Po-Γ-Ideals in Po-Γ-Semigroups

V. B. Subrahmanyeswara Rao Seetamraju¹, A. Anjaneyulu², D. Madhusudana Rao³.

¹Dept. of Mathematics, V K R, V N B & A G K College Of Engineering, Gudivada, A.P. India. ^{2,3}Dept. of Mathematics, V S R & N V R College, Tenali, A. P. India.

ABSTRACT: In this paper the terms; a completely prime po- Γ -ideal, c-system, a prime po- Γ -ideal, m-system of a po- Γ -semigroup are introduced. It is proved that every po- Γ -subsemigroup of a po- Γ -semigroup is a c-system. It is also proved that a po- Γ -ideal P of a po- Γ -semigroup S is completely prime if and only if S/P is either a c-system or empty. It is proved that if P is a po- Γ -ideal of a po- Γ -semigroup S, then the conditions (1) if A, B are po- Γ -ideals of S and $A\Gamma B \subseteq P$ then either $A \subseteq P$ or $B \subseteq P$, (2) if a, b \in S such that $a\Gamma S^{l} \Gamma b \subseteq P$, then either $a \in P$ or $b \in P$, are equivalent. It is proved that every completely prime po- Γ -ideal of a po- Γ -semigroup S is a prime po- Γ -ideal of S. It is also proved that in a commutative po- Γ -semigroup S, a po- Γ -ideal P is a prime po- Γ -ideal if and only if P is a completely prime po- Γ -ideal. Further it is proved that a po- Γ -ideal P of a po- Γ -semigroup S is a prime po- Γ -ideal of S if and only if S/P is an m-system or empty. In a globally idempotent po- Γ -semigroup, it is proved that every maximal po- Γ -ideal is a prime po- Γ -ideal. It is also proved that a globally idempotent po- Γ -semigroup having a maximal po- Γ -ideal, contains semisimple elements. The terms completely semiprime po- Γ -ideal, a semiprime po- Γ -ideal, n-system, d-system are introduced. It is proved that (1) every completely semiprime po- Γ -ideal of a po- Γ -semigroup is a semiprime po- Γ -ideal, (2) every completely prime po- Γ -ideal of a po- Γ -semigroup is a completely semiprime po- Γ -ideal. It is also proved that the nonempty intersection of any family of (1) completely prime po- Γ -ideals of a po- Γ -semigroup is a completely semiprime po- Γ -ideal, (2) prime po- Γ -ideals of a po- Γ -semigroup is a semiprime po- Γ -ideal. It is also proved that a po- Γ -ideal Q of a po- Γ -semigroup S is a semiprime iff S\Q is either an n-system or empty. Further it is proved that if N is an n-system in a po- Γ -semigroup S and $a \in N$, then there exists an m-system M of S such that $a \in M$ and $M \subseteq N$. Mathematics Subject Clasification (2010) : 06F05, 06F99, 20M10, 20M99

Keywords: A po- Γ -semigroup, po- Γ -ideal, prime po- Γ -ideal, a completely prime po- Γ -ideal, a completely semiprime po- Γ -ideal, a semiprime po- Γ -ideal, po-c-system, po-d-system, po-m-system, po-n-system.

I. Introduction

 Γ -semigroup was introduced by Sen and Saha [16] as a generalization of semigroup. Anjaneyulu. A [1], [2] and [3] initiated the study of ideals and radicals in semigroups. Many classical notions of semigroups have been extended to Γ-semigroups by Madhusudhana Rao, Anjaneyulu and Gangadhara Rao [11]. The concept of po-Γ-semigroup was introduced by Y. I. Kwon and S. K. Lee [10] in 1996, and it has been studied by several authors. In this paper we introduce the notions of a po-Γ-semigroups and characterize po-Γ-semigroups.

II. PRELIMINARIES

DEFINITION 2.1: Let S and Γ be two non-empty sets. Then S is called a Γ -semigroup if there exist a mapping from $S \times \Gamma \times S$ to S which maps $(a, \alpha, b) \rightarrow a \alpha b$ satisfying the condition : $(a\gamma b)\mu c = a\gamma(b\mu c)$ for all $a, b, c \in S$ and $\gamma, \mu \in \Gamma$.

NOTE 2.2 : Let S be a Γ -semigroup. If A and B are two subsets of S, we shall denote the set { $a\gamma b : a \in A$, $b \in B$ and $\gamma \in \Gamma$ } by A ΓB .

DEFINITION 2.3: A Γ -semigroup S is said to a po- Γ -semigroup if S is a po- set such that $a \le b \Rightarrow a\gamma c \le b\gamma c$ and $c\gamma a \le c\gamma b \quad \forall a, b, c \in S$ and $\gamma \in \Gamma$.

NOTE 2.4: A partially ordered Γ -semigroup simply called a po- Γ -semigroup or ordered Γ -semigroup.

DEFINITION 2.5: An element *a* of a po- Γ -semigroup S is said to be a *left identity* of S provided $a\alpha s = s$ and $s \leq a$ for all $s \in S$ and $\alpha \in \Gamma$.

DEFINITION 2.6 : An element *a* of a po- Γ -semigroup S is said to be a *right identity* of S provided saa = s and $s \le a$ for all $s \in S$ and $a \in \Gamma$.

DEFINITION 2.7: An element 'a' of a po- Γ -semigroup S is said to be a *two sided identity* or an *identity* provided it is both a left identity and a right identity of S.

NOTE 2.8 : An element 'a' of a po- Γ -semigroup S is said to be a *two sided identity* or an *identity* provided saa = aas = s and $s \le a$ for all $s \in S$ and $a \in \Gamma$.

THEOREM 2.9 : Any po-Γ-semigroup S has at most one identity.

NOTE 2.10 : The identity (if exists) of a po- Γ -semigroup is usually denoted by 1 or *e*.

DEFINITION 2.11 : An element *a* of a po- Γ -semigroup S is said to be a *left zero* of S provided $a\alpha s = a$ and $a \leq s$ for all $s \in S$ and $\alpha \in \Gamma$.

DEFINITION 2.12 : An element *a* of a po- Γ -semigroup S is said to be a *right zero* of S provided saa = a and $a \le s$ for all $s \in S$ and $a \in \Gamma$.

DEFINITION 2.13 : An element *a* of a po- Γ -semigroup S is said to be a *two sided zero* or *zero* provided it is both a left zero and a right zero of S.

NOTE 2.14 : An element *a* of a po- Γ -semigroup S is said to be a *two sided zero* or *zero* provided $a\alpha s = s\alpha a = a$ and $a \leq s$ for all $s \in S$ and $\alpha \in \Gamma$.

DEFINITION 2.15 : A po- Γ -semigroup in which every element is a left zero is called a *left zero po-\Gamma-semigroup*.

DEFINITION 2.16 : A po-Γ-semigroup in which every element is a right zero is called a *right zero po-Γ-semigroup*.

DEFINITION 2.17: A po- Γ -semigroup with 0 in which the product of any two elements equals to 0 is called a *zero po-\Gamma-semigroup* or a *null po-\Gamma-semigroup*.

NOTATION 2.18 : Let S be a po- Γ -semigroup and T is a nonempty subset of S. If H is a nonempty subset of T, we denote the set { $t \in T : t \le h$ for some $h \in H$ } by $(H]_T$. The { $t \in T : h \le t$ for some $h \in H$ } by $[H)_T$. Also $(H]_s$ and $[H)_s$ are simply denoted by (H] and [H) respectively.

DEFINITION 2.19 : Let S be a po- Γ -semigroup. A nonempty subset T of S is said to be a po- Γ -subsemigroup of S if $a \gamma b \in T$, for all $a, b \in T$ and $\gamma \in \Gamma$ and $t \in T$, $s \in S$, $s \leq t \Rightarrow s \in T$.

THEOREM 2.20 : A nonempty subset T of a po- Γ -semigroup S is a po- Γ -subsemigroup of S iff (1) T Γ T \subseteq T, (2) (T] \subseteq T.

THEOREM 2.21 : Let S be a po- Γ -semigroup and A is a subset of S. Then for all A, B \subseteq S (i) A \subseteq (A], (ii) ((A]] = (A], (iii) (A]\Gamma(B] \subseteq (A\Gamma B] and (iv) A \subseteq (B] for A \subseteq B, (v) (A] \subseteq (B] for A \subseteq B.

THEOREM 2.22 : The nonempty intersection of two po- Γ -subsemigroups of a po- Γ -semigroup S is a po- Γ -subsemigroup of S.

THEOREM 2.23 : The nonempty intersection of any family of $po-\Gamma$ -subsemigroups of a $po-\Gamma$ -semigroup S is a $po-\Gamma$ -subsemigroup of S.

III. PO-Γ-IDEALS

We now introduce the term, a left po- Γ -ideal in a po- Γ -semigroup. **DEFINITION 3.1** : A nonempty subset A of a po- Γ -semigroup S is said to be a *left po-\Gamma-ideal* of S if (1) $s \in S, a \in A, \alpha \in \Gamma$ implies $s\alpha a \in A$.

(1) $s \in S, a \in A, a \in I$ implies $saa \in$

(2) $s \in S, a \in A, s \le a \Rightarrow s \in A$.

NOTE 3.2 : A nonempty subset A of a po- Γ -semigroup S is a left po- Γ -ideal of S iff (1) S Γ A \subseteq A, and (2) (A] \subseteq A.

NOTE 3.3 : Let S be a po- Γ -semigroup. Then the set

 $(S\Gamma a] = \{t \in S \mid t \le x \, aa \text{ for some } x \in S \text{ and } a \in \Gamma\}$

THEOREM 3.4: Let S be a po- Γ -semigroup. Then (S Γ a] is a left po- Γ -ideal of S for all $a \in S$.

