
IOSR Journal of Mathematics (IOSRJM)

ISSN: 2278-5728 Volume 1, Issue 5 (July-Aug 2012), PP 25-30
www.iosrjournals.org

www.iosrjournals.org 25 | Page

Transformation Method: Making Termination Easier

D. Singh
1
, A. M. Shuaibu

2
 and A. M. Ibrahim

1

1Department of Mathematics, Ahmadu Bello University, Zaria-Nigeria
2Department of Mathematics, Statistics and Computer science, Kaduna Polytechnic, Kaduna-Nigeria

Abstract: We have critically described the various techniques for proving termination of term rewriting
systems and have shown that the best of these methods is the transformation method. Transformation method

implies that the termination of a given term rewriting system can be concluded from the termination of the

transformed one, and proving termination of the transformed term rewriting system is often easier than proving

termination of the given term rewriting system directly. The transformation method may be applied to prove

termination of a term rewriting system where standard methods fail.
1991 Mathematics Subject Classification: 68Q42, 68-02

Keywords: Contractum, Non-erasing, Rewriting, Terms, Termination.

I. Introduction
 Term rewriting is a very powerful method for dealing with equations. Reasoning with equations

involves deriving consequences of given equations and finding values for variables that satisfies such equations.

In term rewriting system (TRS), rewrite rules, which are directed equations, are used to replace equals by equals,

but only in the indicated direction until a normal form (an irreducible term) is obtained.

 Two of the most important properties of term rewriting systems (TRSs) are confluence (the Church-

Rosser property), which implies that there can be at most one normal form for any term, and termination (strong

normalization), which implies the existence of at least one normal form. A confluent and terminating system is

called convergent (complete or canonical) and defines exactly one normal form for each input term.
Termination ensures that all computation paths end.

Developing techniques for proving termination of TRSs is a very challenging research area for a long

time. Overviews of existing techniques for detecting termination of TRSs can be found in [1], [2] and [3].

In this work, we critically discussed the various techniques of termination proofs and then considered the

transformation method with its merits over the standard methods. The transformation technique is easy to

implement, and has the nice property that no explosion of the search space will be caused and therefore no

heuristics is required. Furthermore, the technique is more powerful to be used in tools for proving termination of

TRSs automatically.

In the next section, we will discuss the fundamentals of TRSs such as relations, terms, occurrences,

contexts, substitutions and the concept of a rewrite rule. Whereas, in the remaining section, termination and

techniques for proving termination of TRSs are presented; in particular, we explicate the transformation method
and its superiority over the other methods of termination proofs.

II. Preliminaries
A TRS is a pair (Σ,𝑅) of an alphabet (or signature) Σ and a set of reduction rules (rewrite rules) 𝑅.

The alphabet Σ consists of:

(i) A countably infinite set 𝒱𝑎𝑟 of variables 𝑥1 ,𝑥2 ,𝑥3 , . . ., also denoted 𝑥 ,𝑦 , 𝑧 ,𝑥 , ,𝑦 , , . . .
(ii) A non-empty set of function symbols or operators symbols 𝐹 ,𝐺 , . . . , each equipped with an arity 𝑛 ≥
0, i.e., the number of arguments it is supposed to have. Thus, the function symbols may be 𝑛𝑢𝑙𝑙𝑎𝑟𝑦 (0 − ary),

𝑢𝑛𝑎𝑟𝑦, 𝑏𝑖𝑛𝑎𝑟𝑦, etc. 0 − ary function symbols are sometimes called constant symbols (or constants). A

function symbol having an arbitrary number of arguments is called varyadic.

Terms are strings of symbols from a signature. The set of variables is assumed to be disjoint from the

function symbols in the signature Σ i.e., 𝒱𝑎𝑟 ⋂ Σ = Ø.

The set of terms (or expressions) over Σ, denoted Ter (Σ), is defined recursively as follows:

(i) 𝑥 ∈ 𝑇𝑒𝑟(𝛴) for every 𝑥 ∈ 𝒱𝑎𝑟. Variable terms may be called atomic terms.

