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Abstract: This paper presents theory and algorithm for solving a Fractional Time Transportation Problem with
Impurity Constraint (FTTPI). The aim is to minimize the maximum of the total time that the various sources take
to serve various destinations with certain amount of impurity presented in the commodities. The Fractional Time
Transportation Problem with Impurity Constraint (FTTPI) is related to Lexicographic Fractional Time
Transportation Problem with Impurity Constraint, which is solved by a lexicographic primal code. An algorithm
is proposed to obtain a global optimal solution which is explained by solving a real life example.
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l. Introduction

Transportation is one of the basic constituents of infrastructure of the country. It moves manpower and
material among far-flung scattered locations of households and socio-economic activity centres. In this function,
it improves mobility of inputs and their productivity which is vital for development of the economy. Different
transportation models have been discussed by various researchers (Eboli and Mazzulla [6], Vincent and Jerram
[12], ziliaskopoulos and Waller [13], Barcelo et al. [2], etc. The Time Transportation Problem focuses attention
on minimizing the time of transportation and its objective is to find a feasible distribution (of the supplies)
which minimizes the maximum transportation time associated between a supply point and a demand point such
that the distribution between the two points is positive. The time minimizing transportation problem is
encountered in connection with transportation of perishable goods, with the delivery of emergency supplies, fire
services, ambulance services or when military units are to be send from their bases to fronts. A bi-objective
Cost-time Trade-off Three Axial Sums' Transportation Problem was shown to be equivalent to a single-
objective standard Three Axial Sums' problem by Bandopadhyaya [1]. Prakash et al. [9] considered a cost-time
trade-off bulk transportation problem with the objectives to minimize the total cost and duration of bulk
transportation without according priorities to them. Hochbaum and Woeginger [7] investigated a special case of

the bottleneck transportation problem where the number S of sources was bounded by a constant and not part

of the input and demonstrated that for any fixed number S >1, the bottleneck transportation problem with S
sources can be solved in linear-time. Poh et al. [8] described an approach to solve a real-world problem
involving the transportation of multiple types of commodities from a number of sources to a number of
destinations in discrete time periods, using a capacitated heterogeneous fleet of vehicles.

Transportation problems with fractional objective function are widely used as performance measures in
many real life situations where an individual, or a group of community is faced with the problem of maintaining
good ratios between some very important crucial parameters concerned with the transportation of commaodities
from certain sources to various destinations. In transportation problems, examples of fractional objectives (i.e.
ratio objectives that have linear numerators and denominators) include optimization of total actual transportation
cost/total standard transportation cost, total return/total investment, risk assets/capital, total tax/total public
expenditure on commodity etc. Corban [1] extended the concept of multi-dimensional transportation problem
with fractional linear objective function and derived the optimality conditions, for global optimum in terms of
simplex multipliers. Chandra and Saxena [4] dealt with a technique for cost/completion date tradeoffs in a
fractional transportation problem with penalty costs. An algorithm was also developed by reducing the fractional
transportation problem with penalty costs to a transportation problem with objective function as a sum of a
linear and linear fractional function. Tkacenko [11] proposed a generalized algorithm to solve a fractional
multicriterial bottleneck transportation model. Basu and Acharya [3] studied bi-criterion quadratic fractional
generalized solid transportation problem and developed an algorithm to obtain the time-cost trade-off pairs.

The transportation problems with restrictions in the commodity are very important from the practical
point of view. In many real life situations, the commodity does vary in some characteristics according to its
sources. The final commodity mixtures reaching the destinations may then be required to have known
specifications.
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This paper presents Fractional Time Transportation Problem with Impurity Constraint where the
commodity does vary in some characteristics according to its source and the final commodity mixture reaching
various destinations may then be required to meet known specifications. An algorithm is also developed to solve
such problems. The algorithm is supported by a real life example of Steel Transportation Problem of Steel
Authority of India Limited (SAIL) were the problem is to determine a feasible transportation schedule which
minimizes the Total Standard/Total Actual Transportation Time with Impurity Constraint.

