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Abstract: One of the momentous equations in financial mathematics is the Black-Scholes equation, a partial 

differential equation that governs the value of financial derivatives, such as options. In this paper, we attempt to 
show the application of Stochastic Process. We have shown how geometric Brownian motion & Ito’s Lemma 

overlaps on Option Pricing. 
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I. Introduction 
Investors pay for stocks and bonds in the monetary market, putting their funds at risk for the chance to 

receive a return. As the time of Phoenicians, they have sought to reduce this risk value for each level of 

expected return. In order to do so, a whole range financial tool have been developed, known as derivatives, 

assets who derive assets as of another financial asset.  
The scenery of derivative assets provides an interesting means of expression for the analysis and 

application of Brownian motion and solving partial derivative equations, while maintaining its real world 

applications. Several articles have been written on modeling movements in financial markets with stochastic 

calculus. Possibly the most eminent of these described the Nobel Prize winning Black-Scholes option pricing 

model [4]. In several articles, mathematicians, specifically Robert Almgren's[5] and Anastasios Malliaris[1], 

have attempted to more rigorously bridge the gap between random motion and option pricing. 

 

II. Terminology 

2.1 Financial 

 Asset: An object that provides a claim to future cash flows. 

 Efficient Market Hypothesis: There is no opportunity for arbitrage in the market. 

 Derivative: A financial asset that derives its value from another asset. 

 Option: A derivative that provides the opportunity, but not obligation to buy or sell an asset at a 

predetermined price in the future. 

 Strike Price: The predetermined price for executing an option. For a call option, if the market price rises 

above the strike price, the investor will be willing to buy. For a put option, if the market price falls below 

the strike price, the investor will want to sell the underlying asset. 

 

2.2 Stochastics 

 Probability Space: A construct of three components,  Ω , 𝐹, 𝑃 , where 

1. Ω  is the set of all possible outcomes. 

2. 𝐹 is the set of all events, where each event has zero or more outcomes. 

3. 𝑃 is the assignment of probabilities to each event. 

 With Probability 1: Also known as almost surely. The probability of an event occurring tends to 1 given 

some limit. Note that this differs from surely in that surely indicates that no other event is possible, while 

almost surely indicates that other events become less and less likely. 

 A collection of sets F is called σ-algebra if for a sequence of sets 𝐴𝑘 ∈ 𝐅 ,  𝐴𝑘 ∈ 𝐅∞
𝟏  and is closed under 

complementation. The sets 𝐴 ∈ 𝐅 are F-measurable. 

 𝐌[0 , T] denotes the set of functions 𝑓(𝑡) such that 𝑓(𝑡) is defined on  0 , T , measurable with respect to the 

σ-algebra 𝐅𝑡  for all 𝑡 , and   𝑓(𝑡) 2𝑑𝑡 
𝑇

0
 is finite with probability 1. 
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III. Mathematical Stochastics 

Brownian Motion 
The dominion of financial asset pricing borrows a great deal from the field of stochastic calculus. The 

price of a stock tends to follow a Brownian motion. 

 

Definition A stochastic process  𝑤(𝑡) is said to track a Brownian motion on  0 , T  if it satisfies the following: 

1. 𝑤 0 = 0. 
2. 𝑤 𝑡   is almost surely continuous. 

3. For arbitrary 𝑡1 , 𝑡2 , 𝑡3 , …  , 𝑡𝑛  where 0 <  𝑡1 < 𝑡2  < ⋯ <  𝑡𝑛  <  𝑇, the variables 𝑤 0 , 𝑤 𝑡1 −
𝑤 0 , 𝑤 𝑡2 −  𝑤 𝑡1  , … , 𝑤 𝑡𝑛  − 𝑤 𝑡𝑛−1  are mutually independent. In other words, it is a process with 

independent increments. 

4. The mean (or expected) value , 𝐄𝑤(𝑡) is 0. 

5. The process 𝑤(𝑡) takes on a normal distribution density around its mean. More specifically, E[w tk+1 −
w(tk)]2 = tk+1 − tk . 