(ii) If 𝐹 is an 𝑛 −ary function symbol (𝑛 ≥ 0) and 𝑡1 , 𝑡2 , . . . , 𝑡𝑛 ∈ 𝑇𝑒𝑟 Σ , then 𝐹 𝑡1 , 𝑡2 , . . . , 𝑡𝑛 ∈
𝑇𝑒𝑟 Σ ; these are called compound terms.

It follows from above that the constant symbols of Σ belongs to 𝑇𝑒𝑟 Σ .We write 𝑐 instead of 𝑐() for the case

𝑛 = 0, for a constant symbol. In general, elements of 𝑇𝑒𝑟 Σ may be called wellformed terms.

Transformation Method: Making Termination Easier

www.iosrjournals.org 26 | Page

The terms 𝑡𝑖 are called the arguments of the term 𝐹 𝑡1 , 𝑡2 , . . . , 𝑡𝑛 , and the symbol 𝐹, the head

symbol, the outermost or topmost function symbol or root, denoted 𝐹 ≡ 𝑟𝑜𝑜𝑡 𝑡 .

For example, 𝑓 𝑎,𝑔 𝑥,𝑦 is a term with the outermost function symbol 𝑓.

Terms which do not contain any variable are called closed (or ground) terms. The set of all closed

terms is denoted 𝑇𝑒𝑟0(Σ).

Terms in which no variable occurs more than once are called linear; non-linear otherwise. A rule is

left- linear when its left- hand side is linear and a TRS is left- linear if no rule contains repeated variables in its

left-hand side. Right-linear rule and TRS are analogously defined.

The length of a term 𝑡, denoted 𝑡 , is defined as the number of occurrences of function symbols and variables
it contains. Thus, we have the following:
 𝑥 = 𝑐 = 1, for a variable 𝑥 and a constant 𝑐,
 𝐹 𝑡1 , 𝑡2 , . . . , 𝑡𝑛 = 𝑡1 + 𝑡2 + . . . + 𝑡𝑛 + 1, for a function symbol 𝐹 with arity 𝑛 ≥ 1.
Identity of terms is called syntactic identity and is denoted ≡. Terese [2], noted that terms are the objects of

TRSs.

 2.1. Contexts, Occurrences and Substitutions

The notion of contexts and occurrences are introduced in order to abstract some further properties

related to terms and operations on terms.

Informally, a context can be considered as an incomplete term which may contain empty places or holes. In other
words, a term, with some of its subterms replaced by holes is called a context.

Formally, a context is a term containing zero, one or more occurrences of a special constant symbol , denoting

an empty place (or hole). That is, a context is a term over the extended signature Σ ∪ { }.

If 𝐶 is a context containing exactly 𝑛 holes, and 𝑡1 , 𝑡2 , . . . , 𝑡𝑛 are terms, then 𝐶[𝑡1 , 𝑡2 , . . . , 𝑡𝑛] denotes the

result of replacing the holes of 𝐶 from left to right by 𝑡1 , 𝑡2 , . . . , 𝑡𝑛 . If 𝑡 ∈ 𝑇𝑒𝑟 Σ can be written as 𝑡 ≡
𝐶[𝑡2 , . . . , 𝑡𝑛] , then the context 𝐶 is also called a prefix of 𝑡. If 𝑡 ≡ 𝐷[𝐶[𝑡2 , . . . , 𝑡𝑛]] for some prefix 𝐷,

then 𝐶 is a subcontext of 𝑡, sometimes also called a slice.

In case, if there is exactly one occurrence of  in 𝐶, then it is called a one-hole context denoted 𝐶 .
If 𝑡 ∈ 𝑇𝑒𝑟 Σ can be written as 𝑡 ≡ 𝐶(𝑠), then the term 𝑠 is said to be a subterm of 𝑡 denoted 𝑠 ≤ 𝑡.Since  is

itself a context, the trivial context, we also have 𝑡 ≤ 𝑡. Also, 𝑠 is called a proper subterm of 𝑡, denoted 𝑠 < 𝑡, if
𝑠 ≤ 𝑡 and 𝑠 ≠ 𝑡. In other words, the subterms 𝑠 of 𝑡, other than 𝑡 itself, are called proper subterms of 𝑡.
Two occurrences of subterms are called disjoint if neither is a subterm of the other.

