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I. Introduction 

 In this paper the n-dimensional Weyl fractional operator associated with H -transform is obtained. The 

results obtained in this paper are of manifold generality, basic in nature and include the results given earlier by 

Saigo, Saxena and Ram [15], Saxena and Ram [18], Chaurasia and Srivastava [3] etc. 

 The H -function appearing here, introduced by Inayat-Hussain ([7], see also [2]) in terms of Mellin-

Barnes type contour integral, is defined as 
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which contains fractional powers of some of the functions. Here and throughout the paper Aj                 

(j = 1,…,P) and Bj (j = 1,...,Q) are complex parameters, j ≥ 0  (j = 1,…,P), j ≥ 0 (j = 1,…,Q), (not all zero 

simultaneously) and the exponents    Aj (j = 1,…,N) and Bj (j = M+1,…,Q) can take on non-integer values. The 

contour in (1) is imaginary axis Re(s) = 0. It is suitably indented in order to avoid the singularities of the 

functions and to keep these singularities on appropriate sides. Again, for Aj (j = 1,…,N) not an integer, the 

poles of the functions of the numerator in (2) are converted to branch points. However, as long as there is no 

coincidence of poles from any s),a1 and M)1,...,  (js),b
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branch cuts can be chosen so that the path of integration can be distorted in the usual manner. For the sake of 

brevity 
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Some useful generalization of both Riemann-Liouville and Erdelyi-Kober fractional integration 

operators are introduced by Saigo [11], [12] in terms of Gauss’s hypergeometric function as given below. 

 Let ,  and  are complex numbers and let x  R+(0,). Following [11], [12] the fractional integral 

(Re() > 0) and derivative (Re() < 0) of the first kind of a function f(x) on R+ are defined respectively in the 

forms 
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where 2F1 (a,b ; c ; x) is Gauss’s hypergeometric function. The fractional integral (Re() > 0) and 

derivative (Re() < 0) of the second kind are given by 
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Following Miller [10, p.82], we denote by u1 the class of functions f(x1) on R+ which are infinitely differentiable 
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 The n-dimensional operator of Weyl type fractional integration of orders Re(ai) > 0, i = 1,2,…,n is 

defined in class un by 
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where bi and ci ( i = 1,2,…,n) are real numbers. 

The n-dimensional Laplace transform L (p1, p2,…,pn) of a function F(x1,x2,…,xn)  un is defined as 
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where Re(pi) > 0, i = 1,2,…,n. 
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and H(t) denotes Heaviside’s unit step function. 

 The n-dimensional H -transform  (p1,p2,…,pn) of a function F(x1,x2,…,xn) is defined as 
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II. Main Results 
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where it is assumed that 
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The right hand side of (14) reduces 
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


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












)1;ik,1iicibia(),1;ik,i1(,
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iQ,1iMijijij

iM,1
ijij )}B(;}{,}b({,)}{,}b({



  
n21n21

dxdxdxxx(x f   

nN2nM2N22M1N21M

2nQ2nP22Q22P21Q21P
H




  

n21n21n211
pppxxxF  

 = 
n211

ppp  

As far as the n-dimensional Weyl type operators 
ncnbna

np

2c2b2a

2p

1c1b1a

1p
JJJ












  preserves the class un, it 

follows that 
n211

ppp also belongs to un.  

 

III. Special Cases 
(i) Setting n = 3 in result (13) the theorem 1 reduces to the result obtained by Chaurasia and Monika Jain [4, 

p.62]. 

(ii) By setting n = 2 and n = 1 in main result, we obtain two dimensional and one dimensional analogue 

respectively of theorem 1 given by Chaurasia and Monika Jain [4, p.66,67]. 

(iii) Taking n = 2, Aj = Bj = 1, the H -function in (1) converts to Fox’s H-function and then (13) reduces to the 

result obtained by Saigo, Saxena and Ram [15, p.67]. 

(iv) Using n = 1, Aj = Bj = 1, (13) gives the result obtained by Saigo, Saxena and Ram [15, p.70]. 
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