{*}-set;
- 2. If B is a g-open set, then $A \cap B$ is a G-I-LC^{*}-set;
- 3. If B is a G-I-LC^{*}-set, then $A \cap B$ is a G-I-LC^{*}-set.

Proof.

- 1. Let B be a *-closed set. Then $A \cap B = (C \cap D) \cap B = C \cap (D \cap B)$, where $D \cap B$ is *-closed. Hence $A \cap B$ is a G-I-LC^{*}-set.
- 2. Let B be a g-open set. Then $A \cap B = (C \cap D) \cap B = (C \cap B) \cap D$, where $C \cap B$ is g-open. Hence $A \cap B$ B is a G-I-LC^{*}-set.
- 3. Let B be a G-I-LC^{*}-set. Then $A \cap B = (C \cap D) \cap (U \cap V) = (C \cap U) \cap (D \cap V)$, where $C \cap U$ is gopen and $D \cap V$ is *-closed. Hence $A \cap B$ is a G-I-LC^{*}-set.

Definition 3.7. A subset A of an ideal topological space (X, τ, I) is said to be I_{rg}^* -closed if $A^* \subset U$ whenever $A \subset U$ and U is rg-open in X.

Theorem 3.8. For a subset A of an ideal topological space (X, τ, I) , the following hold:

- 1. If A is *-closed, then A is I_{rg}^{*} -closed;
- 2. If A is *-closed, then A is a weakly G-I-LC^{*}-set;
- 3. If A is I_{rg}^* -closed, then A is I_g^* -closed.

The converse of Theorem 3.8 need not be true as seen from the following example.

Example 3.9. Let $X = \{a, b, c, d, e\}, \tau = \{\phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$ and $I = \{\phi, \{a\}\}$. Then,

- $A = \{a, b, c, e\}$ is an I_{rg}^{*} -closed set but not a *-closed set. 1.
- 2. $A = \{b\}$ is a weakly G-I-LC^{*}-set but not a *-closed set.
- 3. $A = \{b, e\}$ is an I_g^* -closed set but not an I_{rg}^* -closed set.

Theorem 3.10. A subset of an ideal topological space (X, τ , I) is *-closed if and only if it is a weakly G-I-LC^{*}set and an Irg^{*}-closed set.

Proof. Necessity is trivial. We shall prove only sufficiency. Let A be a weakly G-I-LC*-set and an Irg*-closed set. Since A is a weakly G-I-LC^{*}-set, $A = C \cap D$ where C is rg-open and D is *-closed. So we have $A = C \cap D$ \subset C. Since A is I_{rg}^* -closed, $A^* \subset$ C. Also $A = C \cap D \subset D$ and D is *-closed implies $A^* \subset D$. Consequently, we $A^* \subset C \cap D = A$ and hence A is *-closed. have

Theorem 3.11. For a subset A of an ideal topological space (X, τ, I) , the following are equivalent:

- 1. A is *-closed;
- A is a G-I-LC*-set and an I_{rg}*-closed set;
 A is a G-I-LC*-set and an I_g*-closed set.

Proof. (1) \Rightarrow (2): This is obvious.

(2) \Rightarrow (3): Follows from the fact that every I_{rg}^{*} -closed set is I_{g}^{*} -closed.

 $(3) \Rightarrow (1)$: Let A be a G-I-LC^{*}-set and an I_g^* -closed set. Since A is a G-I-LC^{*}-set, $A = C \cap D$ where C is g-open and D is *-closed. Now $A \subset C$ and A is I_g^* -closed implies $A^* \subset C$. Also $A \subset D$ and D is *-closed implies that $A^* \subset D$. Thus $A^* \subset C \cap D = A$. Hence A is *-closed.

Remark 3.12.

- 1. The notions of G-I-LC*-sets and Ig*-closed sets are independent.
- 2. The notions of weakly G-I-LC^{*}-sets and I_g^* -closed sets are independent.
- 3. The notions of G-I-LC*-sets and Irg*-closed sets are independent.
- 4. The notions of weakly G-I-LC^{*}-sets and I_{rg}^{*} -closed sets are independent.

Example 3.13. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, \{b\}, \{b, c, d\}, X\}$ and $I = \{\phi, \{a\}\}$. Then,

- 1. $A = \{a, b\}$ is an I_g^* -closed set but not a G-I-LC*-set.
- 2. $A = \{a, b\}$ is a G-I-LC^{*}-set but not an I_g^* -closed set.