Proof: Since $(S\Gamma a] \Gamma(S\Gamma a] \subseteq (S\Gamma a\Gamma S\Gamma a] = (S\Gamma S\Gamma a] = (S\Gamma a].$

Therefore (SГa] is the nonempty subset of S. Let $t \in$ (SГa], $s \in$ S, $\gamma \in \Gamma$.

 $t \in (S\Gamma a] \Rightarrow t \le s_1 \alpha a$ where $s_1 \in S$ and $\alpha \in \Gamma$.

Now $s \not r t \leq s \not r (s_1 \alpha a) = (s \not r s_1) \alpha a \in (S \Gamma a]$

Therefore $t \in (S\Gamma a]$, $s \in S$, $\gamma \in \Gamma \Rightarrow s\gamma t \in (S\Gamma a]$ and hence $(S\Gamma a]$ is a left po- Γ -ideal of S.

THEOREM 3.5 : The nonempty intersection of any two left po- Γ -ideals of a po- Γ -semigroup S is a left po- Γ -ideal of S.

THEOREM 3.6 : The nonempty intersection of any family of po- left Γ -ideals of a po- Γ -semigroup S is a left po- Γ -ideal of S.

THEOREM 3.7 : The union of any two left po- Γ -ideals of a po- Γ -semigroup S is a left po- Γ -ideal of S. **THEOREM 3.8 :** The union of any family of left po- Γ -ideals of a po- Γ -semigroup S is a left po- Γ -ideal of S.

We now introduce the notion of a right po- Γ -ideal in a po- Γ -semigroup.

DEFINITION 3.9: A nonempty subset A of a po- Γ -semigroup S is said to be a *right po- \Gamma-ideal* of S if (1) $s \in S, a \in A, \alpha \in \Gamma$ implies $a\alpha s \in A$.

(2) $s \in S, a \in A, s \leq a \Rightarrow s \in A$.

NOTE 3.10 : A nonempty subset A of a Γ -semigroup S is a po-right Γ - ideal of S iff (1) A Γ S \subseteq A and (2) (A] \subseteq A.

NOTE 3.11 : Let S be a po- Γ -semigroup. Then the set

 $(a\Gamma S] = \{t \in S \mid t \le aax \text{ for some } x \in S \text{ and } a \in \Gamma\}$

THEOREM 3.12: Let S be a po-Γ-semigroup. Then (aΓS] is a po- right Γ-ideal of S for all $a \in S$.

Proof: Since $(a\Gamma S] \Gamma(a\Gamma S] \subseteq (a\Gamma S\Gamma a\Gamma S] = (a\Gamma a\Gamma S] = (a\Gamma S].$

Therefore (a Γ S] is the nonempty subset of S. Let $t \in (a\Gamma$ S], $s \in S$, $\gamma \in \Gamma$.

 $t \in (a\Gamma S] \Rightarrow t \le a\alpha s_1$ where $s_1 \in S$ and $\alpha \in \Gamma$.

Now $t\gamma s \leq (a\alpha s_1) \gamma s = a\alpha(s\gamma s_1) \in a\Gamma S \Rightarrow t\gamma s \in (a\Gamma S]$

Therefore $t \in (a\Gamma S]$, $s \in S$, $\gamma \in \Gamma \Rightarrow t\gamma s \in (a\Gamma S]$ and hence $(a\Gamma S]$ is a right po- Γ -ideal of S.

THEOREM 3.13 : The nonempty intersection of any two right po- Γ -ideals of a po- Γ -semigroup S is a right po- Γ -ideal of S.

THEOREM 3.14 : The nonempty intersection of any family of right po- Γ -ideals of a po- Γ -semigroup S is a right Γ -ideal of S.

THEOREM 3.15 : The union of any two right po-**Γ**-ideals of a po-**Γ**-semigroup S is a right po-**Γ**-ideal of S. THEOREM 3.16 : The union of any family of right po-**Γ**-ideals of a po-**Γ**-semigroup S is a right po-**Γ**-ideal of S.

We now introduce the notion of a po- Γ -ideal of a po- Γ -semigroup.

DEFINITION 3.17 : A nonempty subset A of a po- Γ -semigroup S is said to be a *two sided po-\Gamma- ideal* or simply a *po-\Gamma- ideal* of S if

(1) $s \in S$, $a \in A$, $a \in \Gamma$ imply $saa \in A$, $aas \in A$.

(2) $s \in S, a \in A, s \leq a \Rightarrow s \in A$.

NOTE 3.18 : A nonempty subset A of a po- Γ -semigroup S is a two sided po- Γ -ideal iff it is both a left po- Γ -ideal and a right po- Γ - ideal of S.

The following examples are due to MANOJ SIRIPITUKDET AND AIYARED IAMPAN [13]

EXAMPLE 3.19 : Let $M = \{a, b, c, d\}$ and $\Gamma = \{\gamma\}$ with the multiplication and the relation \leq on M defined by

 $x\gamma y = \{ \substack{b \text{ if } x, y \in \{a, b\} \\ c \text{ otherwise}} \}$

and $\leq := \{ (a, a), (b, b), (c, c), (d, d), (b, c), (b, d), (c, d) \}$. Then M is a po- Γ -semigroup and $\{b, c\}$ is a po- Γ -ideal of M.

EXAMPLE 3.20 : Let S = { a, b, c, d } be then a po- Γ -semigroup defined by the following multiplication and relation \leq on S as follows:

*	а	b	c	d
а	b	b	d	d
b	b	b	d	d
с	d	d	c	d
d	d	d	d	d

 $\leq := \{ (a, a), (b,b), (c,c), (d,d), (a,b), (d,b), (d,c) \}.$

Let M = S and $\Gamma = \{*\}$. Then M is a po- Γ -semigroup and $\{d\}$ is a po- Γ -ideal of M.

THEOREM 3.21 : Let S be a po- Γ -semigroup. Then (S $\Gamma a\Gamma S$] is a right po- Γ -ideal of S for all $a \in S$.

Proof: Since (SΓ*a*ΓS]Γ(SΓ*a*ΓS] ⊆ (SΓ*a*ΓSΓ SΓ*a*ΓS] = (SΓSΓ*a*ΓS] = (SΓ*a*ΓS]

Therefore (S $\Gamma a \Gamma S$] is a nonempty subset of S. Let $x \in (S \Gamma a \Gamma S]$, $s \in S$.

 $x \in (S\Gamma a \Gamma S] \Rightarrow x \le t \alpha a \beta u$ for some $t, u \in S$ and $\alpha, \beta \in \Gamma$.

 $x \le t\alpha a \beta u \Rightarrow s\gamma x \le s\gamma t\alpha a \beta u \Rightarrow s\gamma x \in (S\Gamma S\Gamma a \Gamma S] = (S\Gamma a \Gamma S]$

and $x\gamma s \leq t\alpha a\beta u\gamma s \Rightarrow x\gamma s \in (S\Gamma a\Gamma S\Gamma S] = (S\Gamma a\Gamma S]$

and $((S\Gamma a \Gamma S)] \subseteq (S\Gamma a \Gamma S)$ and hence $(S\Gamma a \Gamma S)$ is a po- Γ -ideal of S.

THEOREM 3.22 : The nonempty intersection of any two po- Γ -ideals of a po- Γ -semigroup S is a po- Γ -ideal of S.

THEOREM 3.23 : The nonempty intersection of any family of po- Γ -ideals of a po- Γ -semigroup S is a po- Γ -ideal of S.

THEOREM 3.24 : The union of any two po- Γ -ideals of a po- Γ -semigroup S is a po- Γ -ideal of S.

THEOREM 3.25 : The union of any family of $po-\Gamma$ -ideals of a $po-\Gamma$ -semigroup S is a $po-\Gamma$ -ideal of S.

We now introduce a proper po- Γ -ideal, trivial po- Γ -ideal, maximal left po- Γ -ideal, maximal right po- Γ -ideal and globally idempotent po- Γ -ideal of a po- Γ -semigroup.

DEFINITION 3.26 : A po- Γ -ideal A of a po- Γ -semigroup S is said to be an *proper po- \Gamma-ideal* of S if A is different from S.

DEFINITION 3.27: A Γ -ideal A of a po- Γ -semigroup S is said to be a *trivial po-\Gamma-ideal* provided S\A is singleton.

DEFINITION 3.28 : A Γ -ideal A of a po- Γ -semigroup S is said to be a *maximal left po-\Gamma-ideal* provided A is a proper left po- Γ -ideal of S and is not properly contained in any proper left po- Γ -ideal of S.

DEFINITION 3.29: A Γ -ideal A of a po- Γ -semigroup S is said to be a *maximal right po-\Gamma-ideal* provided A is a proper right Γ -ideal of S and is not properly contained in any proper right po- Γ -ideal of S.

DEFINITION 3.30 : A Γ -ideal A of a po- Γ -semigroup S is said to be a *maximal po-\Gamma-ideal* provided A is a proper Γ -ideal of S and is not properly contained in any proper po- Γ -ideal of S.

DEFINITION 3.31 : A po- Γ -ideal A of a po- Γ -semigroup S is said to be *globally idempotent* if (A Γ A] = A. **THEOREM 3.32 :** If A is a po- Γ -ideal of a po- Γ -semigroup S with unity 1 and 1 \in A then A = S.

Proof: Clearly $A \subseteq S$. Let $s \in S$.

 $1 \in A, s \in S$, A is a po- Γ -ideal of $S \Rightarrow 1\Gamma s \subseteq A$ and $s \leq 1 \Rightarrow s \in A$.