Substitution is the operation of filling in terms for variables. That is, a substitution is a partial mapping from

variables to terms (contexts) denoted {x1 ⟼ s1 , x2 ⟼ s2 , . . . , xn ⟼ sn }, indicating that the variables xi

map to the terms si , 𝑖 = 1,2,… ,𝑛.

Following the definition in [2], a substitution is also a map σ ∶ Ter(Σ) ⟶ Ter(Σ) which satisfies

 σ F t1 , . . . , tn ≡ F(σ t1 , . . . , σ(tn))

for every n − ary function symbol F n ≥ 0 .In particular, σ(F) ≡ F if F is a constant symbol. We sometimes

write tσ (or tσ) instead of σ t .
The substitution σ is determined by its restriction to the set of variables. Therefore, it can equivalently be

defined as a map σ ∶ Var ⟶ Ter(Σ).This approach is quite instructive and common (see [2], [3] and [4] for

details).

Relatedly, a substitution 𝜎 that replaces distinct variables by distinct variables (i.e., 𝜎 is injective and 𝑥𝜎 is a

variable for every 𝑥) is called a renaming. If 𝜎 𝑉𝑎𝑟 (𝑡) is a renaming, then 𝜎 is said to be a renaming for 𝑡.

The two definitions of substitution given above are essentially equivalent and is sometimes indiscriminately

denoted σ. Note that the term tσ, as a matter of fact, only depend on the values of σ for variables that actually

occur in t.
It may be recalled that contexts are regarded as terms over an extended signature; the operation of substitution is

likewise defined for contexts, by implication.

It is understood that a term 𝑡 is called an instance of a term 𝑠 iff there exists a substitution 𝜎 such that 𝜎 𝑠 =
𝑡. Note that 𝑡 𝑢 𝜎 ≡ 𝑡𝜎 [𝑢𝜎]. A term 𝑟 is a (renamed) variant of 𝑠 if they are instances of each other. If 𝑡𝜎 is

a ground term, we call 𝜎 a ground substitution for 𝑡 and 𝑡𝜎, a ground instance of 𝑡.

2.2. Rewrite Rules

A rewrite (or reduction) rule for a signature Σ is a pair (l , r) of terms of Ter (Σ), usually represented 𝑙 ⟶ 𝑟.

In fact, for convenience, a rewrite rule is often given a name using symbols 𝜌1 ,𝜌2 ,𝜌3 ,…. For example, we write

 𝜌: 𝑙 ⟶ 𝑟. The following two restrictions on rewrite rules are required to be observed:

(i) 𝑙, appearing on the left-hand side of ⟶ is not a variable; and

(ii) every variable, occurring in the right-hand side (𝑟) of ⟶ , must also occur in 𝑙.

Transformation Method: Making Termination Easier

www.iosrjournals.org 27 | Page

A rewrite rule 𝜌: 𝑙 ⟶ 𝑟 can be viewed as a scheme. An instance of 𝜌 is obtained by applying a

substitution 𝜎 . The result is an atomic reduction step 𝑙𝜎 ⟶𝜌 𝑟𝜎. The left-hand side 𝑙𝜎 is called a redex (from

reducible expression), more precisely a 𝜌-redex. The right-hand side 𝑟𝜎 is called its contractum.

The rewrite rules can be applied in the direction of the arrow only in contrast with equations which can be

applied in whatever direction they are able to reduce the terms in the given ordering.

A rewrite rule is called non-erasing if each variable that occurs in the left-hand side also occurs (at least once) in

the right-hand side. Otherwise, it is called erasing. A rewrite relation is a binary relation over a set of terms

Ter (Σ) that is closed under contexts and substitutions. A rewrite relation that is transitive and irreflexive is
called a reduction order (sometimes, a rewrite order).

2.3. Well-founded monotone algebras

A considerable amount of efforts have also gone into the study of Well-founded monotone algebras and

its applications in TRSs (see [2] and [5], in particular).

Definition

Let Σ be a signature, being a set of operation symbols each having a fixed arity. A 𝛴 −algebra (𝐴, ΣA)

is defined to consist of a non-empty set 𝐴, and for every 𝑓 ∈ Σ, a function 𝑓𝐴:𝐴𝑛 ⟶ 𝐴, where 𝑛 is the arity of

𝑓. This function 𝑓𝐴 is called the interpretation of 𝑓; we write ΣA = fA f ∈ Σ}.

