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Abstract: This paper presents theory and algorithm for solving a Fractional Time Transportation Problem with 
Impurity Constraint (FTTPI). The aim is to minimize the maximum of the total time that the various sources take 

to serve various destinations with certain amount of impurity presented in the commodities. The Fractional Time 

Transportation Problem with Impurity Constraint (FTTPI) is related to Lexicographic Fractional Time 

Transportation Problem with Impurity Constraint, which is solved by a lexicographic primal code. An algorithm 

is proposed to obtain a global optimal solution which is explained by solving a real life example.  
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I. Introduction 
Transportation is one of the basic constituents of infrastructure of the country. It moves manpower and 

material among far-flung scattered locations of households and socio-economic activity centres. In this function, 

it improves mobility of inputs and their productivity which is vital for development of the economy. Different 

transportation models have been discussed by various researchers (Eboli and Mazzulla [6], Vincent and Jerram 

[12], Ziliaskopoulos and Waller [13], Barcelo et al. [2], etc. The Time Transportation Problem focuses attention 

on minimizing the time of transportation and its objective is to find a feasible distribution (of the supplies) 

which minimizes the maximum transportation time associated between a supply point and a demand point such 

that the distribution between the two points is positive. The time minimizing transportation problem is 
encountered in connection with transportation of perishable goods, with the delivery of emergency supplies, fire 

services, ambulance services or when military units are to be send from their bases to fronts. A bi-objective 

Cost-time Trade-off Three Axial Sums' Transportation Problem was shown to be equivalent to a single-

objective standard Three Axial Sums' problem by Bandopadhyaya [1]. Prakash et al. [9] considered a cost–time 

trade-off bulk transportation problem with the objectives to minimize the total cost and duration of bulk 

transportation without according priorities to them. Hochbaum and Woeginger [7] investigated a special case of 

the bottleneck transportation problem where the number S  of sources was bounded by a constant and not part 

of the input and demonstrated that for any fixed number 1s , the bottleneck transportation problem with S  

sources can be solved in linear-time. Poh et al. [8] described an approach to solve a real-world problem 

involving the transportation of multiple types of commodities from a number of sources to a number of 

destinations in discrete time periods, using a capacitated heterogeneous fleet of vehicles. 

Transportation problems with fractional objective function are widely used as performance measures in 

many real life situations where an individual, or a group of community is faced with the problem of maintaining 

good ratios between some very important crucial parameters concerned with the transportation of commodities 

from certain sources to various destinations. In transportation problems, examples of fractional objectives (i.e. 

ratio objectives that have linear numerators and denominators) include optimization of total actual transportation 
cost/total standard transportation cost, total return/total investment, risk assets/capital, total tax/total public 

expenditure on commodity etc. Corban [1] extended the concept of multi-dimensional transportation problem 

with fractional linear objective function and derived the optimality conditions, for global optimum in terms of 

simplex multipliers. Chandra and Saxena [4] dealt with a technique for cost/completion date tradeoffs in a 

fractional transportation problem with penalty costs. An algorithm was also developed by reducing the fractional 

transportation problem with penalty costs to a transportation problem with objective function as a sum of a 

linear and linear fractional function. Tkacenko [11] proposed a generalized algorithm to solve a fractional 

multicriterial bottleneck transportation model. Basu and Acharya [3] studied bi-criterion quadratic fractional 

generalized solid transportation problem and developed an algorithm to obtain the time-cost trade-off pairs.  

The transportation problems with restrictions in the commodity are very important from the practical 

point of view. In many real life situations, the commodity does vary in some characteristics according to its 
sources. The final commodity mixtures reaching the destinations may then be required to have known 

specifications. 
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This paper presents Fractional Time Transportation Problem with Impurity Constraint where the 

commodity does vary in some characteristics according to its source and the final commodity mixture reaching 

various destinations may then be required to meet known specifications. An algorithm is also developed to solve 

such problems. The algorithm is supported by a real life example of Steel Transportation Problem of Steel 

Authority of India Limited (SAIL) were the problem is to determine a feasible transportation schedule which 

minimizes the Total Standard/Total Actual Transportation Time with Impurity Constraint. 