Thus $S \subseteq A$. $A \subseteq S$, $S \subseteq A \Rightarrow S = A$.

THEOREM 3.33 : If S is a po- Γ -semigroup with unity 1 then the union of all proper po- Γ -ideals of S is the unique maximal po- Γ -ideal of S.

Proof: Let M be the union of all proper po- Γ -ideals of S. Since 1 is not an element of any proper po- Γ -ideal of S, $1 \notin M$. Therefore M is a proper subset of S. By theorem 3.24, M is a po- Γ -ideal of S. Thus M is a proper po- Γ -ideal of S. Since M contains all proper po- Γ -ideals of S, M is a maximal po- Γ -ideal of S. If M₁ is any maximal po- Γ -ideal of S, then M₁ \subseteq M \subset S and hence M₁ = M. Therefore M is the unique maximal po- Γ -ideal of S.

We now introducing left po- Γ -ideal generated by a subset, a right po- Γ -ideal generated by a subset, po- Γ -ideal generated by a subset of a po- Γ -semigroup.

DEFINITION 3.34 : Let S be a po- Γ -semigroup and A be a nonempty subset of S. The smallest po- left Γ -ideal of S containing A is called *left po-\Gamma-ideal of S generated by A* and it is denoted by L(A).

THEOREM 3.35 : Let S be a po- Γ -semigroup and A is a nonempty subset of S, then L(A) = (A \cup S Γ A]. *Proof* : Let $s \in S$, $r \in (A \cup S \Gamma A]$ and $\gamma \in \Gamma$.

 $r \in (A \cup S\Gamma A] \Rightarrow r \in (A] \text{ or } r \in (S\Gamma A] \Rightarrow r \le a \text{ or } r \le t \alpha a \text{ for some } a \in A, t \in S, \alpha \in \Gamma.$

If $r \leq a$ then $s\gamma r \leq s\gamma a \Rightarrow s\gamma r \in (S\Gamma A] \subseteq (A \cup S\Gamma A]$.

If $r \leq taa$ then $s\gamma r \leq s\gamma(taa) = (s\gamma t)aa \in S\Gamma a \Rightarrow s\gamma r \in (S\Gamma A] \subseteq (A \cup S\Gamma A]$.

Therefore $s \gamma a \in (A \cup S \Gamma A]$ and hence $(A \cup S \Gamma A]$ is a po- left Γ -ideal of S.

Let L be a left po- Γ -ideal of S containing A.

Let $r \in (A \cup S\Gamma A)$. Then $r \le a$ or $r \le t \alpha a$ for some $a \in A, t \in S, \alpha \in \Gamma$.

If $r \le a$ then $r \le a \in L$. If $r \le t \alpha a$ then $r \le t \alpha a \in L$.

Therefore $(A \cup S\Gamma A] \subseteq L$ and hence $(A \cup S\Gamma A]$ is the smallest left po- Γ -ideal containing A.

Therefore $L(A) = (A \cup S\Gamma A]$.

THEOREM 3.36 : The left po- Γ -ideal of a po- Γ -semigroup S generated by a nonempty subset A is the intersection of all left po- Γ -ideals of S containing A.

Proof : Let Δ be the set of all left po- Γ -ideals of S containing A.

Since S itself is a left po- Γ -ideal of S containing A, S $\in \Delta$. So $\Delta \neq \emptyset$.

Let
$$T^* = \bigcap_{T \to A} T$$
. Since $A \subseteq T$ for all $T \in \Delta$, $A \subseteq T^*$.

By theorem 3.6, T^* is a left po- Γ -ideal of S.

Let K is a left po- Γ -ideal of S containing A.

Clearly $A \subseteq K$ and K is a left po- Γ -ideal of S.

Therefore $K \in \Delta \Rightarrow T^* \subseteq K$. Therefore T^* is the left po- Γ -ideal of S generated by A.

DEFINITION 3.37: Let S be a po- Γ -semigroup and A be a nonempty subset of S. The smallest po- right Γ -ideal of S containing A is called *right po-\Gamma-ideal of S generated by A* and it is denoted by R(A).

THEOREM 3.38 : Let S be a po- Γ -semigroup and A is a nonempty subset of S, then $R(A) = (A \cup A\Gamma S]$.

Proof: Let $s \in S$, $r \in (A \cup A\Gamma S]$ and $\gamma \in \Gamma$.

 $r \in (A \cup A\Gamma S] \Rightarrow r \in (A] \text{ or } r \in (A\Gamma S] \Rightarrow r \le a \text{ or } r \le aat \text{ for some } a \in A, t \in S, a \in \Gamma.$

If $r \le a$ then $r \not r s \le a \not r s \Rightarrow r \not r s \in (A \cap S] \subseteq (A \cup A \cap S]$.

If $r \le a \alpha t$ then $r \gamma s \le (a \alpha t) \gamma s = a \alpha (t \gamma s) \in A \Gamma S \Rightarrow r \gamma s \in (A \Gamma S] \subseteq (A \cup A \Gamma S].$

Therefore $r\gamma s \in (A \cup A\Gamma S]$ and hence $(A \cup A\Gamma S]$ is a right po- Γ -ideal of S.

Let R be a right po- Γ -ideal of S containing A.

Let $r \in (A \cup A\Gamma S]$. Then $r \le a$ or $r \le a \alpha t$ for some $a \in A, t \in S, \alpha \in \Gamma$. If $r \le a$ then $r \le a \in \mathbb{R}$. If $r \le a \alpha t$ then $r \le a \alpha t \in \mathbb{R}$. Therefore $(A \cup A\Gamma S] \subseteq R$ and hence $(A \cup A\Gamma S]$ is the smallest right po- Γ -ideal containing A. Therefore $R(A) = (A \cup A\Gamma S]$. THEOREM 3.39 : The right po-Γ-ideal of a po-Γ-semigroup S generated by a nonempty subset A is the intersection of all right po-Γ-ideals of S containing A. **Proof**: Let Δ be the set of all right po- Γ -ideals of S containing A. Since S itself is a right po- Γ -ideal of S containing A, $S \in \Delta$. So $\Delta \neq \emptyset$. Let $T^* = \bigcap_{T \in \Delta} T$. Since $A \subseteq T$ for all $T \in \Delta$, $A \subseteq T^*$. By theorem 3.14, T^* is a right po- Γ -ideal of S. Let K is a right po- Γ -ideal of S containing A. Clearly $A \subseteq K$ and K is a right po- Γ -ideal of S. Therefore $K \in \Delta \Rightarrow T^* \subseteq K$. Therefore T^* is the right po- Γ -ideal of S generated by A. **DEFINITION 3.40**: Let S be a po- Γ -semigroup and A be a nonempty subset of S. The smallest po- Γ -ideal of S containing A is called *po-Γ-ideal of* S *generated by* A and it is denoted by J(A). **THEOREM 3.41 :** If S is a po- Γ -semigroup and A \subseteq S then $J(A) = (A \cup A\Gamma S \cup S\Gamma A \cup S\Gamma A\Gamma S].$ **Proof:** Let $s \in S$, $r \in (A \cup A\Gamma S \cup S\Gamma A \cup S\Gamma A\Gamma S]$ and $\gamma \in \Gamma$. $r \in (A \cup A\Gamma S \cup S\Gamma A \cup S\Gamma A\Gamma S] \Rightarrow r \leq a$ or $r \leq aat$ or $r \leq taa$ or $r \leq taa\beta u$ for some $a \in A$ $t, u \in S$ and $a, \beta \in \Gamma$. If $r \le a$ then $rys \le ays \in A\Gamma S \Rightarrow rys \in (A\Gamma S]$ and $syr \le sya \in S\Gamma A \Rightarrow syr \in (S\Gamma A]$. If $r \le a\alpha t$ then $r\gamma s \le (a\alpha t)\gamma s = a\alpha(t\gamma s) \in A\Gamma S \Rightarrow r\gamma s \in (A\Gamma S]$ and $syr \leq sy(a\alpha t) = sya\alpha t \in S\Gamma A\Gamma S \Rightarrow rys \in (S\Gamma A\Gamma S]$. If $r \le t\alpha a$ then $r\gamma s \le (t\alpha a)\gamma s = t\alpha a\gamma s \in S\Gamma A\Gamma S \Rightarrow r\gamma s \in (S\Gamma A\Gamma S]$ or $syr \leq sy(t\alpha a) = (syt)\alpha a \in S\Gamma A \Rightarrow syr \in (S\Gamma A]$. If $r \leq t \alpha \alpha \beta u$ then $rys \leq (t \alpha \alpha \beta u)ys = t \alpha \alpha \beta (uys) \in S\Gamma A\Gamma S \Rightarrow rys \in (S\Gamma A\Gamma S]$ and $syr \leq sy(taa\beta u) = (syt)aa\beta u \in S\Gamma A\Gamma S \Rightarrow syr \in (S\Gamma A\Gamma S].$ But (AFS], (SFA], (SFAFS] are all subsets of (AFS \cup SFA \cup SFAFS]. Therefore rys, $syr \in (A \cup A\Gamma S \cup S\Gamma A \cup S\Gamma A \Gamma S)$ and hence $(A \cup A\Gamma S \cup S\Gamma A \cup S\Gamma A \Gamma S)$ is a po- Γ -ideal of S. Let J be a Γ -ideal of S containing A. Let $r \in (A \cup A\Gamma S \cup S\Gamma A \cup S\Gamma A\Gamma S]$. Then $r \leq a$ or $r \leq aat$ or $r \leq taa$ or $r \leq taa \beta u$ for some $a \in A$ t, $u \in S$ and $a, \beta \in \Gamma$. If $r \le a$ then $r \le a \Rightarrow r \in J$. If $r \le a\alpha t$ then $r \le a\alpha t \Rightarrow r \in J$. If $r \le taa$ then $r \le taa \Rightarrow r \in J$. If $r \le taa\beta u$ then $r \le taa\beta u \Rightarrow r \in J$. Therefore (A \cup AFS \cup SFA \cup SFAFS] \subseteq J.