Mathematical Model

Given a M x N Fractional Time Transportation Matrix, for transporting the goods from i" (i = 7, 2, ...,
M) source point to j" (j = 1, 2, ..., N) destination point, the problem is to find a feasible distribution (of the
supplies) which minimizes the maximum fractional transportation time associated between a supply point and a
demand point such that the distribution between the two points is positive while satisfying the extra requirement
that the amount of nitrogen impurity present in steel is less than a certain critical level. The mathematical
formulation of the Fractional Time Transportation Problem with Impurity Constraint (FTTPI) is

t2
(FTTPI) min t=max i‘ X >0 1)
W3) |t
subject to
N
X =& (i=12...M) )
j=1
M
i=1
M
i=1
X; >0 (=12..M;j=12,..N) 5)

where g is the quantity of the commaodity available at the i™ source and b; is the quantity of commodity
required at the jth destination. One unit of the commodity contains fj; units of P impurities (k =12,... P) when
it is sent from the i" source to the jth destination. Customer j cannot receive more than (; units of impurity

k and x; is the amount of the commodity transported from the i"™ source to the jth destination. t,’j‘/t,j‘ is
proportional contribution to the value of the fractional time objective function for shipping one unit of
commodity from the i supply point to the jth demand point. Here ti? and tﬁ is independent of the commodity
transported for x; > 0.

SettingM ={1...M},N ={1,...N}, J’ :{(i,j) ‘ ieM,je N'}the FTTPI can be rewritten as

inj =a;, forallieM
jeN
{tﬁ‘ }qu =bj, forall jeN’
3.3( _s| Xij > 0 liem (6)
! >ty %y <qy, forall jeN' keP’
ieM
x; 20, forall (i,j)ed

min3I=|m

(i.]

The assumptions here are if a, i e M and bj je N are given non-negative numbers, then total supply

quantity, a; is equal to the total demand quantity b;. The denominator of the objective function of (6) is positive
for all feasible solution and is always greater than or equal to the numerator. There are a total of MN+NP

variables including slacks and NP+M+N equations and a basic feasible solution consists of NP+M+N-1 basic
variables.
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Lexicographic Fractional Time Transportation Problem with Impurity Constraint
The FTTPI, where fractional time objective function is to be minimized, is formulated as a
Lexicographic Fractional Time Transportation Problem with Impurity Constraint (LFTTPI):

I Z:xijzai forallieM’ ]
jeN'
2% D x; =b; forall jeN’
lexmin | 3= ]Z)G:J,B ieM’ )
(i,j)ed i Z fijk-xij <Ok for all (i,j)ed
I x; =0 for all (i,j)eJ ]
with a; =[e.] (i,j)e&l c=12...9) (8)
and B =eq] (i,j)es&s, d=(g+1...h) 9)

here a;;, B € R", R" be the set of real numbers.

Remark: Let R denote the set of the real numbers and 9 the set of the non-negative real numbers. With

regard to lexicographic vector inequalities, the following convention will be applied: For @,b € R the strict

lexicographic |nequaI|tya>b holds if @z >z and aj >bd for c_mln{ c | c=12,...9, a, ;tbc} and

a:min{d | d=g+Lg+2...h, a5 #by }and the weak lexicographic inequality a>bholds iff a>bor
a=b.

The additional impurity constraint (4) of FTTPI and also of LFTTPI can be written as
Z fiik Xij + Xmk,j = djk (10)
i

XMk, j =0 (11)
where Xu.jare the slack variables to the impurity constraint.

FRACTIONAL DUAL AND OPTIMALITY CONDITIONS
Using the fractional dual of Swarup (1998), the Dual of Fractional Time Transportation Problem with
Impurity constraint is derived as:

Zaiuil + ijvﬁ + z Zw}kqjk

lexmax Q: ieM’ jeN' jeN'" keP' _V1 (12)
Z:aiui2 + Z:ijj2 + Z ZWfkqjk Vv,
ieM’ jeN' jeN' keP'

subject to

vV, (uil+vﬁ+2w%k fijkj—aij -V, (uf+vf+2w‘§'k fijk]—,b’ij <0 (13)

keP* keP*

M, - wh, -V | < 0 (14)

V, 2 0 (15)

and uf, u?, vj, v, wj, wj are unrestricted in sign (16)

where uf, u’, v, vi, wj, wj are vector-valued dual variables.