 

Mathematical Model 

Given a M × N Fractional Time Transportation Matrix, for transporting the goods from ith (i = 1, 2, …, 

M) source point to jth (j = 1, 2, …, N) destination point, the problem is to find a feasible distribution (of the 

supplies) which minimizes the maximum fractional transportation time associated between a supply point and a 

demand point such that the distribution between the two points is positive while satisfying the extra requirement 

that the amount of nitrogen impurity present in steel is less than a certain critical level. The mathematical 

formulation of the Fractional Time Transportation Problem with Impurity Constraint (FTTPI) is 
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where ia  is the quantity of the commodity available at the thi  source and jb  is the quantity of commodity 

required at the thj destination. One unit of the commodity contains ijkf units of P impurities  Pk ,2,1  when 

it is sent from the thi source to the thj  destination. Customer j  cannot receive more than jkq units of impurity 

k  and ijx  is the amount of the commodity transported from the 
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thj  destination. 
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proportional contribution to the value of the fractional time objective function for shipping one unit of 

commodity from the thi supply point to the thj demand point. Here 
a
ijt and 

s
ijt is independent of the commodity 

transported for 0ijx . 
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The assumptions here are if ia 'Mi and jb 'Nj  are given non-negative numbers, then total supply 

quantity, ai is equal to the total demand quantity bj. The denominator of the objective function of (6) is positive 

for all feasible solution and is always greater than or equal to the numerator. There are a total of MN+NP 

variables including slacks and NP+M+N equations and a basic feasible solution consists of NP+M+N-1 basic 
variables. 
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Lexicographic Fractional Time Transportation Problem with Impurity Constraint 

The FTTPI, where fractional time objective function is to be minimized, is formulated as a 

Lexicographic Fractional Time Transportation Problem with Impurity Constraint (LFTTPI): 
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with   cij e:    a
cji ,     gc ,2,1   (8) 
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here h
ijij  , , h  be the set of real numbers. 

 

Remark: Let   denote the set of the real numbers and 0 the set of the non-negative real numbers. With 

regard to lexicographic vector inequalities, the following convention will be applied: For
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The additional impurity constraint (4) of FTTPI and also of LFTTPI can be written as 
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where  xM+k,j are the slack variables to the impurity constraint.  

 

FRACTIONAL DUAL AND OPTIMALITY CONDITIONS 

Using the fractional dual of Swarup (1998), the Dual of Fractional Time Transportation Problem with 

Impurity constraint is derived as: 
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where ,, 21
ii uu ,, 21

jj vv  
21 , jkjk ww  are vector-valued dual variables. 

 

Now by the main duality theorem of fractional programming: 
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From the dual constraints each term in equation (19) is less than or equal to zero. Hence 
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Therefore the optimality criteria is: 
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0

,

*2*

1,

*1*

2

2**2**2*

1

1**1**1*

2




























































































































  

  

 



 



    

    

Nj Pk

jkMjk

Nj Pk

jkMjk

Mi Nj Mi Nj Pk

jkjkijjiji

Mi Nj Mi Nj Pk

jkjkijjiji

xwVxwV

qwxvxuV

qwxvxuV

      (39) 

For no 
*

X  

And using (35)  











'),(

*

'),(

*

Jji

ijij

Jji

ijij

x

x





  





 

 





' '

2*

'

2*

'

2*

' '

1*

'

1*

'

1*

Nj Pk

jkjk

Nj

jj

Mi

ii

Nj Pk

jkjk

Nj

jj

Mi

ii

qwvbua

qwvbua

    For no 
*

X  

Hence the result. 

 

Theorem 4.2 

If 













  jkMij xxX ,

***

,    PkJji  ;,  is any feasible solution to F-component fractional time objective 

function in (7). The solution
*

X is an efficient solution for F-component fractional time objective function   

of (7) iff  a feasible solution

2*1*

, ii uu  Mi  ;

2*1*

, jj vv  Nj  ; 

2*1*

, jkjk ww  PkNj  ;  for F-component 

fractional time objective function   of (7) such that. 