Hence $(A \cup A\Gamma S \cup S\Gamma A \cup S\Gamma A\Gamma S)$ is the smallest po- Γ -ideal of S containing *a*.

Therefore $J(A) = (A \cup A\Gamma S \cup S\Gamma A \cup S\Gamma A\Gamma S]$.

THEOREM 3.42 : The po- Γ -ideal of a Γ -semigroup S generated by a nonempty subset A is the intersection of all po- Γ -ideals of S containing A.

Proof: Let Δ be the set of all po- Γ -ideals of S containing A.

Since S itself is a po- Γ -ideal of S containing A, $S \in \Delta$. So $\Delta \neq \emptyset$.

Let $T^* = \bigcap T$. Since $A \subseteq T$ for all $T \in \Delta$, $A \subseteq T^*$.

$$T{\in}\Delta$$

By theorem 3.23, T^* is a po- Γ -ideal of S.

Let K is a po- Γ -ideal of S containing A.

Clearly $A \subseteq K$ and K is a po- Γ -ideal of S. Therefore $K \in \Delta \Rightarrow T^* \subseteq K$.

Therefore T^* is the po- Γ -ideal of S generated by A.

We now introduce a principal left po- Γ -ideal of a po- Γ -semigroup and characterize principal left po- Γ -ideal.

DEFINITION 3.43 : A left po- Γ -ideal A of a po- Γ -semigroup S is said to be the *principal left po-\Gamma-ideal generated by a*, if A is a po- left Γ -ideal generated by $\{a\}$ for some $a \in S$. It is denoted by L(a).

THEOREM 3.44 : If S is a po- Γ -semigroup and $a \in S$ then $L(a) = (a \cup S\Gamma a]$.

Proof: In the theorem 3.35., for $A = \{a\}$ we have $L(a) = (a \cup S\Gamma a]$.

NOTE 3.45: If S is a po- Γ -semigroup and $a \in S$ then $L(a) = \{ t \in S / t \le a \text{ or } t \le x \neq a \text{ for some } x \in S, \gamma \in \Gamma \}$.

NOTE 3.46 : If S is a po- Γ -semigroup and $a \in S$ then L (a) = (S¹ Γa].

We now introduce principal right po- Γ -ideal of a po- Γ -semigroup and characterize principal right po- Γ -ideal.

DEFINITION 3.47: A right po- Γ -ideal A of a po- Γ -semigroup S is said to be the *principal right po-\Gamma-ideal generated by a* if A is a right po- Γ -ideal generated by $\{a\}$ for some $a \in S$. It is denoted R(a).

THEOREM 3.48 : If S is a po- Γ -semigroup and $a \in S$ then $R(a) = (a \cup a\Gamma S]$.

Proof: In the theorem 3.38., for $A = \{a\}$ we have $R(a) = (a \cup a\Gamma S]$.

NOTE 3.49 : If S is a po- Γ -semigroup and $a \in S$ then $R(a) = \{ t \in S / t \le a \text{ or } t \le a px \text{ for some } x \in S, p \in \Gamma \}$. **NOTE 3.50 :** If S is a po- Γ -semigroup and $a \in S$ then R $(a) = (a\Gamma S^1)$.

We now introduce a principal po- Γ -ideal of a po- Γ -semigroup and characterize principal po- Γ -ideal. **DEFINITION 1.3.51 :** A po- Γ -ideal A of a po- Γ -semigroup S is said to be a *principal po-\Gamma-ideal* provided A is a po- Γ -ideal generated by $\{a\}$ for some $a \in S$. It is denoted by J[a] or $\langle a \rangle$.

THEOREM 3.52 : If S is a po- Γ -semigroup and $a \in S$ then

 $\mathbf{J}(a) = (a \cup a\Gamma \mathbf{S} \cup \mathbf{S}\Gamma a \cup \mathbf{S}\Gamma a\Gamma \mathbf{S}].$

Proof: In the theorem 3.41., for $A = \{a\}$ we have $J(a) = (a \cup S\Gamma a \cup a\Gamma S \cup S\Gamma a\Gamma S]$.

NOTE 3.53: If S is a po- Γ -semigroup and $a \in S$, then

 $\langle a \rangle = \{ t \in S \mid t \leq a \text{ or } t \leq a px \text{ or } t \leq x pa \delta y \text{ for some } x, y \in S \text{ and } p, \delta \in \Gamma \}$

NOTE 3.54 : If S is a po- Γ -semigroup and $a \in S$, then

 $\langle a \rangle = (a \cup a \Gamma S \cup S \Gamma a \cup S \Gamma a \Gamma S] = (S^{1} \Gamma a \Gamma S^{1}].$

DEFINITION 3.55: A partial order \leq on a set S is linear if for any $a, b \in S$, either $a \leq b$ or $b \leq a$.

DEFINITION 3.56 : Let \leq is a partial order on a set S is linear. Then S is called a *Chain*.

THEOREM 3.57 : In any po-Γ-semigroup S, the following are equivalent.

(1) Principal po-**Γ**-ideals of S form a chain.

(2) Po-**Γ**-ideals of S form a chain.

Proof: $(1) \Rightarrow (2)$: Suppose that principal po- Γ -ideals of S form a chain.

Let A, B be two po- Γ -ideals of S. Suppose if possible A \nsubseteq B, B \nsubseteq A.

Then there exists $a \in A \setminus B$ and $b \in B \setminus A$.

 $a \in A \Rightarrow \langle a \rangle \subseteq A \text{ and } b \in B \Rightarrow \langle b \rangle \subseteq B.$

Since principal po- Γ -ideals form a chain, either $\langle a \rangle \subseteq \langle b \rangle$ or $\langle b \rangle \subseteq \langle a \rangle$.

If $\langle a \rangle \subseteq \langle b \rangle$, then $a \in \langle b \rangle \subseteq B$. It is a contradiction.

If $\langle b \rangle \subseteq \langle a \rangle$, then $b \in \langle a \rangle \subseteq A$. It is also a contradiction.

Therefore either $A \subseteq B$ or $B \subseteq A$ and hence po- Γ -ideals from a chain.

 $(2) \Rightarrow (1)$: Suppose that po- Γ -ideals of S form a chain.

Then clearly principal po- Γ -ideal of S form a chain.

We now introduce a left simple po-Γ-semigroup and characterize left simple po-Γ-semigroups.

DEFINITION 3.58 : A po- Γ -semigroup S is said to be a *left simple po-\Gamma-semigroup* if for every $a, b \in S$, $\alpha, \beta \in \Gamma$, there exist $x, y \in S$ such that $b \le x \alpha a$ and $a \le y \beta b$.

NOTE 3.59: A po- Γ -semigroup S is said to be a left simple po- Γ -semigroup if S is its only left po- Γ -ideal. **THEOREM 3.60**: A po- Γ -semigroup S is a left simple po- Γ -semigroup if and only if (S Γa] = S for all $a \in S$.

Proof: Suppose that S is a left simple po- Γ -semigroup and $a \in S$.

Let $t \in (S\Gamma a]$, $s \in S$, $\gamma \in \Gamma$.

 $t \in (S\Gamma a] \Rightarrow t \leq s_1 \alpha a$ where $s_1 \in S$ and $\alpha \in \Gamma$.

Now $s_{\gamma t} \leq s_{\gamma}(s_1 \alpha a) = (s_{\gamma} s_1) \alpha a \in S \Gamma a \Rightarrow s_{\gamma t} \in (S \Gamma a]$. Therefore $(S \Gamma a]$ is a left po- Γ -ideal of S.

Since S is a left simple po- Γ -semigroup, (S Γa] = S.

Therefore $(S\Gamma a] = S$ for all $a \in S$.

Conversely suppose that $(S\Gamma a] = S$ for all $a \in S$. Let L be a left Γ -ideal of S.

Let $l \in L$. Then $l \in S$. By assumption, $(S\Gamma l] = S$.

Let $s \in S$. Then $s \in (S\Gamma l] \Rightarrow s \le t \alpha l$ for some $t \in S, \alpha \in \Gamma$.

 $l \in L, t \in S, \alpha \in \Gamma$ and L is a left po- Γ -ideal $\Rightarrow t\alpha l \in L \Rightarrow s \in L$. Therefore $S \subseteq L$.

Clearly $L \subseteq S$ and hence S = L. Therefore S is the only left po- Γ -ideal of S.

Hence S is left simple po- Γ -semigroup.

We now introduce a right simple po- Γ -semigroup and characterize right simple po- Γ -semigroups. **DEFINITION 3.61 :** A po- Γ -semigroup S is said to be a *right simple po-\Gamma-semigroup* if for every $a, b \in S$,

 $\alpha, \beta \in \Gamma$, there exist x, $y \in S$ such that $b \leq a\alpha x$ and $a \leq b\beta y$.

NOTE 3.62 : A po- Γ -semigroup S is said to be a right simple po- Γ -semigroup if S is its only right Γ -ideal. **THEOREM 3.63:** A po- Γ -semigroup S is a right simple po- Γ -semigroup if and only if ($a\Gamma$ S]=S for all $a \in S$. *Proof* : Suppose that S is a right simple po- Γ -semigroup and $a \in S$.