Now by the main duality theorem of fractional programming:
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Zaij Xij Zaiuil + ijv% + Z Z\Aﬁkqjk

(i,j)ed’ — ieM’ jeN' jeN' keP' (17)
Zﬁij Xi Z:aiui2 + Z:ijj2 + Z wakqjk

(i,j)ed’ ieM' jeN' jeN' keP'
Given Z BiXi Zaiuil+ ijvﬁ + ZZW}kqjk = z ot Xi Z:aiui2 + ijvj2 + ZZWJ?kqjk

(i,j)ed’ ieM' jeN' jeN'keP' 1 (ped ieM’ jeN' jeN'keP'

(18)
= z V, (u,l +V + Z\Aﬁk fijkj_aij —Vy{| uf +vE + wak fiij—ﬂij Xi
(i, j)ed keP' keP'
+ Zﬁ/ W —V~W2]X =0 (19)
2 jk 1 jk M+k, j
(i,))ed’
From the dual constraints each term in equation (19) is less than or equal to zero. Hence
[Vz&ij _Vl:BijJ Xj =0 (20)
and B/z 'lek _Vl'Wj?k] Xmik,j = 0 (21)
ie. for xjj >0, V.a; ~Vif; | =0 22)
for Xwkj > 0, B/z W —Vl-wjzk] =0 (23)
Therefore the optimality criteria is:
For basic variables
Ay = [\/25ij —ViBij J= 0 (24)
Amk,j :M'szk -V Mk] =0 (25)
For non-basic variables
Ay = b/Z&ij Vi J%O (26)
Amak,j = [Vl ‘ngk =V, Vﬁk] 20 (27)
keP'
Bij = Bij —[Uiz +V12 + ZWJZk'fiij (29)
keP'

Vi = lzailai + Zvjlbj + ZZMk 'ij} (30)

ieM' jeN' jeN'keP'
V, = Zﬁizai + z\7j2bj + ZZVT/JZK -0k (31)

ieM’ jeN' jeN'keP'
Lemma 4.1

If X ={Xij,XM+k,jJ (i, j)eJ'; k e P, is any feasible solution to F-component fractional time objective

*1 *2 *l *2 *1 * 2
function Jin (7) and F-component vector valued variables ui,ui, vj,vj,Wijk,Wjk be any feasible solution to

F-component fractional time objective function Q defined as
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Z:a\iui1 + ijvﬁ + Z Z“lekqjk

lexmax Q _ ieM’ jeN' jeN' keP' _V1 (32)
ZaIU|2+ZbJVf+Z ZWJquJk V2
ieM* jeN' jeN' keP'
subject to
Vz{uil +V} + ZWﬁk fijkj—aij}—vl{uiz +v§+ ZWJ?k i J ~Bitlyy = 0 (33)
keP' keP'
[\/2 Wi =V - Wh ]y,ka’j > 0 forall values of k (34)
V, >0 (35)
and uf, u?, vj, v, wj, wj are unrestricted in sign (36)

where#( = (yij;yMJrij)e RO‘R0 : set of non—negative numbers}
uf, u?, vj, v&, wj, wj are F-component vector-valued dual variables, and V; and V; are such that their
corresponding F-components are not simultaneously zero. Let p denote the set of all feasible solutions for F-

*

components fractional time objective function 3 in (7) and p denote the set of all efficient solution for F-
component fractional time objective function Q in (32). Then

" Xl Xl «1
20!” Xij Zaiui+2ij1+ZZijqjk
(D= iem jeN' jeN 'keP" (37)
Z’Bii Xij 2 2 X2
(i) D ajui + Y bjvi+ Y > wicdy
ieM’ jeN' jeN'keP’
does not hold.

* *

Proof: Since xjj 20 and Xm+k,j = 0, therefore from (7) and (10)

*1 % *1 % *1

Vv, ZZUi Xij + ZZV] Xij+Zij fiik ;(ij - ZZaiJ ;(ij

ieM'jeN’ ieM'jeN’ keP’ ieM'jeN’

*2

*2 * * 2 * *
-V, ZZUi Xij+ZZV]Xij+Zij fiik Xij —Zz,ﬁu Xij 120 (38)

ieM’jeN’ ieM’jeN’ keP’ ieM’jeN’

1 o« *2

+V, ZZij XM+k,j =Yy zzwjk XM+k, j

jeN'keP’ jeN'keP’

Forno X e p
Replacing the values
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*1 % - *1

V, ZZui Xu—i—ZZVJ‘ Xij+Zij qjk

ieM’jeN’ ieM’jeN’ keP’

*2 % *2 % * 2

-V ZZui Xij+ZZVinj+Zij d ik >0 (39)

ieM’jeN’ ieM’jeN’ keP’

1 x *2 %

+V, ZZij XM+k,j =V Zzwjk XM +k, |

jeN'keP’ jeN'keP’

Forno X e p
And using (35)

* *1 *1 *1
S TatsYovie Y Tuka,

(i.]))ed’ ieM" jeN' jeN'keP’ y
<
—=s 3 ") " Forno X e p
Sh Yau Yo Y S,
(i,j)ed’ ieM' jeN' jeN'keP’

Hence the result.