A well-founded monotone 𝛴 −algebra (A, Σ
A

, <) is a Σ −algebra (A, Σ
A

) equipped with a well- founded order

< on A such that each algebra operation is strictly monotone in every argument. More precisely, for every

f ∈ Σ and all a1 , . . . , an , 𝑏1 , . . . ,𝑏𝑛 ∈ 𝐴 with some 𝑎𝑖 < 𝑏𝑖 for some i and aj = bj for all j ≠ i we have

fA (a1 , . . . , an) < fA (𝑏1 , . . . ,𝑏𝑛).

Let (A, Σ
A

, <) be a well-founded monotone Σ −algebra and 𝛼: 𝑣𝑎𝑟 ⟶ 𝐴, then the term evaluation

[.]𝛼 :𝑇𝑒𝑟(Σ) ⟶ 𝐴 is defined recursively by

 (i) [𝑥]𝛼 = 𝛼(𝑥)

(ii) α f t1 , . . . , tn = 𝑓𝐴(α t1 , . . . , α (tn)) for 𝑥 ∈ 𝑣𝑎𝑟,𝑓 ∈ Σ, 𝑡1 , . . . , 𝑡𝑛 ∈ 𝑇𝑒𝑟(Σ). This function

induces a strict partial order <𝐴 on Ter (Σ) as follows:

𝑡 <𝐴 𝑡 ′ ⟺ ∀𝛼: 𝑣𝑎𝑟 ⟶ 𝐴 α t < α (𝑡 ′)

i.e., 𝑡 <𝐴 𝑡 ′ means that for each interpretation of the variables in 𝐴, the interpreted value of 𝑡 is smaller than

that of 𝑡 ′.
In summary, a TRS is a binary relation over the set of terms of a given signature. The pairs of the

relation are used for computing by replacements until an irreducible term is eventually reached. Hence, the

absence of infinite sequences of replacements is called termination. A TRS is terminating if all rewrite

sequences are finite. Rules of a terminating system are called reduction or rewrite rules.

III. Termination
Most properties of TRSs are undecidable. Given any TRS with finite signature and finitely many

reduction rules, then it is undecidable whether confluence holds, and also whether termination holds (see [6]
and [7]). Even for TRSs with only one rule, termination is undecidable [1]. However, it is observed in [4] that

for ground TRSs (where all rules are between ground terms) confluence is decidable. Also termination is

decidable for ground TRSs. For a particular TRS it may also be undecidable whether two terms are convertible,

whether a term has a normal form, whether a term has an infinite reduction. Barendregt [8] observed that a TRS

where all these properties of terms are undecidable is the combinatory logic (CL).

The key observation is that confluence and uniqueness of normal forms are the same property in the

presence of termination, but confluence and uniqueness of infinite normal forms are not. Confluence implies

uniqueness of infinite normal forms, but the other way round. Thus, we searched for and found a new property

that resembles confluence and that is equivalent to uniqueness of infinite normal form. This property is called

skew confluence [9].

Developing techniques for proving termination of TRSs is a challenging research area already for a
long time. In recent years the emphasis is this area has shifted towards automation. It is no longer sufficient for

new techniques to prove termination of particular TRSs in theory, but also tools should be able to use these

techniques to prove termination automatically. Several tools have been developed for this goal, and there is a

yearly competition in which all of these tools are applied to an extensive set of examples (see [10], for details).

To this end, we critically explicate the various methods of proving termination of TRSs and show the efficacy of

the method of transformation over the basic techniques.

Transformation Method: Making Termination Easier

www.iosrjournals.org 28 | Page

3.1. Methods of Termination

Termination is an important property of TRSs and some standard methods have been devised to prove

termination. A standard method to prove the termination of a particular TRS consists in finding a well-founded

order > such that 𝑙 > 𝑟 for each rewrite step 𝑙 ⟶ 𝑟. Hence, by contraposition, as any infinite derivation would

correspond to an infinite descending chain in the well-founded order, termination is reached. It turns out that it
suffices to consider only those orders which are closed under contexts and substitutions. This eliminates the

need to check reduction for all possible rewrite steps, but only for rewrite rules and is often used to prove

termination taking the advantage of structure of terms [11].