Let $t \in (a\Gamma S]$, $s \in S$, $\gamma \in \Gamma$.

 $t \in (a\Gamma S] \Rightarrow t \le a\alpha s_1$ where $s_1 \in S$ and $\alpha \in \Gamma$.

Now $t\gamma s \leq (a\alpha s_1)\gamma s = a\alpha(s_1\gamma s) \in a\Gamma S \Rightarrow t\gamma s \in (a\Gamma S]$. Therefore $(a\Gamma S]$ is a right po- Γ -ideal of S. Since S is a right simple po- Γ -semigroup, $(a\Gamma S] = S$. Therefore $(a\Gamma S] = S$ for all $a \in S$. Conversely suppose that $(a\Gamma S] = S$ for all $a \in S$.

Let R be a right po- Γ -ideal of a po- Γ -semigroup S.

Let $r \in \mathbb{R}$. Then $r \in \mathbb{S}$. By assumption $(r\Gamma \mathbb{S}] = \mathbb{S}$.

Let $s \in S$. Then $s \in (r\Gamma S] \Rightarrow s \le r\alpha t$ for some $t \in S$, $\alpha \in \Gamma$.

 $r \in \mathbb{R}, t \in \mathbb{S}, \alpha \in \Gamma$ and \mathbb{R} is a right po- Γ -ideal $\Rightarrow r\alpha t \in \mathbb{R} \Rightarrow s \in \mathbb{R}$.

Therefore $S \subseteq R$. Clearly $R \subseteq S$ and hence S = R.

Therefore S is the only right po- Γ -ideal of S. Hence S is right simple po- Γ -semigroup.

We now introduce a simple po- Γ -semigroup and characterize simple po- Γ -semigroups.

DEFINITION 3.64 : A po- Γ -semigroup S is said to be a *simple po-\Gamma-semigroup* if for every $a, b \in S, \alpha, \beta \in \Gamma$, there exist $x, y \in S$ such that $a \leq x \alpha b \beta y$.

NOTE 3.65 : A po- Γ -semigroup S is said to be simple po- Γ -semigroup if S is its only two-sided po- Γ -ideal.

THEOREM 3.66 : If S is a left simple po- Γ -semigroup or a right simple po- Γ -semigroup then S is a simple po- Γ -semigroup.

Proof: Suppose that S is a left simple po- Γ -semigroup. Then S is the only left po- Γ -ideal of S. If A is a po- Γ -ideal of S, then A is a left po- Γ -ideal of S and hence A = S.

Therefore S itself is the only po- Γ -ideal of S and hence S is a simple po- Γ -semigroup.

Suppose that S is a right simple po- Γ -semigroup. Then S is the only right po- Γ -ideal of S. If A is a po- Γ -ideal of S, then A is a right po- Γ -ideal of S and hence A = S.

Therefore S itself is the only po- Γ -ideal of S and hence S is a simple po- Γ -semigroup.

THEOREM 3.67 : A po- Γ -semigroup S is simple po- Γ -semigroup if and only if (S $\Gamma a\Gamma S$] = S for all $a \in S$.

Proof: Suppose that S is a simple po- Γ -semigroup and $a \in S$.

Let $t \in (S\Gamma a \Gamma S]$, $s \in S$ and $\gamma \in \Gamma$.

 $t \in (S\Gamma a\Gamma S] \Rightarrow t \leq s_1 \alpha a \beta s_2$ where $s_1, s_2 \in S$ and $\alpha, \beta \in \Gamma$.

Now $t\gamma s \leq (s_1 \alpha a \beta s_2) \gamma s = s_1 \alpha a \beta (s_2 \gamma s) \in S\Gamma a \Gamma S \Rightarrow t\gamma s \in (S\Gamma a \Gamma S]$

and $s\gamma t \leq s\gamma (s_1 \alpha a \beta s_2) = (s\gamma s_1) \alpha a \beta s_2 \in S\Gamma a \Gamma S \Rightarrow s\gamma t \in (S\Gamma a \Gamma S].$

Therefore $(S\Gamma a\Gamma S)$ is a po- Γ -ideal of S.

Since S is a simple po- Γ -semigroup, S itself is the only po- Γ -ideal of S and hence (S $\Gamma a\Gamma S$] = S.

Conversely suppose that $(S\Gamma a\Gamma S] = S$ for all $a \in S$. Let I be a Γ -ideal of S.

Let $a \in I$. Then $a \in S$. So $(S\Gamma a\Gamma S] = S$.

Let $s \in S$. Then $s \in (S\Gamma a\Gamma S] \Rightarrow s \le t_1 \alpha a \beta t_2$ for some $t_1, t_2 \in S$, $\alpha, \beta \in \Gamma$.

 $a \in I, t_1, t_2 \in S, \alpha, \beta \in \Gamma$, I is a Γ -ideal of $S \Rightarrow t_1 \alpha \alpha \beta t_2 \in I \Rightarrow s \in I$.

Therefore $S \subseteq I$. Clearly $I \subseteq S$ and hence S = I.

Therefore S is the only Γ -ideal of S. Hence S is a simple po- Γ -semigroup.

We now introduce a regular po- Γ -ideal of a po- Γ -semigroup.

DEFINITION 3.68 : A po- Γ -ideal A of a po- Γ -semigroup S is said to be *regular* if every element of A is regular in A.

NOTE 3.69 : A po- Γ -ideal A of a po- Γ -semigroup S is said to be regular if A \subseteq (AFSFA]

THEOREM 3.70 : Every po- Γ -ideal of a regular po- Γ -semigroup S is a regular po- Γ -ideal of S.

Proof : Let A be a po- Γ -ideal of S and $a \in A$. Then $a \in S$ and hence a is regular in S. Therefore $a \leq aab\beta a$ where $b \in S$ and $\alpha, \beta \in \Gamma$.

Hence $a \leq aab\beta a \leq (aab\beta)(aab\beta a) \leq aa[(b\beta a)ab]\beta a$.

Let $b_1 = (b\beta a)\alpha b \in S\Gamma A\Gamma S$. Now $a \leq a\alpha b_1\beta a$.

Therefore *a* is regular in A and hence A is a regular po- Γ -ideal.

IV. Completely Prime Po-**Γ**-Ideals And Prime Po-**Γ**-Ideals

DEFINITION 4.1 : A po- Γ -ideal P of a po- Γ -semigroup S is said to be a *completely prime po-\Gamma- ideal* provided $x, y \in S$ and $x \Gamma y \subseteq P$ implies either $x \in P$ or $y \in P$.

We now introduce the notion of a c-system of a po- Γ -semigroup.

DEFINITION 4.2: Let S be a po- Γ -semigroup. A nonempty subset A of S is said to be a *po-c-system* of S if for each $a, b \in A$ and $\alpha \in \Gamma$ there exists an element $c \in A$ such that $c \leq a\alpha b$.

NOTE 4.3 : A nonempty subset A of a po- Γ -semigroup S is said to be a po-*c*-system of S if for each $a, b \in A$ there exists an element $c \in A$ such that $c \in (a\Gamma b]$.

THEOREM 4.4 : Every po-Γ-subsemigroup of a po-Γ-semigroup is a *po-c-system*.

Proof: Let T be a po- Γ -subsemigroup of S and $a, b \in T, \alpha \in \Gamma$.

Since T is a po- Γ -subsemigroup of S, $aab \in T$.

Let $c = aab \Rightarrow c \leq aab$. Therefore there exist an element $c \in T$ such that $c \leq aab$. Therefore T is a po-*c*-system.

THEOREM 4.5: Let S be a po- Γ -semigroup and P is a po- Γ -ideal of S. Then $(a\Gamma b] \subseteq P$ if and only if $a\Gamma b \subseteq P$.

Proof : Suppose that $(a\Gamma b] \subseteq P$. By theorem 2.21, $a\Gamma b \subseteq (a\Gamma b] \subseteq P$ and hence $a\Gamma b \subseteq P$. Conversely suppose that $a\Gamma b \subseteq P$. Let $x \in (a\Gamma b] \Rightarrow x \leq aab$ where $aab \in a\Gamma b \Rightarrow x \leq aab \in a\Gamma b \subseteq P \Rightarrow x \in P$. Therefore $(a\Gamma b] \subseteq P$.

We now prove a necessary and sufficient condition for a po- Γ -ideal to be a completely prime po- Γ -ideal in a po- Γ -semigroup.

THEOREM 4.6 : A po- Γ -ideal P of a po- Γ -semigroup S is completely prime if and only if S\P is either a *c*-system of S or empty.

Proof: Suppose that P is a completely prime po- Γ -ideal of S and S\P $\neq \emptyset$.

Let $a, b \in S \setminus P$. Then $a \notin P, b \notin P$. Suppose if possible $c \notin (a \Gamma b)$ for every $c \in S \setminus P$.

Then $(a\Gamma b] \subseteq P \Rightarrow a\Gamma b \subseteq P$. Since P is completely prime, either $a \in P$ or $b \in P$.

It is a contradiction. Therefore $c \in (a\Gamma b]$ for some $c \in S \setminus P$. Hence there exists an element $c \in S \setminus P$ such that $c \leq aab$ for $a \in \Gamma$ and hence $S \setminus P$ is a *c*-system.

Conversely suppose that $S \mid P$ is a *c*-system of S or $S \mid P$ is empty.

If S P is empty then P = S and hence P is a completely prime.

Assume that S\P is a *c*-system of S. Let $a, b \in S$ and $a\Gamma b \subseteq P$.