Theorem 4.2

If X :[xij,xMJ,k,jJ (i,j)eJ'; k e P’ is any feasible solution to F-component fractional time objective

*

function Jin (7). The solution X is an efficient solution for F-component fractional time objective function
*1 *2 *1 *2 *1 * 2

of (7) iff 3 a feasible solutionui,ui (ieM’);vj,vj (jeN’); wi,wi (jeN’;keP’) for F-component

fractional time objective function 3 of (7) such that.

* %1 %1 1
X D mui D byvie D3 wiea

(i, j)ed _ieM’ jeN' jeN'keP'
*x %2 *2 %2
D Aixi D AU+ D bVt DD wika
(i,j)ed’ ieM' jeN' jeN'keP'

then the solution ui,ui (ieM’);vj,vj (jeN’); wi,wi (j e Nk e P’) is itself an efficient solution for F-

component fractional time objective function Q in (32).
Proof: By Assumption

* *1 *1 x1

(i, j)ed _ieM’ jeN' jeN'keP'
*x %2 *2 *2
DA% it Y byvit D wiay
(i,j)ed’ ieM' jeN' jeN'keP'

*

Applying Lemma, for any feasible solution X to F-component fractional time objective function 3 in (7),
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* *1 *1 *1

(i, j)ed _ ieM? jeN' jeN'keP'
x %2 *2 *2
DA% D mui D byvi+ > D Wiy
(i,j)ed’ ieM' jeN' jeN'keP'
D Xi
=Dy forno X e p
Zﬂij Xij
(i,j)ed’

* *

Hence X e p. Similar arguments hold for F-component fractional time objective function Q in (32).

Theorem 4.3

Let X —{Xl],XMJrkJ]( j)ed’; keP’, be a feasible solution to F-component fractional time objective

function Jin (7) if

ZAU le <O, le (S RO fOI’ (l, J)E J' (40)
(i.j<3)
D Ak Yuak,j <O, Yieij € Ry for jeN'keP’ (41)
(i.j)ey

*

has no solution Y :(yij,yMJrk,j), then Xis an efficient solution for F-component fractional time objective

function Jin (7).
Proof: Let (40) and (41) have no solution i.e., the F-component vector valued multipliers in each

*1 %2 *1 %2 *1 %2
systemui,ui (ieM’);vj,vi (jeN’); wi,wi (j e N’k e P'); are feasible for F-component time objective

function Q in (32). Since from the duality theorem

ZA.J X; =0

(i.j)e

ZAmk i Xm4k,j =0 holds forno X € p

(i.j)ey

«2 %2 2

= z v, U|+V]+ZW]k fi |~ {u.+v,+2wjk fie =Bt %

(i, j)ed keP' keP'

wl 2

+ Z {V2~ij—Vl~ij:| XM+k,j <0 holds for no Xep
(i,j)ed’

«l 1 xl w1
= z ﬂijxi{(z {Ui+Vj+Zij fiik]XiJJrZZij xM+k’j}—

(i.))ed" =k keP’ jeN'keP’
*2 %2 * 2 *2
(i,j)ed’ (i,j)ed’ keP’ jeN'keP’

www.iosrjournals.org 47 | Page



Fractional Time Transportation Problem With Impurity Constraint

holds forno X € p

*1 *1 *1

e holds for no X € p
_Zﬁij Xijj Zaiui +ijvj+ZZijqu
(i,i)ed’ ieM’ jeN' jeN'keP'
V, _V
=-Lt< 1 holds for no X € p
V2
VZ

* *

Where last inequality follows from the fact thatV,, V, >0. Hence X € p.