 

The Ito Integral and the Ito Differential 
A natural response to a Brownian motion 𝑤(𝑡) is the desire to integrate with respect to it. Thus, for a 

function/process 𝑓 over a probability space 𝜔, we seek to make sense of a stochastic integral 

 𝑓 𝑡 , 𝑥 

𝑇

0

𝑑𝑤(𝑡) 

Note that with a differential function 𝑔(𝑡), we can evaluate the Riemann Stieljes integral of  

 𝑓 𝑡 

𝑇

0

𝑑𝑔(𝑡) 

by using  lim𝑛→∞  𝑓(𝑡∗)𝑛−1
𝑗=0  𝑔 𝑡𝑗 +1 − 𝑔 𝑡𝑗   . Where 𝑡∗ is a point on the interval  𝑡𝑗  , 𝑡𝑗 +1 ,  and the series 

converges to the same limit regardless of our selection of  𝑡∗ . With Brownian motion, because of the 

independent increment quality, 𝑤(𝑡) is nowhere differentiable, and as such, we cannot evaluate the Riemann 

Stieljes integral (the limit of the sum is dependent on our selection of  𝑡∗). As a result, there are as many 

stochastic integrals as there are selections of  𝑡∗. 

Definition The Ito integral, takes our selection of  𝑡∗ as the left endpoint, 𝑡𝑗  . We thus have 

 𝑓 𝑡 , 𝑥 

𝑇

0

𝑑𝑤 𝑡 = lim
𝑛→∞

 𝑓(𝑡𝑗 )

𝑛−1

𝑗 =0

 𝑤𝑡𝑗+1
− 𝑤𝑡𝑗

  

With a stochastic integral, it seems only suitable to have a stochastic differential. It is defined as follows. 

 

Definition Suppose there exist two functions 𝑢(𝑡) and 𝑣(𝑡) in  𝐌 0 , 𝑇  such that for all 0 ≤ 𝑡𝑖 ≤ 𝑡𝑓 ≤ 𝑇 ,   

𝑋 𝑡𝑓 − 𝑋 𝑡𝑖 =  𝑢(𝑡)

𝑡𝑓

𝑡𝑖

𝑑𝑡 +  𝑣 𝑡 

𝑡𝑓

𝑡𝑖

𝑑𝑤(𝑡) 

Then the Ito differential of a process 𝑋(𝑡) is defined to be 

 

𝑑𝑋 𝑡 = 𝑢 𝑡 𝑑𝑡 + 𝑣 𝑡 𝑑𝑤(𝑡) 

 

Ito's Lemma 
Stochastic calculus contains an analogue to the chain rule in ordinary calculus. If a method follows 

geometric Brownian motion, we can relate Ito's Lemma, which states [4]: 

Theorem 3.1 Suppose that the process 𝑋(𝑡) has a stochastic differential  𝑑𝑋 𝑡 = 𝑢 𝑡 𝑑𝑡 + 𝑣 𝑡 𝑑𝑤(𝑡) and 

that the function 𝑓(𝑡 , 𝑥) is nonrandom and defined for all 𝑡 and 𝑥. in addition, suppose 𝑓 is continuous and has 

continuous derivatives  𝑓𝑡 𝑡 , 𝑥  , 𝑓𝑥 𝑡 , 𝑥 , 𝑓𝑥𝑥  𝑡 , 𝑥 .  Then the stochastic process 𝑌(𝑡)  = 𝑓(𝑡 , 𝑋(𝑡)) also has a 

stochastic differential, and 

𝑑𝑌 𝑡 =  𝑓𝑡 𝑡, 𝑋 𝑡  + 𝑓𝑥 𝑡, 𝑋 𝑡  𝑢 𝑡 +
1

2
𝑓𝑥𝑥  𝑡, 𝑋 𝑡  𝑣2 𝑡  𝑑𝑡 + 𝑓𝑥 𝑡, 𝑋 𝑡  𝑣 𝑡 𝑑𝑤 𝑡  

Or in integral form, 

𝑌 𝑡𝑓 − 𝑌 𝑡𝑖 =   𝑓𝑡 𝑡, 𝑋 𝑡  + 𝑓𝑥 𝑡, 𝑋 𝑡  𝑢 𝑡 +
1

2
𝑓𝑥𝑥  𝑡, 𝑋 𝑡  𝑣2 𝑡  𝑑𝑡

𝑡𝑓

𝑡𝑖

+  𝑓𝑥 𝑡, 𝑋 𝑡  𝑣 𝑡 𝑑𝑤 𝑡 

𝑡𝑓

𝑡𝑖
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This proof is borrowed largely from Gikhman and Skorokhod [3]. 