Several methods for proving termination of term rewriting systems have been developed. Most of these

methods are based on reduction orderings which are well-founded, compatible with the structure of terms and

stable with respect to substitutions. All of these orderings are called simplification orderings, i.e., a term is

always greater than its proper subterms.

Examples of these methods include Knuth-Bendix order, polynomial interpretations, multiset order,

lexicographic path order, recursive decomposition order, semantic path order, transformation order, forward

closures, semantic interpretations, dummy elimination and distribution elimination [12].

Techniques for proving termination of TRSs are generally classified into three classes; semantical methods,

syntactical methods and transformation methods. We briefly discuss these three methods indicating the merits
and shortcomings, in each case in the remaining parts of this section.

Method 1. Semantical Method

Proving termination by semantical method means that a weight function has to be defined in such a

way that at every reduction step, the weight of a term strictly decreases. If the weight is a natural number or,

more generally, a value in a set equipped with a well-founded order, then this cannot go on forever and thus

termination is ensured. As a framework, this has been found very fundamental for proving termination. In fact, it

has come to serve as the basis for a hierarchy of various kinds of termination.

Consider the following two simple examples of TRSs [2].

 𝑅1
𝑓 𝑓 𝑥 ⟶ 𝑔 𝑥

𝑔(𝑔(𝑥) ⟶ 𝑓(𝑥)
 , 𝑅2

𝑓(𝑔 𝑥) ⟶ 𝑓 𝑕 𝑓(𝑥)

𝑔(𝑔 𝑥) ⟶ 𝑓(𝑔 𝑕 𝑥)

It is obvious that 𝑅1 is terminating, since at each reduction step the length of the term strictly decreases,

and 𝑅2 is also terminating since at each reduction step the number of 𝑔s strictly decreases.

Checking that indeed this kind of weight decreases at every reduction step; it suffices to check that for every
rule the weight of the left-hand side is strictly greater than the weight of the right-hand side.

To this end, we will formalize this kind of termination proof and illustrate it with more examples.

A well-founded monotone algebra (A, Σ
A

, <) is compatible with a TRS if l >A r for every rule l ⟶ r in the

TRS. This leads us to a fundamental result due to Lankford of 1975 [13].

Theorem 1

A TRS is terminating if and only if it admits a compatible well-founded monotone algebra.

A way of proving termination of a TRS using semantical method is now as follows: (i) choose a set 𝐴 equipped

with a well-founded order <, (ii) define for each operation symbol 𝑓 a corresponding 𝑓𝐴 that is strictly

monotone in all its arguments, and for which 𝜏(𝑙) > 𝜏(𝑟) for all rewrite rules 𝑙 ⟶ 𝑟 and all 𝜏:𝑣𝑎𝑟 ⟶ 𝐴. Then

according to theorem 1, the TRS is terminating.

Example

The two simple examples shown earlier can be seen as applications of theorem 1 with the choice for (𝐴, <) as

follows. The length of terms over 𝑓,𝑔 is modeled by choosing 𝑓𝐴 𝑥 = 𝑔𝐴(𝑥) = 𝑥 + 1 for all 𝑥 ∈ 𝐴. Indeed,

𝑓𝐴 and 𝑔𝐴 are both strictly monotone, and

𝑓𝐴 𝑓𝐴 𝑥 = 𝑥 + 2 > 𝑥 + 1 = 𝑔𝐴(𝑥) and 𝑔𝐴 𝑔𝐴 𝑥 = 𝑥 + 2 > 𝑥 + 1 = 𝑓𝐴(𝑥), for all 𝑥 ∈ 𝐴. Hence

𝑓 𝑓 𝑥 >𝐴 𝑔(𝑥) and 𝑔 𝑔 𝑥 >𝐴 𝑓(𝑥), proving termination of 𝑅1 by theorem 1.