'),(

*

'),(

*

Jji

ijij

Jji

ijij

x

x





  





 

 





' '

2*

'

2*

'

2*

' '

1*

'

1*

'

1*

Nj Pk

jkjk

Nj

jj

Mi

ii

Nj Pk

jkjk

Nj

jj

Mi

ii

qwvbua

qwvbua

 

then the solution 

2*1*

, ii uu  Mi  ;

2*1*

, jj vv  Nj  ; 

2*1*

, jkjk ww  PkNj  ;  is itself an efficient solution  for  F-

component fractional time objective function Q in (32). 

Proof: By Assumption 











'),(

*

'),(

*

Jji

ijij

Jji

ijij

x

x





  





 

 





' '

2*

'

2*

'

2*

' '

1*

'

1*

'

1*

Nj Pk

jkjk

Nj

jj

Mi

ii

Nj Pk

jkjk

Nj

jj

Mi

ii

qwvbua

qwvbua

 

 Applying Lemma, for any feasible solution 
*

X to F-component fractional time objective function   in (7), 
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









'),(

*

'),(

*

Jji

ijij

Jji

ijij

x

x





 





 

 





' '

2*

'

2*

'

2*

' '

1*

'

1*

'

1*

Nj Pk

jkjk

Nj

jj

Mi

ii

Nj Pk

jkjk

Nj

jj

Mi

ii

qwvbua

qwvbua

 

=









'),(

*

'),(

*

Jji

ijij

Jji

ijij

x

x





  for no 
*

X  

Hence 
**

X .  Similar arguments hold for F-component fractional time objective function Q in (32). 

 

Theorem 4.3  

Let













  jkMij xxX ,

***

,   PkJji  ;, , be a feasible solution to F-component fractional time objective 

functionin (7) if 

 






Jji

ijij y

,

*

,0    JjiforRyij  ,0         (40) 

 




 

Jji

jkMjkM y

,

,,

*

0 ,  PkNjforRy jkM  ,0,       (41) 

has no solution  jkMij yyY ,,  , then 
*

X is  an  efficient solution for F-component fractional time objective 

functionin (7). 

Proof: Let (40) and (41) have no solution i.e., the F-component vector valued multipliers in each 

system

2*1*

, ii uu  Mi  ;

2*1*

, jj vv  Nj  ; 

2*1*

, jkjk ww  PkNj  ; ; are feasible for  F-component  time objective 

function Q in (32). Since from the duality theorem  

 






Jji

ijij x

,

*

0  

 




 

Jji

jkMjkM x

,

,,

*

0        holds for no X    

 

ij

Jji

ij

Pk

ijkjkjiij

Pk

ijkjkji xfwvuVfwvuV 
 











































































'),( '

2*2*2*

1

'

1*1*1*

2   

0,

'),(

2*

1

1*

2 













 



 jkM

Jji

jkjk xwVwV      holds for no X  

 

  

0

,

,

2*

,

2*2*2*

'),( ,

,

1*1*1*1*































































  

  

  



 

   





Jji Nj Pk

jkMjkij

Jji Pk

ijkjkjiijij

Jji Jji Nj Pk

jkMjkij

Pk

ijkjkjiijij

xwxfwvux

xwxfwvux




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holds for no X    











'),(

'),(

Jji

ijij

Jji

ijij

x

x





  





 

 





' '

2

jk

*2*

''

2*

' '

1

jk

*

'

1*

'

1*

 w

  w

Nj Pk

jkj

Nj

j

Mi

ii

Nj Pk

jk

Nj

jj

Mi

ii

qvbua

qvbua

   holds for no X    

     

*

2

*

1

2

1

V

V

V

V
         holds for no X    

Where last inequality follows from the fact that 0, 22 VV . Hence 
**

X . 