Altering a Feasible Basic Solution

If a basic feasible solution is to be updated by introducing a non-basic variable and removing the basic
one, then alterations can only be made to the basic variables. To determine the, incoming variable select the
minimum
Ai*j* = mln{Au| A'J < 0}

or (42)

Amike,jo :min{AM+k,j| Amsk, j <0}
By applying (42), the variables X;;, or Xy, becomes a basic variable of the new basic feasible solution, and
an unknown quantity ¢ is to be added to this variable while §.0ps or @.0y,,, s is added to all the basic

variables Xgg Or Xy;,y s . Then if the new solution satisfies the original constraints, the &'s must satisfy the
equations:

M
D 8rs =0 (5=12,...N) (43)
R=1
N
D Grs =0 (R=12,...M) (44)
S=1
P
>t Srs + Suys =0 (s=12..N; R=12...M) (45)
Y=1

Here ogs =0, if Xggis not in the basis anddy,,y s =0 ifxy,y s is not in the basis. There are NP+M+N-1
independent equations in the set (43), (44) and (45) and NP+M+N unknown §'s . It is therefore possible to solve
this set of equations for the (M+N+NP-1) &'s associated with basic variables in terms of & or Sy.y,j,
Furthermore, the values of the variables in the wupdated basic feasible solution are given
by Xgs + Srs#: Xmay s +Omay s . By choosing a suitable value of ¢ from

= min {— Xes ——XM”'S} (46)

_l
ps<0 Ors  Omsv.s
Oma+y,s<0

one of the variables is reduced to zero while the others remain positive and a new updated basic feasible solution
is obtained.

The lexicographic sequence is as follows

€165 > €565 > €6 > €365 > €85 > €187 > €485 > €365 > €587 > €63 > €,85 > 8387 > .65 > €,€; > 3685 > €46
&, €, € € € € € € € € € € € € € €

and 71>72>7l>73>72>71>74>73>72>71>74>73>72>74>73>74
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The FTTPI Algorithm
The steps for solving FTTPI Algorithm, to enumerate optimal solution are as follows:

Stepl: Determine the lower bound ton t and t on t° to reduce the dimension of the vectors «jj and Bjj in
eq. (7).

Step 2: Determine an initial feasible basic solution X Oto LFTTPI by using method [13].

Step 3: From the resulting bottleneck timet? and t° of the initial feasible basic solution XO, determine an
upper bound t and t; .

Step 4: Partition the set &%= M xN and &°= M xNinto subset &5 and &£ respectively
(c=L...g;d=g+L...h). Each of the subset of &2 consists of all (i, j)e&® for which time of
transportation T = (ti?) has the same numerical value. The subset fla contains all (i, J) IS ga Withti? being the
highest value, subset & contains all (i, j) e &% with ti? being the next lower highest value, and so on. Finally
subset &' contains all (i, j) € &2 with t; being the lowest value. Now to each value of
xij with (i, j) € £ (c=12....9), a (gx1) unit vector e, is assigned for (i, j)e & (c=12,...g). Same
method is applied to determine the p;; for & for (i, j)e &S (d =g+1g +2,...h) and determine the vectors
ajjand Bjj such that

Qjj =e.] and By =led]
to obtain Fractional Time Matrix T.
Step 5: Designate the set of pairs of indices (i, j) of the basic variable by I. Compute recursively the vector-

valued multipliers u.l,u.z,vl-,V-z,Wl- ,W2 defined such that
[ B jkr Tk

keP'
keP'
(for those 1, J for which x;j is in the basis)
wj =0 (49)
Wi, =0 (50)

(for those J, K for which Xy, ,, ; is in the basis)

Step 6: Let U™ :(ﬁil,ﬁ}z,i eM; VU7, jeN Wy, Wy jeNke P')be the solution of (47), (48), (49) and

(50). Evaluate the relative criterion vectors
Ay = b/Z&ij —V15; J%O (51)

Amak,j = M 'szk =V, W:;k] >0 (52)

keP'

Eij = B —[Uiz +V12 + ijzk'fiij (54)

keP’

V, = [ZJﬁai SN HIED IR -qjk} (55)

ieM' jeN' jeN'keP'
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Vo =| D 0%+ D 0+ Y > W -y (56)

ieM" jeN' jeNkeP'

forall (i, j)eJ’/I

Step 7: If all Zij andZ,\,Hk,j are lexicographically greater than or equal to the zero vector for all (i, j)e J '/I ,
the current feasible basic solution is optimal to LFTTPI and go to Step 10. Otherwise go to step 8.