Example 3.14. Let $X = \{a, b, c, d, e\}$, $\tau = \{\phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$ and $I = \{\phi, \{a\}\}$. Then,

- 1. $A = \{b\}$ is a weakly G-I-LC^{*}-set but not an I_g^* -closed set.
- 2. $A = \{b, c, d, e\}$ is an I_g^* -closed set but not a weakly G-I-LC^{*}-set.

- 3. $A = \{a, b, c, e\}$ is an I_{rg} -closed set but not a weakly $C^* I_{c}C^*$ -set. 4. $A = \{a, b, c, e\}$ is a $G^{-1}-LC^*$ -set but not an I_{rg}^* -closed set. 5. $A = \{b\}$ is a weakly $G^{-1}-LC^*$ -set but not an I_{rg}^* -closed set. 6. $A = \{b, c, d, e\}$ is an I_{rg}^* -closed set but not a weakly $G^{-1}-LC^*$ -set.
- 7.

IV. Decompositions of *-continuity

Definition 4.1. A function $f: (X, \tau, I) \rightarrow (Y, \sigma)$ is said to be I_g^* -continuous (resp. I_{rg}^* -continuous, G-I-LC^{*}- continuous) if $f^{-1}(V)$ is I_g^* -closed (resp. I_{rg}^* -closed, G-I-LC^{*}-set, weakly G-I-LC^{*}set) in (X, τ, I) for every closed set V of (Y, σ) .

Theorem 4.2. A function $f: (X, \tau, I) \rightarrow (Y, \sigma)$ is *-continuous if and only if it is weakly G-I-LC^{*}- continuous and Irg*-continuous.

Proof. This is an immediate consequence of Theorem 3.10.

Definition 4.3. A subset A of a topological space (X, τ) is weakly GLC^{*}-set if A= C \cap D, where C is rg-open and D is closed.

Definition 4.4. A subset A of a topological space (X, τ) is rg^* -closed if $cl(A) \subset U$ whenever $A \subset U$ and U is rg-open in X.

Definition 4.5. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be weakly GLC^* - continuous (resp. rg*-continuous) if $f^{-1}(V)$ is weakly GLC^{*}- set (resp. rg^{*}-closed) in (X, τ) for every closed set V of (Y, σ).

Corollary 4.6: Let (X, τ, I) be an ideal topological space and $I = \{\phi\}$, then a function $f: (X, \tau, I) \to (Y, \sigma)$ is continuous if and only if it is weakly GLC^{*}- continuous and rg^{*}-continuous.

Theorem 4.7. For a function f: $(X, \tau, I) \rightarrow (Y, \sigma)$, the following are equivalent:

- 1. f is *-continuous:

- **Proof.** This is an immediate consequence of Theorem 3.11.

Corollary 4.8: Let (X, τ, I) be an ideal topological space and $I = \{\phi\}$, then a function $f: (X, \tau, I) \to (Y, \sigma)$, the following are equivalent:

- 1. f is continuous;
- f is GLC*- continuous and g*-continuous;
 f is GLC*- continuous and rg*-continuous.

References

- [1]. K. Kuratowski, Topology (Vol. I, Academic press, New York, 1966).
- R. Vaidyanathaswamy, Set topology (Chelsea Publishing Company, New York, 1960). [2].
- D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97, 1990, 295-310. [3].
- [4]. J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japan, 49, 1999.395-401
- [5]. M.Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41, 1937, 374-481.
- N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19, 1970, 89-96. [6].
- [7]. N.Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook Math. J., 33, 1993, 211-219.
- [8]. M. K. R. S. Veera Kumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. (Math.), 21, 2000, 1-19.
- M.Ganster and I.L Reilly, Locally closed sets and LC continuous functions, Internat. J. Math. Math. Sci., 3, 1989, 417-424. [9].
- [10]. Krishnan Balachandran, Palaniappan Sundaram and Haruo Maki, Generalized locally closed sets and GLC-continuous functions, Indian J. Pure and Appl. Math., 27(3), 1996, 235-244.
- [11]. E. Hayashi, Topologies defined by local properties, Math. Ann., 156, 1964, 205-215.
- V. Renuka Devi, D. Sivaraj and T. Tamizh Chelvam, Codense and Complelely codense ideals, Acta Math. Hungar., 108, 2005, 197-[12]. 205.
- [13]. V. Inthumathi, M. Krishnaprakash and M. Rajamani, Strongly I- locally closed sets and decomposition of *-continuity, Acta Math. Hungar., 130(4), 2010, 358-362.