 

Altering a Feasible Basic Solution 
If a basic feasible solution is to be updated by introducing a non-basic variable and removing the basic 

one, then alterations can only be made to the basic variables. To determine the, incoming variable select the 

minimum 

 0min
**

 ijijji  

or           (42) 

   0min ,,, **
  jkMjkMjkM  

By applying (42), the variables 
** jix or 

** jkMx   becomes a basic variable of the new basic feasible solution, and 

an unknown quantity  is to be added to this variable while RS.  or SYM ,.   is added to all the basic 

variables RSx or SYMx , . Then if the new solution satisfies the original constraints, the s' must satisfy the 

equations: 

0

1




M

R

RS       NS ,2,1     (43) 

0

1




N

S

RS       MR ,2,1     (44) 

0.

1

, 




P

Y

SYMRSijkf      MRNS  2,1;,2,1     (45) 

 

Here 0RS , if RSx is not in the basis and 0,  SYM  if SYMx ,  is not in the basis. There are NP+M+N-1 

independent equations in the set (43), (44) and (45) and NP+M+N unknown s' . It is therefore possible to solve 

this set of equations for the (M+N+NP-1) s' associated with basic variables in terms of 
** ji or

** jYM   

Furthermore, the values of the variables in the updated basic feasible solution are given 

by  .,. ,, SYMSYMRSRS xx   . By choosing a suitable value of   from 
























SYM

SYM

RS

RS
xx

SYM

RS ,

,

0

0
;min

,







      (46) 

one of the variables is reduced to zero while the others remain positive and a new updated basic feasible solution 

is obtained. 

 
The lexicographic sequence is as follows  

84837482736481726354716253615251 eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee   
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5

4

5

3

6

4

5

2

6

3

7

4

5

1

6

2

7

3

8

4

6

1

7

2

8

3

7

1

8

2

8

1

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e
  
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The FTTPI Algorithm 
The steps for solving FTTPI Algorithm, to enumerate optimal solution are as follows: 

Step1: Determine the lower bound 
a

lt on 
at  and 

s

lt on 
st to reduce the dimension of the vectors ij and ij in 

eq. (7).  

Step 2: Determine an initial feasible basic solution 0X to LFTTPI by using method [13]. 

Step 3: From the resulting bottleneck time
at  and 

st of the initial feasible basic solution 0X , determine an 

upper bound 
a

ut and 
s

ut . 

Step 4: Partition the set NMa   and NMs  into subset 
a
d  and 

s
c respectively 

 hgdgc  ,1;,1  . Each of the subset of 
a

c consists of all   aji ,  for which time of 

transportation  a

ijtT   has the same numerical value. The subset 
a

1  contains all   aji , with
a

ijt  being the 

highest value, subset 
a

2 contains all   aji ,  with 
a

ijt  being the next lower highest value, and so on. Finally 

subset 
a

g  contains all   aji , with 
a

ijt  being the lowest value. Now to each value of 

ijx with   aji ,  gc ,2,1 , a  1g  unit vector ce is assigned for   a

cji ,  gc ,2,1 . Same 

method is applied to determine the ij for 
s

d for   s

dji ,  hggd ,2,1   and determine the vectors 

ij and ij  such that 

 cij e  and  dij e  

to obtain Fractional Time Matrix T. 

Step 5: Designate the set of pairs of indices  ji,  of the basic variable by I. Compute recursively the vector-

valued multipliers
212121 ,,,,, jkjkjjii wwvvuu  defined such that  

0.
'

111 













 

Pk

ijkjkjiij fwvu        (47) 

0.
'

222 













 

Pk

ijkjkjiij fwvu        (48) 

  (for those ji, for which ijx is in the basis) 

01 jkw          (49) 

02 jkw          (50) 

(for those kj, for which jkMx , is in the basis) 

Step 6: Let  '',21'21'21* ;~,~;,~,~;,~,~ PkNjwwNjvvMiuuU jkjkjjii  be the solution of (47), (48), (49) and 