Suppose if possible $a \notin P$ and $b \notin P$. Then $a \in S \setminus P$ and $b \in S \setminus P$.

Since S\P is a *c*-system, there exists $c \in S$ \P such that $c \leq a\alpha b$ for some $\alpha \in \Gamma$.

 $c \leq a\alpha b \in a\Gamma b \subseteq P$. Thus $c \in P$.

It is a contradiction. Hence either $a \in P$ or $b \in P$.

Therefore P is a completely prime po- Γ -ideal of S.

We now introduce the notion of a prime po- Γ -ideal of a po- Γ -semigroup.

DEFINITION 4.7: A po- Γ -ideal P of a po- Γ -semigroup S is said to be a *prime po-\Gamma-ideal* provided A, B are two po- Γ -ideals of S and AFB \subseteq P \Rightarrow either A \subseteq P or B \subseteq P.

THEOREM 4.8 : If P is a po-Γ-ideal of a po-Γ-semigroup S, then the following conditions are equivalent.

(1) If *A*, *B* are po- Γ - ideals of S and A Γ B \subseteq P then either A \subseteq P or B \subseteq P.

(2) If $a, b \in S$ such that $a \Gamma S^1 \Gamma b \subseteq P$, then either $a \in P$ or $b \in P$.

COROLLARY 4.9 : A po- Γ -ideal P of a po- Γ -semigroup S is a prime po- Γ - ideal iff $a, b \in S$ such that $a\Gamma S^{1}\Gamma b \subseteq P$, then either $a \in P$ or $b \in P$.

THEOREM 4.10 : Let P be a po- Γ -ideal of a po- Γ -semigroup S. Then $(a\Gamma S^{1}\Gamma b] \subseteq P$ if and only if $a\Gamma S^{1}\Gamma b \subseteq P$.

Proof: Suppose that $(a\Gamma S^{1}\Gamma b) \subseteq P$. By theorem 2.21, $a\Gamma S^{1}\Gamma b \subseteq (a\Gamma S^{1}\Gamma b) \subseteq P$ and hence $a\Gamma S^{1}\Gamma b \subseteq P$.

Conversely suppose that $a\Gamma S^{1}\Gamma b \subseteq P$. Let $x \in (a\Gamma S^{1}\Gamma b]$

 $\Rightarrow x \le a\alpha s\beta b \text{ for some } a\alpha s\beta b \in a\Gamma S^{1}\Gamma b \Rightarrow x \le a\alpha s\beta b \in a\Gamma S^{1}\Gamma b \subseteq P \Rightarrow x \in P.$

Therefore $(a\Gamma S^1 \Gamma b] \subseteq P$.

DEFINITION 4.11 : A po- Γ -ideal A is said to be *exceptional prime po-\Gamma-ideal* if A is a po-prime Γ -ideal which is not completely prime po- Γ -ideal.

THEOREM 4.12 : Every completely prime po-Γ-ideal of a po-Γ-semigroup S is a prime po-Γ-ideal of S.

Proof: Suppose that A is a completely prime po- Γ -ideal of a po- Γ -semigroup S. Let $a, b \in S$ and $a\Gamma S^{1}\Gamma b \subseteq A$. Now $a\Gamma b \subseteq a\Gamma S^{1}\Gamma b \subseteq A$.

Since A is a completely prime, either $a \in A$ or $b \in A$.

Therefore A is a prime po- Γ -ideal of S.

THEOREM 4.13 : Let S be a commutative po- Γ -semigroup. A po- Γ -ideal P of S is a prime po- Γ -ideal if and only if P is a completely prime po- Γ -ideal.

Proof : Suppose that P is a prime $po-\Gamma$ -ideal of $po-\Gamma$ -semigroup S.

Let $x, y \in S$ and $x \Gamma y \subseteq P$. Now $x \Gamma y \subseteq P$, P is a po- Γ -ideal $\Rightarrow x \Gamma y \Gamma S^1 \subseteq P$.

Since S is commutative, $x\Gamma S^{1}\Gamma y = x\Gamma y \Gamma S^{1} \subseteq P$.

By corollary 4.18, either $x \in P$ or $y \in P$. Hence P is a completely prime po- Γ -ideal.

Conversely suppose that P is a completely prime $po-\Gamma$ -ideal of S.

By theorem 4.19, P is a prime po- Γ -ideal of S.

We now introduce the notion of an m-system of a po- Γ -semigroup.

DEFINITION 4.14 : A nonempty subset A of a po- Γ -semigroup S is said to be an *po-m-system* provided for any $a, b \in A$ and $\alpha, \beta \in \Gamma$ there exists an $c \in A$ and $x \in S$ such that $c \leq a \alpha x \beta b$.

NOTE 4.15 : A nonempty subset A of a po- Γ -semigroup S is said to be an *m*-system provided for any $a, b \in A$ there exists an $c \in A$ and $x \in S$ such that $c \in (a\Gamma S \Gamma b]$.

THEOREM 4.16 : A nonempty set A is an *m*-system of Γ -semigroup (S, Γ , .) if and only if A is an *m*-system of po- Γ -semigroup (S, Γ , ., \leq).

Proof: Suppose that a nonempty set A is an *m*-system of Γ -semigroup S. Then for each $a, b \in A$ and $\alpha, \beta \in \Gamma$ there exist an $x \in S$ such that $a\alpha x\beta b \in A$. $a\alpha x\beta b \in A$. Let $c = a\alpha x\beta b$. Then $\Rightarrow c \leq a\alpha x\beta b$ for $a\alpha x\beta b \in A \Rightarrow c \in A$ and hence there exists an element $c \in A$ such that $c \leq a\alpha x\beta b$. Therefore A is an *m*-system of S.

Conversely suppose that A is a po-*m*-system of a po- Γ -semigroup S. Then for each $a, b \in A$ and $\alpha, \beta \in \Gamma$ there exists an element $c \in A$ and $x \in S$ such that $c \leq a\alpha x \beta b$.

 $c \le a\alpha x \beta b \Rightarrow c \le a\alpha x \beta b \in a\Gamma S\Gamma b \subseteq A \Rightarrow a\alpha x \beta b \in A$ and hence A is an *m*-system of Γ -semigroup S.

We now prove a necessary and sufficient condition for a po- Γ -ideal to be a prime po- Γ -ideal in a po- Γ -semigroup.

THEOREM 4.17 : A po- Γ -ideal P of a po- Γ -semigroup S is a prime po- Γ -ideal of S if and only if S\P is an *m*-system of S or empty.

Proof: Suppose that P is a prime po- Γ -ideal of a po- Γ -semigroup S and S\P $\neq \emptyset$.

Let $a, b \in S \setminus P$. Then $a \notin P, b \notin P$.

Suppose if possible $c \notin (a\Gamma S^1 \Gamma b)$ for every $c \in S \setminus P$.

Then $(a\Gamma S^{1}\Gamma b) \subseteq P \Rightarrow a\Gamma S^{1}\Gamma b \subseteq P$. Since P is prime, either $a \in P$ or $b \in P$. It is a contradiction.

Therefore there exist an element $c \in (a\Gamma S^1 \Gamma b]$ for some $c \in S \setminus P$. Hence there exists $c \in S \setminus P$ such that $c \leq a\alpha x \beta b$ for some $a\alpha x \beta b \in a\Gamma S^1 \Gamma b$. Hence $S \setminus P$ is an *m*-system.

Conversely suppose that S\P is either an *m*-system of S or S\P = \emptyset .

If $S \ge P$ is empty then P = S and hence P is a prime po- Γ -ideal.

Assume that $S \setminus P$ is an *m*-system of S.

Let $a, b \in S$ and $a\Gamma S^1 \Gamma b \subseteq P$. Suppose if possible $a \notin P, b \notin P$. Then $a, b \in S \setminus P$.

Since S\P is an *m*-system, there exists $c \in S$ \P such that $c \le a\alpha x \beta b$ for $x \in S$, $\alpha, \beta \in \Gamma$.

 $c \leq a \alpha x \beta b \in a \Gamma S^1 \Gamma b \subseteq P$. Thus $c \in P$.

It is a contradiction. Therefore either $a \in P$ or $b \in P$.

Hence P is a prime po- Γ -ideal of S.

We now introduce the notion of a globally idempotent po- Γ -semigroup.

DEFINITION 4.18 : A po- Γ -semigroup S is said to be a *globally idempotent po-\Gamma-semigroup* if (S Γ S] = S.

THEOREM 4.19 : If S is a globally idempotent po- Γ -semigroup then every maximal po- Γ -ideal of S is a prime po- Γ -ideal of S.

Proof: Let M be a maximal po- Γ -ideal of S.

Let A, B be two po- Γ -ideals of S such that $A\Gamma B \subseteq M$.

Suppose if possible $A \not\subseteq M$, $B \not\subseteq M$.

Now $A \not\subseteq M \Rightarrow M \cup A$ is a po- Γ -ideal of S and $M \subset M \cup A \subseteq S$.

Since M is maximal, $M \cup A = S$. Similarly $B \nsubseteq M \Rightarrow M \cup B = S$.

Now $S = (S\Gamma S] = ((M \cup A)\Gamma(M \cup B)] = ((M\Gamma M) \cup (M\Gamma B) \cup (A\Gamma M) \cup (A\Gamma B)] \subseteq (M] \Rightarrow S \subseteq M$. Thus M = S. It is a contradiction. Therefore either $A \subseteq M$ or $B \subseteq M$. Hence M is a prime.

THEOREM 4.20 : If S is a globally idempotent po- Γ -semigroup having maximal po- Γ -ideals then S contains semisimple elements.