The number of 𝑔s in terms over 𝑓,𝑔,𝑕 is modeled by choosing 𝑓𝐴 𝑥 = 𝑕𝐴 𝑥 = 𝑥 and 𝑔𝐴 𝑥 = 𝑥 + 1 for all

𝑥 ∈ 𝐴. Clearly 𝑓𝐴, 𝑔𝐴 and 𝑕𝐴 are all strictly monotone, and

 𝑓𝐴 𝑔𝐴 𝑥 = 𝑥 + 1 > 𝑥 = 𝑓𝐴(𝑕𝐴 𝑓𝐴 𝑥)

 and 𝑔𝐴 𝑔𝐴 𝑥 = 𝑥 + 2 > 𝑥 + 1 = 𝑓𝐴(𝑔𝐴 𝑕𝐴 𝑥)

for all 𝑥 ∈ 𝐴, proving termination of 𝑅2 by theorem 1.
This technique has some attendant difficulties in its application for how to choose suitable weight functions. For

example, only some rough heuristics are available. The simplest useful choice for (𝐴, <) is (ℕ+, <), the set of

strictly positive integers with the natural order. In many applications this is already a fruitful choice.

The main difficulty in showing termination by the semantical approach consists in finding an appropriate well-

founded order.

This approach generalizes to termination modulo equations. However, it is observed in [1] that proving

termination of rewriting modulo equations is, in practice, considerably more difficult than for plain rewrite

Transformation Method: Making Termination Easier

www.iosrjournals.org 29 | Page

systems. A TRS (Σ, R) is called terminating modulo a set 𝐸 of equations over Σ if no infinite sequence of the

following form exists:

 𝑡1 ⟶𝑅 𝑡2 =𝐸 𝑡3 ⟶𝑅 𝑡4 =𝐸 𝑡5 ⟶𝑅 𝑡6
An important example of this approach is the method of polynomial interpretations [2].

Method 2. Syntactical Method
Syntactical methods are based upon orders on terms that are defined by induction on the structure of the terms.

Given such an order, if it can be proved that it is well-founded, and if every reduction step causes a decrease

with respect to the order, then termination is guaranteed. Taking the set of terms equipped with such an order

makes this approach fit in the general framework of semantical methods. A well-known example of this type of

order is the recursive path order (RPO). To determine if a term 𝑙 is greater than a term 𝑟 in RPO, the

outermost operators of the two terms are compared first. If the operators are equal, then those (immediate)

subterms of 𝑟 that are not also subterms of 𝑙 must each be smaller (recursively in the term ordering) than some

subterm of 𝑙. If the outermost operator of 𝑙 is greater than that of 𝑟, then 𝑙 must be greater than each subterm

of 𝑟; while if the outermost operator of 𝑙 is neither equal nor greater than that of 𝑟, then some subterm of 𝑙
must be greater or equal to 𝑟.

Special examples of RPO are the multiset path order (MPO) and the lexicographic path order (LPO). Orders of

this kind are usually precedence-based; they depend upon an order (called precedence) on the function symbols.

We use a RPO to prove the termination of a TRS as follows:

 Example

Consider the following system (for disjunctive normal form):

 −− 𝑎 ⟶ 𝑎

 − 𝑎 + 𝑏 ⟶ −𝑎 × −𝑏

 − 𝑎 × 𝑏 ⟶ −𝑎 + −𝑏
 𝑎 × 𝑏 + 𝑐 ⟶ a × 𝑏 + (𝑎 × 𝑐)

 𝑏 + 𝑐 × 𝑎 ⟶ 𝑏 × 𝑎 + (𝑐 × 𝑎)

for any terms 𝑎,𝑏 and 𝑐.

If the operators are ordered by − > × > +, then we need only to show that

−− 𝑎 >𝑟𝑝𝑜 𝑎

− 𝑎 + 𝑏 >𝑟𝑝𝑜− 𝑎 × −𝑏

− 𝑎 × 𝑏 >𝑟𝑝𝑜− 𝑎 + −𝑏

 𝑎 × 𝑏 + 𝑐 >𝑟𝑝𝑜 𝑎 × 𝑏 + (𝑎 × 𝑐)

 𝑏 + 𝑐 × 𝑎 >𝑟𝑝𝑜 𝑏 × 𝑎 + (𝑐 × 𝑎),

By the following line of reasoning:

 −− 𝑎 >𝑟𝑝𝑜 𝑎 since − > +.