Proof First, let us assume that 𝑢(𝑡) and 𝑣(𝑡) are independent of  𝑡. Let 𝑡𝑖 =  𝑡0 <  𝑡1 < ⋯  <  𝑡𝑛 =  𝑡𝑓  . 

Then 

𝑌 𝑡𝑓 − 𝑌 𝑡𝑖 = 𝑓  𝑡𝑓 , 𝑋 𝑡𝑓  − 𝑓 𝑡𝑖 , 𝑋 𝑡𝑖  =   𝑓 𝑡𝑘+1 , 𝑋 𝑡𝑘+1  − 𝑓 𝑡𝑘 ,𝑋 𝑡𝑘    

𝑛−1

𝑘=0

 

However, note that the Taylor expansion of the summand is 
𝑓 𝑡𝑘+1 , 𝑋 𝑡𝑘+1  − 𝑓 𝑡𝑘 ,𝑋 𝑡𝑘  

= 𝑓𝑡 𝑡𝑘 ,𝑋 𝑡𝑘   𝑡𝑘+1 − 𝑡𝑘 + 𝑓𝑥 𝑡𝑘 ,𝑋 𝑡𝑘   𝑋 𝑡𝑘+1 − 𝑋 𝑡𝑘  

+
1

2
𝑓𝑥𝑥  𝑡𝑘 , 𝑋 𝑡𝑘   𝑋 𝑡𝑘+1 − 𝑋 𝑡𝑘  

2 + 𝑂 𝑡𝑋, 𝑡2 , 𝑋3  

The 𝑂 𝑡𝑋, 𝑡2 ,𝑋3  will become irrelevant with probability 1 as max(𝑡𝑘+1 − 𝑡𝑘 )  → 0, by way of thinking similar 

to that in 𝐿𝑒𝑚𝑚𝑎 𝐴. 1. As it turns out, we will show that the  𝑋 𝑡𝑘+1 − 𝑋 𝑡𝑘  
2 term retains an 𝑂(𝑡) term, so 

we keep it for now. 

Because 

𝑋 𝑡𝑘+1 − 𝑋 𝑡𝑘 = 𝑢 𝑡  𝑡𝑘+1 − 𝑡𝑘 + 𝑣 𝑡  𝑤 𝑡𝑘+1 − 𝑤 𝑡𝑘  ,  
We can substitute to get 

𝑓 𝑡𝑘+1 , 𝑋 𝑡𝑘+1  − 𝑓 𝑡𝑘 ,𝑋 𝑡𝑘  

= 𝑓𝑡 𝑡𝑘 ,𝑋 𝑡𝑘   𝑡𝑘+1 − 𝑡𝑘 + 𝑓𝑥 𝑡𝑘 ,𝑋 𝑡𝑘  𝑢 𝑡𝑘  𝑡𝑘+1 − 𝑡𝑘 

+ 𝑓𝑥 𝑡𝑘 , 𝑋 𝑡𝑘  𝑣 𝑡𝑘  𝑤 𝑡𝑘+1 − 𝑤 𝑡𝑘  +
𝑢(𝑡𝑘)2

2
𝑓𝑥𝑥  𝑡𝑘 ,𝑋 𝑡𝑘   𝑡𝑘+1 − 𝑡𝑘 

2

+ 𝑢 𝑡 𝑣 𝑡 𝑓𝑥𝑥  𝑡𝑘 , 𝑋 𝑡𝑘   𝑡𝑘+1 − 𝑡𝑘  𝑤 𝑡𝑘+1 − 𝑤 𝑡𝑘  

+
𝑣(𝑡𝑘)2

2
𝑓𝑥𝑥  𝑡𝑘 , 𝑋 𝑡𝑘   𝑤 𝑡𝑘+1 − 𝑤 𝑡𝑘  

2 

 