Proof: Suppose that S is a globally idempotent po- Γ -semigroup having maximal po- Γ -ideals. Let M be a maximal po- Γ -ideal of S. Then by theorem 4.30, M is a prime po- Γ -ideal of S.

Now if $a \in S \setminus M$ then $\langle a \rangle \Gamma \langle a \rangle \not\subseteq M \Rightarrow (\langle a \rangle \Gamma \langle a \rangle) \not\subseteq M$

and hence S = M U (< a >] = M U (< a > Γ < a >]. Therefore $a \in (< a > \Gamma < a >]$.

Thus *a* is semisimple. Therefore S contains semisimple elements.

V. Completely Semiprime Po-**Γ**-Ideals And Semiprime Po-**Γ**-Ideals

We now introduce the notion of a completely semiprime po- Γ -ideal and a semiprime po- Γ -ideal in a po- Γ -semigroup.

DEFINITION 5.1 : A po- Γ -ideal A of a po- Γ -semigroup S is said to be a *completely semiprime po-\Gamma- ideal* provided $x\Gamma x \subseteq A$; $x \in S$ implies $x \in A$.

THEOREM 5.2 : Every completely prime po- Γ -ideal of a po- Γ -semigroup S is a completely semiprime po- Γ -ideal of S.

Proof: Let A be a po- completely prime Γ -ideal of a po- Γ -semigroup S.

Suppose that $x \in S$ and $x \Gamma x \subseteq A$. Since A is a completely prime po- Γ -ideal of S, $x \in A$.

Therefore *S* is a completely semiprime po- Γ -ideal.

THEOREM 5.3 : The nonempty intersection of any family of a completely prime po- Γ -ideals of a po- Γ -semigroup S is a completely semiprime po- Γ -ideal of S.

Proof: Let $\{A_{\alpha}\}_{\alpha \in \Delta}$ be a family of a completely prime po- Γ -ideals of S such that $\bigcap_{\alpha \in \Delta} A_{\alpha} \neq \emptyset$. By theorem 3.26, $\bigcap_{\alpha \in \Delta} A_{\alpha}$ is a po- Γ -ideal.

Let $a \in S$, $a\Gamma a \subseteq \bigcap_{\alpha \in \Delta} A_{\alpha}$. Then $a\Gamma a \subseteq A_{\alpha}$ for all $\alpha \in \Delta$.

Since A_{α} is a completely prime, $a \in A_{\alpha}$ for all $\alpha \in \Delta$ and hence $a \in \bigcap_{\alpha \in \Delta} A_{\alpha}$.

Therefore $\bigcap A_{\alpha}$ is a completely semiprime po- Γ -ideal of S.

We now introduce the notion of a d-system of a po- Γ -semigroup.

DEFINITION 5.4 : Let S be a po- Γ -semigroup. A nonempty subset A of S is said to be a *po-d-system* of S if for each $a \in A$ and $\alpha \in \Gamma$, there exists an element $c \in A$ such that $c \leq a\alpha a$.

NOTE 5.5: A nonempty subset A of a po- Γ -semigroup S is said to be a po-*d*-system of S if for each $a \in A$, there exists $c \in A$ such that $c \in (a\Gamma a]$.

We now prove a necessary and sufficient condition for a po- Γ -ideal to be a completely semiprime po- Γ -ideal in a po- Γ -semigroup.

THEOREM 5.6 : A po- Γ -ideal P of a po- Γ -semigroup S is a completely semiprime iff S\P is a po-*d*-system of S or empty.

Proof: Suppose that P is a completely semiprime po- Γ -ideal of S and S\P $\neq \emptyset$.

Let $a \in S \setminus P$. Then $a \notin P$. Suppose if possible $c \notin (a\Gamma a)$ for every $c \in S \setminus P$.

Then $(a\Gamma a] \subseteq P \Rightarrow a\Gamma a \subseteq P$. Since P is a completely semiprime, $a \in P$.

It is a contradiction. Therefore there exists an element $c \in S \setminus P$ such that $c \leq a a a$.

Therefore $S \setminus P$ is a po-*d*-system of S.

Conversely suppose that $S \$ is a *d*-system of S or $S \$ is empty.

If $S \mid P$ is empty then P = S and hence P is completely semiprime.

Assume that $S \setminus P$ is a po-*d*-system of S.

Let $a \in S$ and $a\Gamma a \subseteq P$. Suppose if possible $a \notin P$. Then $a \in S \setminus P$.

Since S\P is a *d*-system, there exists an element $c \in S$ \P such that $c \leq a \alpha a$ for $\alpha \in \Gamma$.

 $c \leq a \alpha a \in a \Gamma a \subseteq P$. Therefore $c \in P$. It is a contradiction. Hence $a \in P$.

Thus P is a completely semiprime po- Γ -ideal of S.

We now introduce the notion of a semiprime po- Γ -ideal of a po- Γ -semigroup.

DEFINITION 5.7: A po- Γ - ideal A of a po- Γ -semigroup S is said to be a *semiprime po-\Gamma-ideal* provided $x \in S$, $x\Gamma S^{1}\Gamma x \subseteq A$ implies $x \in A$.

THEOREM 5.8 : Every completely semiprime po-**Γ**-ideal of a po-**Γ**-semigroup S is a semiprime po-**Γ**-ideal of S.

Proof: Suppose that A is a completely semiprime po- Γ -ideal of a po- Γ -semigroup S.

Let $a \in S$ and $a\Gamma S^1 \Gamma a \subseteq A$.

Now $a\Gamma a \subseteq a\Gamma S^{1}\Gamma a \subseteq A$. Since A is a completely semiprime, $a \in A$.

Therefore A is a semiprime po- Γ -ideal of S.

THEOREM 5.9 : Let S be a commutative po- Γ -semigroup. A po- Γ -ideal A of S is completely semiprime iff it is semiprime.

Proof: Suppose that A is a completely semiprime po- Γ -ideal of S.

By theorem 5.8, A is a semiprime po- Γ -ideal of S.

Conversely suppose that A is a semiprime po- Γ -ideal of S. Let $x \in S$ and $x\Gamma x \subseteq A$.

Now $x\Gamma x \subseteq A \Rightarrow s\Gamma x\Gamma x \subseteq A$ for all $s \in S \Rightarrow x\Gamma s\Gamma x \subseteq A$ for all $s \in S \Rightarrow x\Gamma S\Gamma x \subseteq A$

 $\Rightarrow x \in A$, since A is a semiprime.

Therefore A is a completely semiprime po- Γ -ideal of S.

THEOREM 5.10 : Every prime po-Γ-ideal of a po-Γ-semigroup S is a semiprime po-Γ-ideal of S.

Proof: Suppose that A is a prime po- Γ -ideal of a po- Γ -semigroup S.

Let $a \in S$ and $a\Gamma S^{1}\Gamma a \subseteq A$. By corollary 4.19, $a \in A$.

Therefore A is a semiprime po- Γ -ideal of S.

THEOREM 5.11 : The nonempty intersection of any family of prime po- Γ -ideals of a po- Γ -semigroup S is a semiprime po- Γ -ideal of S.

Proof: Let $\{A_{\alpha}\}_{\alpha \in \Delta}$ be a family of a prime po- Γ -ideals of S such that $\bigcap A_{\alpha} \neq \emptyset$.

$$\chi \in \Delta$$

By theorem 3.26, $\bigcap_{\alpha \in \Lambda} A_{\alpha}$ is a po- Γ -ideal.

Let $a \in S$, $a\Gamma S\Gamma a \subseteq \bigcap_{\alpha \in \Delta} A_{\alpha}$. Then $a\Gamma S\Gamma a \subseteq A_{\alpha}$ for all $\alpha \in \Delta$.

Since A_{α} is prime, $a \in A_{\alpha}$ for all $\alpha \in \Delta$ and hence $a \in \bigcap_{\alpha \in \Delta} A_{\alpha}$. Therefore $\bigcap_{\alpha \in \Delta} A_{\alpha}$ is a semiprime po- Γ -ideal of S.

We now introduce the notion of an *n*-system of a po- Γ -semigroup.

DEFINITION 5.12: A nonempty subset A of a po- Γ -semigroup S is said to be an *po-n-system* provided for any $a \in A$ and some $a, \beta \in \Gamma$ there exists an element $c \in A, x \in S$ such that $c \leq a \alpha x \beta a$.

NOTE 5.13 : A nonempty subset A of a po- Γ -semigroup S is said to be an **po**-*n*-system provided for any $a \in A$, $x \in S$ there exists an element $c \in A$ such that $c \in (a\Gamma S\Gamma a]$.

THEOREM 5.14 : Every po-*m*-system in a po-**Γ**-semigroup S is an po-*n*-system.

Proof: Let A be po-*m*-system of a po- Γ -semigroup S. Let $a \in A$. Since A is a po-*m*-system. $a, a \in A$ and $\alpha, \beta \in \Gamma$ there exists an $c \in A$ and $x \in S$ such that $c \leq a\alpha x \beta b \Rightarrow c \leq a\alpha x \beta a$ and hence A is an po-*n*-system of S.

THEOREM 5.15 : A nonempty set A is an *n*-system of Γ -semigroup (S, Γ , .) if and only if A is an *n*-system of a po- Γ -semigroup (S, Γ , ., \leq).

We now prove a necessary and sufficient condition for a po- Γ -ideal to be a semiprime po- Γ -ideal in a po- Γ -semigroup.

THEOREM 5.16 : A po- Γ - ideal Q of a po- Γ -semigroup S is a semiprime po- Γ -ideal iff S\Q is a po-*n*-system of S or empty.

Proof: Suppose that Q is a semiprime po- Γ -ideal of a po- Γ -semigroup S and S\Q $\neq \emptyset$.