− 𝑎 + 𝑏 >𝑟𝑝𝑜− 𝑎 × −𝑏, since − 𝑎 + 𝑏 >𝑟𝑝𝑜− 𝑎 and − 𝑎 + 𝑏 >𝑟𝑝𝑜− 𝑏 because the outermost

operators are the same, but a + b >𝑟𝑝𝑜 𝑎 and 𝑎 + 𝑏 >𝑟𝑝𝑜 b. This is true by subterm condition. Thus, the

second inequality holds. By similar argument, the third inequality also holds.

For the fourth inequality, since × > +,

 𝑎 × 𝑏 + 𝑐 >𝑟𝑝𝑜 𝑎 × 𝑏 and 𝑎 × 𝑏 + 𝑐 >𝑟𝑝𝑜 𝑎 × 𝑐.

 By the definition of the RPO for the case when two terms have the same outermost operator, {𝑎,𝑏 + 𝑐} >
>𝑟𝑝𝑜 {𝑎, 𝑏} and {𝑎, 𝑏 + 𝑐} >>𝑟𝑝𝑜 {𝑎, 𝑐}. These two inequalities between multisets hold, since the element,

𝑏 + 𝑐 is greater than both 𝑏 and 𝑐 with which it is replaced. By analogous argument, the fifth inequality also
holds.

Hence, the system terminates for all inputs.

The disadvantage of this method is that it covers only a very restricted class of terminating systems. It

is currently understood that generalization to termination modulo equations is hardly possible (see [11], for

details).

It is decidable whether the termination of a finite TRS with a finite signature can be proved with RPO.

Another advantage of this method is that it provides an algorithm that checks whether termination can be proved

by this method or not. This algorithm is easy to implement.

Method 3. Transformation Method

In order to explicate the structure of transformation method, we first provide the following definition:

Definition 1.

Let Ψ be a transformation generated from a given TRS (Σ ,𝑅), a new TRS Ψ Σ ,𝑅 with Ψ Σ ,𝑅 =
(Ψ Σ , Ψ 𝑅). Such a Ψ is called nontermination preserving if termination of (Σ ,𝑅) follows from termination

of Ψ(Σ ,𝑅). A transformation Ψ falls in this category if termination of a TRS (Σ ,𝑅) follows from termination

of Ψ(Σ ,𝑅).

Transformation methods provide nontermination preserving transformations between rewrite systems.

In this way, developing nontermination preserving transformations on TRSs gives rise to a new class of

Transformation Method: Making Termination Easier

www.iosrjournals.org 30 | Page

transformation methods to prove termination of TRSs. Note that iteration of the aforesaid process may be

required. For example, if termination of Ψ(𝑅) cannot be proved by some basic methods, one can go on trying to

find another transformation Ψ′ for which termination of Ψ′ Ψ 𝑅 is easily proved. If this succeeds for

nontermination preserving transformations Ψ and Ψ′, then termination of 𝑅 can be concluded;otherwise it asks

for further iteration.

Definition 2.

A recursive program scheme (RPS) is a TRS in which all left-hand sides of the rules have distinct roots

symbols, and all of these left-hand sides are of the form 𝑓 𝑥1 , . . . ,𝑥𝑛 where 𝑥1 , . . . , 𝑥𝑛 are distinct

variables.

Termination of finite RPS is easy to establish. Moreover, a finite RPS is terminating if and only if it is

RPO-terminating.
Theorem 2.

Let 𝑅 be any TRS and 𝑆 be a terminating non-erasing RPS. Suppose

𝑅1 = 𝑙 ⟶ 𝑟 ∈ 𝑅 𝑆 𝑙 = 𝑆(𝑟)}, 𝑅2 = {𝑆(𝑙) ⟶ 𝑆(𝑟)| 𝑙 ⟶ 𝑟 ∈ 𝑅 ∧ 𝑆 𝑙 ≠ 𝑆 𝑟 } . If both 𝑅1 and 𝑅2 are

terminating TRSs, then 𝑅 is terminating.

Example

Let the TRS 𝑅 consist of the two rules

 𝑔 𝑓 𝑥 ⟶ 𝑓 𝑕 𝑥 , 𝑕(𝑥) ⟶ 𝑔(𝑥).