As shown in Lemma A.1 (in the appendix), the terms that sum over the  𝑡𝑘+1 − 𝑡𝑘 
2   term and the  tk+1 −

tk  w tk+1 − w tk   term will tend to 0 with probability 1 as 𝑚𝑎𝑥 𝑡𝑘+1 − 𝑡𝑘 → 0.  If we now sum over the 

remaining terms, we have 

𝑌 𝑡𝑓 − 𝑌 𝑡𝑖 = lim
𝑚𝑎𝑥  𝑡𝑘+1−𝑡𝑘 →0

  𝑓𝑡 𝑡𝑘 ,𝑋 𝑡𝑘   𝑡𝑘+1 − 𝑡𝑘 

𝑛−1

𝑘=0

+  𝑓𝑥 𝑡𝑘 ,𝑋 𝑡𝑘  𝑢 𝑡𝑘  𝑡𝑘+1 − 𝑡𝑘 

𝑛−1

𝑘=0

+  𝑓𝑥 𝑡𝑘 ,𝑋 𝑡𝑘  𝑣 𝑡𝑘  𝑤 𝑡𝑘+1 − 𝑤 𝑡𝑘  

𝑛−1

𝑘=0

+
𝑣(𝑡𝑘)2

2
 𝑓𝑥𝑥  𝑡𝑘 ,𝑋 𝑡𝑘   𝑤 𝑡𝑘+1 − 𝑤 𝑡𝑘  

2

𝑛−1

𝑘=0

    

Recall that for a Brownian process, 𝐄 𝑤 𝑡𝑘+1 − 𝑤 𝑡𝑘  
2 = 𝑡𝑘+1 − 𝑡𝑘  . As we take the limit as 𝑡𝑘+1 − 𝑡𝑘 → 0,  

we can thus replace the  𝑤 𝑡𝑘+1 − 𝑤 𝑡𝑘  
2 term. Doing so and recognizing that the summations are by 

definition the Ito integral, we are left with 

𝑌 𝑡𝑓 − 𝑌 𝑡𝑖 =  𝑓𝑡 𝑡, 𝑋 𝑡  

𝑡𝑓

𝑡𝑖

 𝑑𝑡 +  𝑓𝑥 𝑡, 𝑋 𝑡  𝑢 𝑡 

𝑡𝑓

𝑡𝑖

 𝑑𝑡 +  𝑓𝑥 𝑡, 𝑋 𝑡  𝑣 𝑡 

𝑡𝑓

𝑡𝑖

 𝑑𝑤 𝑡 

+
𝑣(𝑡𝑘)2

2
 𝑓𝑥𝑥  𝑡, 𝑋 𝑡  

𝑡𝑓

𝑡𝑖

 𝑑𝑡 

We have now shown Ito's Lemma for constant 𝑢 and 𝑣. It follows that for step functions, the identical 

applies, as they can be partitioned into finitely many constant functions over an interval. As shown in Lemma 

A.2 (in the appendix), it is possible to choose a sequence of step functions 𝑢𝑛  and 𝑣𝑛  so that 

 

  𝑢 𝑡 − 𝑢𝑛 (𝑡) 

𝑡𝑓

𝑡𝑖

𝑑𝑡 → 0 
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  𝑣 𝑡 − 𝑣𝑛 (𝑡) 2

𝑡𝑓

𝑡𝑖

𝑑𝑡 → 0 

And 𝑋𝑛  𝑡 = 𝑋 𝑡𝑖 +  𝑎𝑛𝑑𝑠
𝑡

𝑡𝑖
+  𝑏𝑛𝑑𝑤(𝑠)

𝑡

𝑡𝑖
 converges uniformly to 𝑋(𝑡) with probability 1. As 𝑓 is 

continuously smooth, we can also say that 𝑌𝑛  𝑡 = 𝑓(𝑡 , 𝑋𝑛 (𝑡)) → 𝑌(𝑡) uniformly with probability 1. 
As 𝑌𝑛  𝑡  is piecewise constant, we can say 

𝑌 𝑡𝑓 − 𝑌 𝑡𝑖 =   𝑓𝑡 𝑡, 𝑋𝑛  𝑡  + 𝑓𝑥 𝑡, 𝑋𝑛  𝑡  𝑢𝑛 𝑡 +
1

2
𝑓𝑥𝑥  𝑡, 𝑋𝑛  𝑡  𝑣𝑛

2 𝑡  𝑑𝑡

𝑡𝑓

𝑡𝑖

+  𝑓𝑥 𝑡, 𝑋𝑛  𝑡  𝑣𝑛 𝑡 𝑑𝑤 𝑡 

𝑡𝑓

𝑡𝑖

 

As we let 𝑛 → ∞, we obtain Ito's Lemma in integral form,  

𝑌 𝑡𝑓 − 𝑌 𝑡𝑖 =   𝑓𝑡 𝑡, 𝑋 𝑡  + 𝑓𝑥 𝑡, 𝑋 𝑡  𝑢 𝑡 +
1

2
𝑓𝑥𝑥  𝑡, 𝑋 𝑡  𝑣2 𝑡  𝑑𝑡

𝑡𝑓

𝑡𝑖

+  𝑓𝑥 𝑡, 𝑋 𝑡  𝑣 𝑡 𝑑𝑤 𝑡 

𝑡𝑓

𝑡𝑖

 

The differential form of this is the theorem we set out to prove. 