Let $a \in S \setminus Q$. Then $a \notin Q$. Suppose if possible $c \notin (a \Gamma S^1 \Gamma a)$ for every $c \in S \setminus Q$.

Then $(a\Gamma S^{1}\Gamma a] \subseteq Q \Rightarrow a\Gamma S^{1}\Gamma a \subseteq Q$. Since Q is a semiprime, $a \in Q$. It is a contradiction.

Therefore there exist an element $c \in S \setminus Q$ such that $c \leq a \alpha x \beta a$ for some $a \alpha x \beta a \in a \Gamma S^1 \Gamma a$.

Hence $S \setminus Q$ is an *n*-system.

Conversely suppose that $S \setminus Q$ is either an *n*-system of S or $S \setminus Q = \emptyset$.

If $S \setminus Q$ is empty then Q = S and hence Q is a semiprime.

Assume that S\Q is an *n*-system of S. Let $a \in S$ and $a\Gamma S^{1}\Gamma a \subseteq Q$.

Suppose if possible $a \notin Q$. Then $a \in S \setminus Q$. Since $S \setminus Q$ is a po-*n*-system.

There exists $c \in S \setminus Q$ such that $c \le a \alpha x \beta a$ for some $x \in S$, $\alpha, \beta \in \Gamma$.

 $c \leq a\alpha x \beta a \in a\Gamma S^1 \Gamma a \subseteq Q$. Thus $c \in Q$.

It is a contradiction. Therefore $a \in Q$. Hence Q is a semiprime po- Γ -ideal of S.

THEOREM 5.17 : If N is an *n*-system in a po- Γ -semigroup S and $a \in N$, then there exists an *m*-system M in S such that $a \in M$ and $M \subseteq N$.

Proof: We construct a subset M of N as follows. Define $a_1 = a$.

Since $a_1 \in \mathbb{N}$ and \mathbb{N} is an *n*-system, there exists $c_1 \in \mathbb{N}$ such that $c_1 \leq a_1 \alpha x \beta a_1$ for some $x \in \mathbb{S}$, $\alpha, \beta \in \Gamma$. Then $c_1 \in (a_1 \Gamma S \Gamma a_1]$. Thus $(a_1 \Gamma S \Gamma a_1] \cap \mathbb{N} \neq \emptyset$. Let $a_2 \in (a_1 \Gamma S \Gamma a_1] \cap \mathbb{N}$.

Since $a_2 \in \mathbb{N}$ and \mathbb{N} is an *n*-system, there exists $c_2 \in \mathbb{N}$ such that $c_2 \leq a_2 \alpha x \beta a_2$ for some $x \in \mathbb{S}$, $\alpha, \beta \in \Gamma$. Then $c_2 \in (a_2 \Gamma S \Gamma a_2]$. Thus $(a_2 \Gamma S \Gamma a_2] \cap \mathbb{N} \neq \emptyset$ and so on.

In general, if a_i has been defined with $a_i \in \mathbb{N}$, choose a_{i+1} as an element of $(a_i \Gamma S \Gamma a_i] \cap \mathbb{N}$ there exists $c_{i+1} \in \mathbb{N}$ such that $c_{i+1} \leq a_{i+1} \alpha x \beta a_{i+1}$ for some $x \in S$, $\alpha, \beta \in \Gamma$.

Then $c_{i+1} \in (a_{i+1}\Gamma S \Gamma a_{i+1}]$. Thus $(a_{i+1}\Gamma S \Gamma a_{i+1}] \cap N \neq \emptyset$.

Let M = { $a_1, a_2, \ldots, a_i, a_{i+1} \ldots$ }. Now $a \in M$ and M \subseteq N.

We now show that M is an *m*-system.

Let $a_i, a_j \in M$. If i = j then, for the element $a_{i+1} \in S$, We have $a_{i+1} \in (a_i \Gamma S \Gamma a_i] \subseteq (a_i \Gamma S \Gamma a_j]$

 $\Rightarrow a_{i+1} \leq a_i \alpha x \beta a_j, x \in \mathbf{S}, \ \alpha, \beta \in \Gamma.$

If i < j then, for the element $a_{j+1} \in S$,

We have $a_{i+1} \in (a_i \Gamma S \Gamma a_i] \subseteq ((a_{i-1} \Gamma S \Gamma a_{i-1}] S a_i] \subseteq (a_{i-1} \Gamma S \Gamma a_i] \subseteq ... \subseteq (a_i \Gamma S \Gamma a_i].$

Hence $a_{i+1} \leq a_i \alpha x \beta a_i \in S$, for $x \in S \alpha, \beta \in \Gamma$.

If j < i then, for the element $a_{i+1} \in S$.

We have $a_{i+1} \in (a_i \Gamma S \Gamma a_i] \subseteq (a_i \Gamma S \Gamma (a_{i-1} S a_{i-1})] \subseteq (a_i \Gamma S \Gamma a_{i-1}] \subseteq ... \subseteq (a_i \Gamma S \Gamma a_i].$

Therefore M is an *m*-system.

VI. CONCLUSION

It is proved that (1) every completely semiprime po- Γ -ideal of a po- Γ -semigroup is a semiprime po- Γ -ideal, (2) every po- completely prime Γ -ideal of a po- Γ -semigroup is a po-completely semiprime Γ -ideal. It is also proved that the nonempty intersection of any family of (1)a po- completely prime Γ -ideals of a po- Γ -semigroup is a po-completely semiprime Γ -ideal, (2)a po- prime Γ -ideals of a po- Γ -semigroup is a semiprime po- Γ -ideal. It is also proved that a po- Γ -ideal Q of a po- Γ -semigroup S is a semiprime iff S\Q is either an n-system or empty. Further it is proved that if N is an n-system in a po- Γ -semigroup S and a \in N, then there exists an m-

system M of S such that $a \in M$ and $M \subseteq N$. The study of ideals in semigroups, Γ -semigroups creates a platform for the ideals in po- Γ -semigroups.

VII. Acknowledgements

I thank the Management, Principal and the staff of VKR, VNB & AGK College of Engineering for giving me their valuable support in preparing this paper.

REFERENCES

- [1] Anjaneyulu. A, and Ramakotaiah. D., *On a class of semigroups*, Simon stevin, Vol.54(1980), 241-249.
- [2] Anjaneyulu. A., Structure and ideal theory of Duo semigroups, Semigroup Forum, Vol.22(1981), 257-276.
- [3] Anjaneyulu. A., Semigroup in which Prime Ideals are maximal, Semigroup Forum, Vol.22(1981), 151-158.
- [4] Clifford. A.H. and Preston. G.B., *The algebraic theory of semigroups*, Vol-I, American Math.Society, Providence(1961).
- [5] Clifford. A.H. and Preston. G.B., *The algebraic theory of semigroups*, Vol-II, American Math.Society, Providence(1967).
- [6] Chinram. R and Jirojkul. C., On bi- Γ -ideal in Γ Semigroups, Songklanakarin J. Sci. Tech no.29(2007), 231-234.
- [7] Giri. R. D. and Wazalwar. A. K., Prime ideals and prime radicals in non- commutative semigroup, Kyungpook Mathematical Journal Vol.33(1993), no.1, 37-48.
- [8] Dheena. P. and Elavarasan. B., *Right chain a po-Γ-semigroups*, Bulletin of the Institute of Mathematics Academia Sinica (New Series) Vol. 3 (2008), No. 3, pp. 407-415.
- [9] Kostaq Hila., *Filters in a po-* Γ -semigroups, Rocky Mountain Journal of Mathematics Volume 41, Number 1, 2011.
- [10] Kwon. Y. I. and Lee. S. K., Some special elements ina po- Γ-semigroups, Kyungpook Mathematical Journal., 35 (1996), 679-685.
- [11] Madhusudhana Rao. D, Anjaneyulu. A and Gangadhara Rao. A, Pseudo symmetric Γ-ideals in Γ-semigroups, International eJournal of Mathematics and Engineering 116(2011) 1074-1081.
- [12] Madhusudhana rao. D, Anjaneyulu. A & Gangadhara rao. A, Prime Γ-radicals in Γ-semigroups, International eJournal of Mathematics and Engineering 138(2011) 1250 - 1259.
- [13] Manoj Siripitukdet and Aiyared Iampan, On the ordered n-prime ideals in ordered Γ-semigroups, Commun. Korean Math. Sco. 23 (2008), No. 1, pp. 19-27.
- [14] Niovi Kehayopulu., m-systems and n-systems ina po-semigroups, Quasigroups and Related systems 11(2004), 55-58.
- [15] Petrch. M., Introduction to semigroups, Merril Publishing Company, Columbus, Ohio, (973).
- [16] Ronnason Chinram and Kittisak Tinpun., A Note on Minimal Bi-Ideals ina po- Γ-semigroups, International Mathematical Forum, 4, 2009, no. 1, 1-5.
- [17] Samit Kumar Manjumder and Sujit Kumar Sardar., *On properties of fuzzy ideals in a po-semigroups*, Armenian Journal of Mathematics, Volume 2, Number 2, 2009, 65-72.
- [18] Sen. M.K. and Saha. N.K., On Γ Semigroups-I, Bull. Calcutta Math. Soc. 78(1986), No.3, 180-186.
- [19] Sen. M.K. and Saha. N.K., On Γ Semigroups-II, Bull. Calcutta Math. Soc. 79(1987), No.6, 331-335
- [20] Sen. M.K. and Saha. N.K., On Γ Semigroups-III, Bull. Calcutta Math. Soc. 80(1988), No.1, 1-12.