(50). Evaluate the relative criterion vectors 

  0
~~~

~
12  ijijij VV         (51) 

  0
~

~

1
2

2
1,   jkjkjkM wVwV       (52) 

where 













 

 '

.~ 111

Pk

ijkjkjiijij fwvu        (53) 














 

 '

.
~ 222

Pk

ijkjkjiijij fwvu        (54) 














 

  ' '

1

'

1

'

1
1

~~~

Nj

jk

Pk

jkj

Nj

ji

Mi

i qwbvauV       (55) 
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












 

  ' '

2

'

2

'

2
2

~~~

Nj

jk

Pk

jkj

Nj

ji

Mi

i qwbvauV      (56) 

for all   IJji ',   

Step 7: If all ij
~

 and jkM ,

~
  are lexicographically greater than or equal to the zero vector for all   IJji ',  , 

the current feasible basic solution is optimal to LFTTPI and go to Step 10. Otherwise go to step 8. 
Step 8: Select 

    0
~~

min
~

~**
 ijijji  

  or          (57) 

 0
~~

min
~

~
,,**
  jkMjkMjkM  

for all   IJji ',   

By applying the selection rule (57) determine the variable
** jix  or

** jkMx   which is to enter. The variable 
** jix  

or
** jkMx  then becomes a basic variable of the new feasible basic solution. 

Step 9: Change the current feasible basic solution to the new feasible basic solution using equations 

0

1




M

R

RS          (58) 

0

1




N

S

RS          (59) 

0.

1

, 




P

Y

SYMRSijkf         (60) 
























SYM

SYM

RS

RS
xx

SYM

RS ,

,

0

0
;min

,







     (61) 

go to Step5. 

Step 10:If  jkMij xxX ,
~,~~

  is optimal transportation schedule for LFTTPI denoted by equation (6), 

then
 

 

d

c

x

x

Jji

ijij

Jji

ijij

~

~

~

~

~

'

'

,

,














 is the index of the first positive component of the optimal flow vector 
~

. Also 

s

ij

a

ij

t

t
t ~

~
~

 with   s

d

a

cji ~~,  is the optimal bottleneck fractional transportation time. The optimal 

transportation schedule    
 









',
~

~

~

~
~~

Jji

ij

d

c
ij xxX   (summing over all   s

d

a

cji ~~,  ) represents the total 

distribution that requires the bottleneck time.  The solution  jkMij xxX ,
~,~~

  is optimal for LFTTPI and, 

hence the optimal solution for FTTPI. 

 

Steel Transportation Problem of Steel Authority of India Limited (SAIL) 

The Algorithm, for determining the optimal solution to the problem, can be illustrated by considering 

the following example of SAIL. SAIL has different types of blast furnaces in each of the six work-centers (j), 

situated in Bhilai, Durgapur, Rourkela, Bumpur, Salem and Bhadravati in India. The work centre (j) is receiving 

a fixed quantity of steel (i) which has six different grades. The basic goal is to determine a feasible 

transportation schedule which minimizes the total standard/total actual arrival transportation time of steel, while 

satisfying the extra requirement that the amount of nitrogen impurity present in steel is less than a certain critical 

level. 
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In Table 1, the total standard transportation time to total actual transportation time (in hours) required for 

transporting the steel from i-
th source to jth destination  are displayed. Availabilities ai (in tonnage) and the 

nitrogen contents pi are listed in last column while requirements bj (in tonnage) and maximum nitrogen contents 

Lj are shown in the last row. Let xij be the Tonnage sent from i to j then it is required to 

  












 0maxmin

,
ijs

ij

a
ij

ji
x

t

t
t        (62) 

subject to 





6

1j

iij ax      6,,2,1 i     (63) 





6

1i

jij bx      6,,2,1 j     (64) 





6

1

.
i

jjiji bLxp         (65) 

0ijx     6,,2,1;6,,2,1   ji   (66) 

 

 Work Centers j Tons 

avail 

Nitrogen 

Contents 

1 2 3 4 5 6 ai pi 

Steel i 

1 










42.4

58.5
 









33.4

50.5

 










42.4

58.5

 










33.4

17.5

 










83.4

83.5

 










42.4

58.5

 

6 0.4 

2 