𝑠𝑑𝑌 𝑡 =  𝑓𝑡 𝑡, 𝑋 𝑡  + 𝑓𝑥 𝑡, 𝑋 𝑡  𝑢 𝑡 +
1

2
𝑓𝑥𝑥  𝑡, 𝑋 𝑡  𝑣2 𝑡  𝑑𝑡 + 𝑓𝑥 𝑡, 𝑋 𝑡  𝑣 𝑡 𝑑𝑤 𝑡  

 

IV. Financial Applications 
4.1. Black-Scholes Equation 

This brings us to the Black-Scholes equation for option pricing.  

Consider a single stock, with price 𝑆(𝑡), which varies with time. Almgren argues that the value of the option 

deriving from that stock should have a market value that is a function of 𝑆 and  𝑡. Let us call this 𝐷 𝑡 =

𝑉 𝑡, 𝑆 𝑡  . 
In the world of finance, the most significant descriptor of the profitability of an asset is its rate of return. In order 
to describe the pertrubations of the return on a share of stock, we will model it a geometric Brownian motion. 

Definition A process takes on geometric (also known as exponential) Brownian motion if its logarithm follows 

a Brownian motion. In other words, only fractional changes take place as random variation. Its differential takes 

on the form 

𝑑𝑆 = 𝑎𝑆 𝑡 𝑑𝑡 + 𝑏𝑆 𝑡 𝑑𝑤(𝑡) 

 

Where 𝑎 and 𝑏 are constants, and 𝑤(𝑡) is a Brownian motion. 

Let the stock price take on a geometric Brownian motion, where the change in stock price is proportional to the 

current stock price, that is  𝑑𝑆 = 𝑎𝑆 𝑡 𝑑𝑡 + 𝑏𝑆 𝑡 𝑑𝑤(𝑡). Note that by Ito's lemma, 
 

𝑑𝐷 =  𝑉𝑡 + 𝑎𝑆𝑉𝑆 +
𝑏2𝑆2

2
𝑉𝑆𝑆 𝑑𝑡 + 𝑏𝑆𝑉𝑆  𝑑𝑤 𝑡 =  𝑉𝑡 +

𝑏2𝑆2

2
𝑉𝑆𝑆 𝑑𝑡 + 𝑉𝑆𝑑𝑆 

 

Consider an investor, who holds a portfolio of the stock and its option, 

 

 𝑃 𝑡 = 𝑁1 𝑡 𝑆 𝑡 + 𝑁2 𝑡 𝐷 𝑡 . 
The differential is 

𝑑𝑃 = 𝑁1𝑑𝑆 + 𝑁2𝑑𝐷 = 𝑁1𝑑𝑆 + 𝑁2  𝑉𝑡 +
𝑏2𝑆2

2
𝑉𝑆𝑆 𝑑𝑡 + 𝑁2𝑉𝑆𝑑𝑆 

Malliaris[5] then makes the clever argument of holding a ratio of stock to derivative of 
𝑁1

𝑁2
= −𝑉𝑆  (this is known 

as a delta hedge), so that  𝑁1𝑑𝑆 + 𝑁2𝑉𝑆𝑑𝑆 = 0.  We are left with  

𝑑𝑃 = 𝑁2  𝑉𝑡 +
𝑏2𝑆2

2
𝑉𝑆𝑆 𝑑𝑡 

Which is completely independent of Brownian motion (there is no 𝑑𝑤(𝑡) term, explicit or implicit). As a result 

it can be considered “riskless”. By the efficient market hypothesis, the return on this riskless asset must be equal 
to that on any other riskless asset, more specifically a government bond. Let the return on the government bond 