Step 8: Select
Zi*j* = miniZij| Zij 50}

or (57)
ZM+k*j* = min{&M+k,j| g|v|+k,j fo}
forall (i, j)eJ’/I
By applying the selection rule (57) determine the variable X j, Or Xy, j, which is to enter. The variable X;;
or Xy, ;. then becomes a basic variable of the new feasible basic solution.
Step 9:  Change the current feasible basic solution to the new feasible basic solution using equations

M
D Ors =0 (58)
R-1
N
D rs = (59)
5=1
P
Z ik Ors +Omsy s =0 (60)
. X XM +Y S
¢= “min _ﬁ; _ Tt (61)
Srs<0 Ors  Omivs
Sm+y,s<0
go to Step5.

Step 10:1f X = ( |j’XM+k,j) is optimal transportation schedule for LFTTPI denoted by equation (6),

Zau ij

IjeJ

c . : i . : ~
then3 = Zﬂ d: is the index of the first positive component of the optimal flow vector 3. Also
i

't‘_'_a
t :f'f—swith (I efc /f is the optimal bottleneck fractional transportation time. The optimal

ij

. v _ (3 35 _ . H a S

transportation schedule X _(xij); = Z Xij (summing over aII(I, J)e §5 /fa) represents the total

(i.)ed’
distribution that requires the bottleneck time. The solution X = (XIJ , X,\,I+|< J) is optimal for LFTTPI and,
hence the optimal solution for FTTPI.

Steel Transportation Problem of Steel Authority of India Limited (SAIL)

The Algorithm, for determining the optimal solution to the problem, can be illustrated by considering
the following example of SAIL. SAIL has different types of blast furnaces in each of the six work-centers (j),
situated in Bhilai, Durgapur, Rourkela, Bumpur, Salem and Bhadravati in India. The work centre (j) is receiving
a fixed quantity of steel (i) which has six different grades. The basic goal is to determine a feasible
transportation schedule which minimizes the total standard/total actual arrival transportation time of steel, while
satisfying the extra requirement that the amount of nitrogen impurity present in steel is less than a certain critical
level.
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In Table 1, the total standard transportation time to total actual transportation time (in hours) required for
transporting the steel from i source to j" destination are displayed. Availabilities a; (in tonnage) and the
nitrogen contents p; are listed in last column while requirements b; (in tonnage) and maximum nitrogen contents
L; are shown in the last row. Let x;; be the Tonnage sent from i to j then it is required to

t2
min t =max i‘ X >0 (62)
W3) |t
subject to
6
inj = a (i 21,2,“',6) (63)
j=L
6 -
2% =b; (j=12,---6) (64)
i=1
6
2. Pix; <Ljb, (65)
i=1
Xij 20 (i=12-6;,j=12,---,6) (66)
Work Centers j Tons | Nitrogen
avail | Contents
1 2 3 4 5 6 a Pi
1 | [5587] |[5507]|[558]|[5.17]]|[5.83] ‘5.58} 6 04
1442 | | |4.33 ]| 442 )] ]433]|[4.83]| 442

2 (5757 | [5.337| [5.587]|[5.007| [5.67 ] _5.58} 11 0.8
(442 | | | 433 442|442 ||| 442|433

3 (5257 | [5.587]| [5.587]|[5587|[5.33]| [567]| 8 0.6
1433 | | 442 || | 433 ]| ]4.33]||4.42 || [4.00 |
Steel i — — — —— —— —— —— =
4 5.67 5.00 5.17 5.58 5.67 5.58 5 0.4
1442 | | | 483 | 433]|L475] || 442 ]| | 4.42]
5 (5587 | [5.67 ]| [5587]|[533]|[550]|[5587] 1 0.6
1450 | | | 4.67 ]| |442]||4.25]||4.33]||4.75]
6 (5587 | [6.007] [5.17 ] _5.58} (5427|5587 3 0.4
1442 | | |475]| | 458 ]| [4.08]||4.33 ]| |4.42 ]
Tons Reqd (bj) 7 10 9 4 1 3
Max Nitrogen 0.7 0.7 0.7 0.7 0.7 0.7
(Lj)

Table 1 Data for FTTPI of Steel Shipping Problem

A lower bound for FTTPI is obtained by using method of [13]
t'=4.33

Similarly t?=558

The initial feasible basic solution X © to FTTPI is
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1 15 7 11

With the resulting bottleneck transportation time, the upper bounds are

t2=4.42
and  tl=567

Hence g=4and h=4s0¢ % and & ° has four subsets:

g ={i,j)e&| ¢ >567) g ={i,j)e&| o =567}
g ={i,j)e & 12 =5.58] g ={i,j)e & 12 <5.58]
and

g={i.j)e&| t >442 g ={ij)e&| t; =442}
g ={ij)e&| t; =433 & ={i,j)e &’ t; <4.33]