42.4

75.5
 









33.4

33.5

 










42.4

58.5

 










42.4

00.5

 










42.4

67.5

 










33.4

58.5

 

11 0.8 

3 










33.4

25.5
 









42.4

58.5

 










33.4

58.5

 










33.4

58.5

 










42.4

33.5

 










00.4

67.5

 

8 0.6 

4 










42.4

67.5
 









83.4

00.5

 










33.4

17.5

 










75.4

58.5

 










42.4

67.5

 










42.4

58.5

 

5 0.4 

5 










50.4

58.5
 









67.4

67.5

 










42.4

58.5

 










25.4

33.5

 










33.4

50.5

 










75.4

58.5

 

1 0.6 

6 










42.4

58.5
 









75.4

00.6

 










58.4

17.5

 










08.4

58.5

 










33.4

42.5

 










42.4

58.5

 

3 0.4 

Tons Reqd (bj) 7 10 9 4 1 3  

Max Nitrogen 

(Lj) 

0.7 0.7 0.7 0.7 0.7 0.7 

Table 1 Data for FTTPI of Steel Shipping Problem 

 

A lower bound for FTTPI is obtained by using method of [13] 
s
lt = 4.33 

Similarly  
a
lt = 5.58 

The initial feasible basic solution 
0X  to FTTPI is  
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With the resulting bottleneck transportation time, the upper bounds are  
s

ut = 4.42 

and 
a

ut = 5.67 

Hence g = 4 and h = 4 so
a and

s has four subsets: 

  67.5,:1  a

ij

aa tji      67.5,:2  a

ij

aa tji   

  58.5,:3  a

ij

aa tji      58.5,:4  a

ij

aa tji   

and  

  42.4,:5  s

ij

ss tji      42.4,:6  s

ij

ss tji   

  33.4,:7  s

ij

ss tji      33.4,:8  s

ij

ss tji   

 

The Fractional Time Matrix T of the following related Lexicographic Minimum Fractional Time Transportation 
Problem with Impurity Constraint (LFTTPI):  

lexmin  

 
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ij

i
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i
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i

j

ij

i j

ijij

i j

ijij

x

bLxp

jbx

iax

x

x








    (67) 

can be written as 
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Using initial feasible basic solution 0X , the vector-valued multipliers 
2121 ~,~,~,~
jjii vvuu  and 

21 , jkjk ww  1;6....2,1;6....2,1  kji  are calculated as explained in Step 5: 

for cell x11 
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  1
11

1
1

1
111 4wvu   

and  2
11

2
1

2
111 4wvu   

giving   3
1
1 ev    and  6

2
1 ev   

Similarly other vector-valued multipliers are calculated. Then relative criterion vector ij
~

 is computed from 

equations (51) and (52): 

 13113213

~~  VV   

where   1
31

1
3

1
11313 4~~~ wvu   

          32 ee   

Similarly   8713

~
ee   

Also  4321 13
2

27

2

15
eeeV   

8762
2

11

2

35
11 eeeV   

 

Table 2 shows the transportation tableau with the initial feasible basic solution 0X . The amount ijx and jkMx ,  

are shown in the upper right corner of the cell. The marginal column contains the vector- valued multipliers
2

1

~

~

i

i

u

u
 

and the marginal two rows contain
2

1

~

~

j

j

v

v
and

2

1

~

~

jk

jk

w

w
. For all   IJji ',  the left corner contains ij

~
 and jkM ,

~
  if 

ij
~

 and jkM ,

~
  are lexicographically smaller than or equal to zero vectors. jL and jb  are displayed in the top 

rows of the table, while ip and ia in the first and second columns respectively. The flow 

vector   TX )0,0,0,0,6,12,0,5,2/11,1,0,0,2,0,2/5,0(
~ 0  indicates that bottleneck time = 1.334 

and bottleneck flow = 5/2. As 0~
X is not optimal, therefore applying the solution rule (57) of the Step 8, the 

variable 42x   becomes the entering basic variable and so 42  is added to this variable and SYMRS ,,  is added 

to all the basic variables SYMRS xx ,,  . The s
'

  satisfy the Eqs.(58)- (60) and can be solved in the following 

manner: 

 

Here 13=0, 15=0, 21=0, 24=0, 25=0, 26=0, 31=0, 32=0, 34=0, 35=0,  43=0, 44=0 45=0, 46=0, 51=0, 