be  𝑟(𝑡). Then we have 
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𝑑𝑃

𝑃
=

𝑁2  𝑉𝑡 +
𝑏2𝑆2

2
𝑉𝑆𝑆 𝑑𝑡

𝑁1𝑆 + 𝑁2

= 𝑟𝑑𝑡 

If we rearrange and normalize so that 𝑁2 = 1,  thus making  𝑁1 = −𝑉𝑆 , we get 

 𝑉𝑡 +
𝑏2𝑆2

2
𝑉𝑆𝑆 𝑑𝑡 =  −𝑉𝑆𝑆 + 𝑉 𝑟𝑑𝑡Or 

𝑉𝑡 𝑡, 𝑆 +
𝑏2𝑆2

2
𝑉𝑆𝑆 𝑡, 𝑆 + 𝑆𝑉𝑆 𝑡, 𝑆 − 𝑟𝑉 𝑡, 𝑆 = 0 

Which is the Black-Scholes differential equation for option pricing. 

 

V. Conclusion 
Almgren and Malliaris equally serve to make clear the link between stochastic processes and financial 

asset valuation and deepen the imminent provided in the beginning by Black and Scholes. The crux of the 

argument lies with Ito's lemma, which allows one to value an asset whose value is a random Brownian function 

of another asset. While Ito's original formula was developed for more scientific fields, it has found a position in 

financial analysis. 
In their original thesis, Black and Scholes further solve their differential equation with condition that 

𝑉 𝑡, 𝑆 = 0 = 0,  and 𝐹 𝑇 , 𝑆 = max 0 , 𝑆 − 𝐸 ,  where 𝑇 is the exercise date for the option, and 𝐸 is the 

exercise date indicated in the contract. As a result of the Black Scholes equation, the application of Stochastics 

to finance has been reinvigorated and today it has been applied to an overabundance of financial assets. 

A Appendix 

Lemma A.1 As  𝑚𝑎𝑥(𝑡𝑘+1 − 𝑡𝑘) → 0, 
1.  (𝑡𝑘+1 − 𝑡𝑘)2 → 0𝑛−1

𝑘=0  

2.   𝑡𝑘+1 − 𝑡𝑘  𝑤 𝑡𝑘+1 − 𝑤 𝑡𝑘  → 0𝑛−1
𝑘=0  

Proof 

1. Without loss of generality, let  𝑡𝑘+1 − 𝑡𝑘  be the largest partition of the space  𝑡𝑖  , 𝑡𝑓 . Since we are 

partitioning into 𝑛 segments, the average partition will have size  
𝑡𝑓−𝑡𝑖  

𝑛
 . Let our largest partition have 

size  𝑐
𝑡𝑓−𝑡𝑖  

𝑛
. Then 

 (𝑡𝑘+1 − 𝑡𝑘)2

𝑛−1

𝑘=0

≤     𝑐
𝑡𝑓 − 𝑡𝑖  

𝑛
 

2

≤ 𝑛   𝑐
𝑡𝑓 − 𝑡𝑖  

𝑛
 

2

→ 0

𝑛−1

𝑘=0

 

As  max(𝑡𝑘+1 − 𝑡𝑘) → 0, or equivalently as 𝑛 → ∞. 
2. Similar to the previous example, note that 

  𝑡𝑘+1 − 𝑡𝑘  𝑤 𝑡𝑘+1 − 𝑤 𝑡𝑘  

𝑛−1

𝑘=0

≤ 𝑐 𝑡𝑓 − 𝑡𝑖  𝑤 𝑡𝑘+1 − 𝑤 𝑡𝑘    

As a Brownian process is almost surely continuous, 𝑐 𝑡𝑓 − 𝑡𝑖  𝑤 𝑡𝑘+1 − 𝑤 𝑡𝑘  → 0 with probability 1.  

Lemma A.2 If  𝑓 𝑡   is in  𝑴 0, 𝑇 ,  then there exists a sequence of step functions  𝑓𝑛  𝑡  in 𝑴 0, 𝑇 , such that 

with probability 1, 

lim
𝑛→∞

  𝑓 𝑡 − 𝑓𝑛 (𝑡) 2  𝑑𝑡 = 0

𝑇

0

 

Proof   

Let us first consider a bounded function  𝑔(𝑡). 
As it is bounded, at each point 𝑡, there is a sequence  𝑔𝑛(𝑡) to the value of 𝑔(𝑡) with probability 1. 
An arbitrary function in  𝐌 0, T  can be approximated by a bounded function to an arbitrary degree of accuracy. 

Thus, the sequence of step functions can also be approximated and are dense in the set of all functions. 
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