Termination of 𝑅 can neither be proved by RPO nor Knuth-Bendix order. However, by choosing 𝑆 to be the

single rule 𝑕(𝑥) ⟶ 𝑔 (𝑥), we obtain

 𝑅 1 = 𝑕(𝑥) ⟶ 𝑔 (𝑥), 𝑅 2 = {𝑔 𝑓 𝑥 ⟶ 𝑓 𝑔 𝑥 } , which are both proved to be terminating by means of

RPO with 𝑔 ≻ 𝑓 . Termination of 𝑅 follows by theorem 2.

The transformation method can be used to prove termination where basic methods such as RPO failed

by nontermination preserving transformations. This technique has the nice property that no explosion of the

search space will be caused and therefore no heuristics is required. Furthermore, the technique is easy to

implement in proving termination automatically and easily generalizes to termination modulo equations.

IV. Conclusion
Some standard methods have been developed to prove termination for many TRSs. However,

sometimes proving termination of a given TRS using these standard methods fails. In the literature many

attempts have been made to strengthen these methods, mainly by refining path orderings. In this work we briefly

discussed some standard methods of proving termination of TRSs with their defects and present another

approach where if standard techniques like recursive path ordering fail to prove termination of a given TRS 𝑅 ,

we do not try to find refinements of the order, but try to apply a non-termination preserving transformation 𝜓 on

𝑅 such that termination of 𝜓(𝑅) can be proved by means of transformation for which termination of the

original TRS can be concluded from the termination of the transformed TRS.

We are not aware of TRSs for which termination of the transformed TRS is harder to prove than the
termination of the original TRS, while the converse often occurs.

TRSs have various applications in some aspects of symbolic algebra, automated deduction, high-level

programming languages, program verification and artificial intelligence.

References
[1] N. Dershowitz, Termination of Rewriting, Journal of Symbolic Computation, 3(1 &2), 1987, 69-115.

[2] Terese, Term Rewriting Systems, in M. Bezem, J. W. Klop and R. Vrijer (Eds.), Cambridge Tracts in Theoretical Computer Science,

55 (Cambridge University Press, 2003).

 [3] J. W. Klop, Term Rewriting Systems, in S. Abramsky, D. Gabbay, and T. Maibaum,(Eds.), Handbook of Logic in Computer

Science, 1(Oxford University Press, 1992) 1-112.

[4] G. Huet and D. S. Lankford, On the uniform halting problem for term rewriting systems. Rapport loboria 283, Institut de Recherche

en Informatique et en Automatique, Le Chesnay, France, 1978.

[5] F. Baader and T. Nipkow, Term Rewriting and All That (Cambridge University Press, 1998).

[6] M. Dauchet, S. Tison, T. Heuillard, and P. Lescanne, Decidability of the confluence of ground term rewriting systems, Proceedings

of the 2nd Symposium on Logic in Computer Science, New York, USA, 1987, 353-359.

[7] M. Oyamaguchi, The Church-Rosser property for ground term rewriting systems is decidable. Theoretical Computer Science 49

(1),1987.

[8] H. P. Barendregt, The Lambda Calculus, its syntax and semantics, Studies in Logic and the Foundations of Mathematics 103, 2
nd

edition, Netherlands, 1984.

[9] S. Blom, Term graph rewriting: syntax and semantics, IPA dissertation series, no. 2001-05, 2001.

[10] C. March𝑒 and H. Zantema, The Termination Competition,. in F. Baader (Ed.), Proceedings of the 18th International Conference on

Rewriting Techniques and Applications, LNCS 4533, Springer Verlag, 2007, 303-313.

[11] N. Dershowitz, Ordering for Term Rewriting Systems, J. Theoretical Computer Science, 17(3), 1982, 279-301.

[12] A. Koprowski, Certification of Termination Proofs for Term Rewriting, Radboud University Nijmegen, Foundations Group,

intelligent Systems, ICIS, 2008.

[13] D. S. Lankford, Canonical Algebraic Simplification in Computational Logic, Memo ATP-25, Automatic Theorem Proving Project,

University of Texas, USA, 1975.