5

= X33 =7 X3g =7 Xa1 =9,
2 2

The Fractional Time Matrix T of the following related Lexicographic Minimum Fractional Time Transportation

Problem with Impurity Constraint (LFTTPI):
ZXU = ai’ (i :1,2,...6)
6 6

DD %Xy |

i=1 j=1 inj :bj’ (J :1’2""6)

lexmin | 3 = % & | 2
228X | &
g D pix; <Ljb;
i=1
X: >0

can be written as

€s | e, €q e, e €¢
e, e, e, e, e, J e,
_e6_ _e7 _eG_ _e6_ _e6 e7_
e ] [e] [ea] [ea e_q e
e e e e e e
T — 7 _| | 6 _| L 7 _| - 7 _| L 6 L —8 _|
e ] [ea] [ea] [ea e_z} e
e6_ _e5_ _87_ _e5_ _66 _eG_

=] (2] (2] (2] (2] [2)

Using initial feasible basic solution X °, the vector-valued multipliers G} ,{

wi Wi (i=12...6; j=12....6;k =1) are calculated as explained in Step 5:
for cell x4

www.iosrjournals.org
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Vi V7 and

(67)
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oy =Ug VI + 4w
and Biy = U2 +V2 +4wd
giving Vi =eg and Vi =eg
Similarly other vector-valued multipliers are calculated. Then relative criterion vector Zij is computed from
equations (51) amﬁj~ (52):

Az = Nons —Vifis

where Qg = 3 — (Jll +V3 + 4w§1)
=€, —&
Similarly ,513 =—€; +63
15 27
Also V) = ?ez + ?es +13e,
35 11

V, =11e; + —e; +—e
2 6 2 7 2 8

Table 2 shows the transportation tableau with the initial feasible basic solution X ° . The amount Xijand Xy j
~1
are shown in the upper right corner of the cell. The marginal column contains the vector- valued multlpllers~—'2

I
51 ~1

Vi Wi , - ~
and the marginal two rows contain —- and—3- . For all (i, j)< J'/1 the left corner containsAjj and A, ; if
Vi W ‘
j Jk
Zij and AMH('j are lexicographically smaller than or equal to zero vectors. Lj andbj are displayed in the top

rows of the table, whilep;and a;in the first and second columns respectively. The flow
vector 3()?0)=(0, 5/2, 0,2 0, 0, 1, 11/2, 5, 0, 12, 6, 0, 0, 0, 0)" indicates that bottleneck time = 1.334
and bottleneck flow = 5/2. As X °is not optimal, therefore applying the solution rule (57) of the Step 8, the
variable X,, becomes the entering basic variable and so &,, is added to this variable and g , Oy ,y s is added

to all the basic variables Xzg, X,y s - The 5s satisfy the Egs.(58)- (60) and can be solved in the following
manner:

Here 615=0, 015=0, 1=0, 04=0, %5=0, %=0, 0:1.=0, 35=0, 3%4=0, %s=0, 43=0, *s=0 =0, Ae=0, 1=0,
052=0, %3=0, &%5=0, %6=0, %1=0, %,=0, %3=0, 5=0 and &;,=0.

Forj=1,

ou + o =0

461 +40m+ =0
Forj=2,

O+ Ot op=0

4615 + 80+ 40p,=0
Fori=2,

O0n + & =0
Forj=3,

03 t On =0

8%3 + 603+ 53 =0
Fori=3,

o +d =0
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Similarly equations for i and j = 4, 5, 6 are written. Solving these equations

O11= Onp, O12= -0, 014=0, 16=0, O
064=0, %5=0, 61=0, 53=0, 574=0

=5/2

(61),
(5/2, 5)

Using eq
=min

¢
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Using this value of &, the new feasible basic solution X! is:

_9/2 0O 0 1 0 1/2 |
0 15/2 7/2 0 0 O

0O 0 11/2 0 0 5/2

xt=|5/2 5/2 0 0 0O O

0 0 0 1 0 0

0 0 0 2 1 0

21 0 2 10 3 4

Bottleneck flow = 5/2, Time = 1.334

All the values of Zij and AMH(’J- are not lexicographically greater than or equal to zero, the solution is not

optimal. Preceding further the optimal solution is obtained as X*° (Table 3).
_11/2 0O 0 0O O 1/2_
0 15/2 7/2 0 0 O
0O 0 11/2 0 0 5/2