52=0, 53=0, 55=0, 56=0, 61=0, 62=0, 63=0, 66=0 and 72=0. 
 

For j = 1, 

    11   +   41             = 0 

  411   + 441 + 71 = 0  
 

For j = 2, 

    12   +   22 + 42 = 0 

  412   + 822+ 442 = 0  
 

For i = 2, 

    22   + 23   = 0 
 

For j = 3, 

    23   +   33              = 0 

  823   + 633 + 73 = 0  
 

For i = 3, 

    33   + 36   = 0 
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Table 2: Initial Solution 

 

Similarly equations for i and j = 4, 5, 6 are written. Solving these equations: 

11= 42, 12= -42, 14 = 0, 16 = 0, 22 = 0, 23= 0, 33= 0, 36= 0, 41 = -42, 54 = 0,  

64 = 0, 65 = 0, 71 = 0, 73 = 0, 74 = 0, 75 = 0, 76 = 0 
 

Using eq (61), 

 = min (5/2, 5) = 5/2 
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Using this value of 42 
 the new feasible basic solution X1 is: 
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
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43102021

012000

001000

00002/52/5

2/5002/1100

0002/72/150

2/101002/9

1X

 

Bottleneck flow = 5/2, Time = 1.334 

 

All the values of ij
~

 and jkM ,

~
  are not lexicographically greater than or equal to zero, the solution is not 

optimal. Preceding further the optimal solution is obtained as X15 (Table 3). 
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Bottleneck flow = 5/2, Time = 1.334 
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Bottleneck flow = 5/2, Time = 1.334 
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Bottleneck flow = 2, Time = 1.334 
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Bottleneck flow = 3/2, Time = 1.334 
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Bottleneck flow = 3/2, Time = 1.313 
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Bottleneck flow = 3/2, Time = 1.313 
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4/7004/72/150

002/3002/9

8X

 

Bottleneck flow = 29/4, Time = 1.289 

 









































03122/1902/31

010200

100000

002/502/50

0004/2104/11

4/7004/72/150

4/102/3004/17

9X

 

Bottleneck flow = 7, Time = 1.289 
 









































01122/2302/31

000300

100000

002/502/50

0104/1704/11

4/7004/72/150

4/102/3004/17

10X

 

Bottleneck flow = 6, Time = 1.289 

 









































01122/3302/21

000300

100000

0002/52/50

0104/1704/21

4/7004/72/150

4/104004/7

11X

 

Bottleneck flow = 3.5, Time = 1.289 
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







































01122007

000300

100000

0002/52/50

010007

4/7004/72/150

4/1044/70

12X

 

Bottleneck flow = 1.75, Time = 1.289 

 









































011210107

000300

100000

000050

010007

4/7004/1750

4/1044/70

13X

 

Bottleneck flow = 1.75, Time = 1.289 

 









































01022107

000300

100000

000050

010007

4/7034/550

4/1014/190

14X

 

Bottleneck flow = 1.75, Time = 1.289 

 









































71015107

000300

100000

000050

010007

003350

20130

15X

 

Bottleneck flow = 13, Time = 1.270 
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Table 3: Optimal Solution 

 

II. Conclusion 
The developed FTTPI Algorithm solves fractional time transportation problem with impurity constraints and 

will help the Transportation System Decision Maker in determining the optimal transportation schedule with 

respect to the minimization of non-linear time function. The algorithm minimizes the vector of partial flows in a 

lexicographic sense on the feasible set. The optimal flow specifies the minimal bottleneck transportation time 

and the minimal flow which requires the optimal bottleneck transportation time. This paper also gives an 

interesting real life application of Fractional Time Dual having impurity constraints. 
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