X?=|3/2 5/2 0 1 0 O

21 0 2 10 3 4 |

Bottleneck flow = 5/2, Time = 1.334

6 0 0 0 0 0
0 15/2 7/2 0 0 O
0O 0 11/2 0 0 5/2

X%=|1 5/2 0 3/2 0 O
0 0 0 1/2 0 1/2

0 0 0 2 10

21 0 2 11 3 3

Bottleneck flow = 5/2, Time = 1.334

6 0 0 0 0 0
0 15/2 7/2 0 0 O
1/2 0 11/2 0 0 2

X4=|1/2 5/2 0 2 0 O

20 0 2 12 3 3

Bottleneck flow = 2, Time = 1.334

6 0 0 0 0 0
0 15/2 7/2 0 0 O
1 0 11/2 0 0O 3/2

X%=|0 5/2 0 5/2 0 O
0O 0 0 0 0 1

0 0 0 3/2 1 1/2

19 0 2 12 3 4

Bottleneck flow = 3/2, Time = 1.334
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X6 =

6 0 0 0 0 0
0 15/2 2 0 0 3/2
1 0 7 0 0 O

0 5/2 0 5/2 0 0
0 0 0 0 0 1
0 0 0 3/2 1 1/2

19 0 5 12 3 1

Bottleneck flow = 3/2, Time = 1.313

X7 =

6 0 0 0 0 0
0 15/2 7/4 0 0 7/4
1 0 7 0 0 0
0 5/2 0 5/2 0 0
0 0 0 0 0 1

0O 0 1/4 3/2 1 1/4

19 0 6 12 3 0

Bottleneck flow = 3/2, Time = 1.313

X8 =

79/2 0 0 3/2 0 0
0 15/2 7/4 0 0 7/4
5/2 0 11/2 0 0 O
0 5/2 0 5/2 0 O
0 0 0 0 0 1

0O 0 7/4 0 1 1/4

16 0 9 12 3 0

Bottleneck flow = 29/4, Time =1.289

X° =

17/4 0 0 3/2 0 1/4
0 15/2 7/4 0 0 7/4

11/4 0 21/4 O 0 0

0 5/2 0 5/2 0 0
0 0 0 0 0 1

0 0 2 0 1 0

Bottleneck flow = 7, Time = 1.

x10 _

|31/2 0 19/2 12 3 0 |

17/4 0 0 3/2 0 1/4
0 15/2 7/4 0 0 7/4
11/4 0 17/4 0 1 O

0 5/2 0 5/2 0 O
0 0 0 0 0 1

0 0 3 0 0 o0

289

131/2 0 23/2 12 10

Bottleneck flow = 6, Time = 1.289

X1 _

7/4 0 040 1/4

0 15/27/4 00 7/4
21/4 0 17/40 10
0 5/2 5/2 0 0 O

0o o0 O o0 0 1

0 03 0 00
|21/2 0 33/2 12 1 0]

Bottleneck flow = 3.5, Time = 1.289
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0 7/4 4 0 1/4

€

15/2 7/4 0 0 7/4

0

0

5/2 5/2 00

0

0O 0 3 0 O

20 12 1 0

0

X12= 0

Time =1.289

1.75,

Bottleneck flow

1/4

o 7/4 4 0

e
(0]

7/4

17/4 0 O

5

0O 0O 0 o

O 0 3 0 0 O

10 12

10

1.75, Time = 1.289

0 1/4

19/4 1

o]

0O 0O o0 o

1
1.75, Time = 1.289

10 22 O

7

X13: 0

Bottleneck flow

x 14 _

Bottleneck flow

0 3
0O 5 3 3 0 0

e

o]

5 0 00

0O 0 0 O

0O 0 3 0 0 O

10 15 0 1

7

13, Time = 1.270

X¥®=l0

Bottleneck flow
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Table 3:“Optir‘nal Solution

1. Conclusion

The developed FTTPI Algorithm solves fractional time transportation problem with impurity constraints and
will help the Transportation System Decision Maker in determining the optimal transportation schedule with
respect to the minimization of non-linear time function. The algorithm minimizes the vector of partial flows in a
lexicographic sense on the feasible set. The optimal flow specifies the minimal bottleneck transportation time
and the minimal flow which requires the optimal bottleneck transportation time. This paper also gives an
interesting real life application of Fractional Time Dual having impurity constraints.
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