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I. Introduction: 
 Integral transformation is one of the well known techniques used for function transformation. Integral 

transform methods have proved to be of great importance in initial and boundary value problems of partial 

differential equation. 

Extension of some transformations to generalized functions has been done time to time and their 

properties have been studied by various mathematicians. However there is much scope in extending double and 

triple transformation to a certain class of generalized functions. Bhosale B. N. and Choudhary M. S. [1], Sharma 

V. D. and Gudadhe A. S. [2] has discussed double transforms. Motivated by this we have also defined a new 

combination of integral transforms on the spaces of generalized functions namely Mellin-Whittaker transform. 

Along with the definition its analyticity theorem is proved in [3], where as inversion theorem is investigated in 

[4]. Now in the present paper we established the abelian theorem for generalized Mellin-Whittaker transform.          

 In section 2 we have defined the spaces 𝐸𝛼 ,∞
′  and 𝐸−∞,𝑤

′   on which Mellin transform is defined. We have given 

the definition of generalized Mellin Whittaker transform in section 3. Section 4 is devoted toInitial value 

theorem for generalized Mellin-Whittaker transform. Finally in section 5 final value theorem for generalized 

Mellin-Whittaker transform is established.  

Notations and terminology as per Zemanian [5]. 

 

II. Spaces  𝑬𝜶,∞
′ and  𝑬−∞ ,𝒘

′ : 

By 𝐸𝑏 ,𝑐  (𝑏, 𝑐 are finite real numbers with 𝑏 < 𝑐) we denote the linear space of infinitely differentiable 

functions 𝜑(𝑥) defined on [0, ∞] and such that there exist two strictly positive numbers 𝜁 and 𝜁′ for which 

𝑥𝑘+1−𝑏−𝜁𝜑𝑘 𝑥 → 0 𝑎𝑠 𝑥 → 0 + and 𝑥𝑘+1−𝑐−𝜁 ′
𝜑𝑘 𝑥 → 0 as 𝑥 → ∞ for  all 𝑘 ∈ 𝑁, where 𝑁 is the set of non 

negative integers. We set 𝑥+
𝑠−1 =  

𝑥𝑠−1,   𝑥 > 0
0,        𝑥 < 0

    so that 𝑥+
𝑠−1 belongs to 𝐸𝑏 ,𝑐  if 𝑏 < 𝑅𝑒𝑠 < 𝑐. Put  

𝐾𝑏 ,𝑐 𝑥 =  𝑥
−𝑏 ,    0 < 𝑥 ≤ 1

𝑥−𝑐              𝑥 ≥ 1
 and  𝛾𝑘 ,𝑏 ,𝑐 𝜑 = 𝑠𝑢𝑝

𝑥>0
𝑥𝑏 ,𝑐𝑥

𝑘+1 𝜑𝑘(𝑥) . 

𝛾𝑘 ,𝑏 ,𝑐 𝜑 are all bounded and are seminorms, 𝛾0,𝑏 ,𝑐  is a norm. We now provide the following topology in 𝐸𝑏 ,𝑐 . 

A sequence  𝜑𝑗  → 0 in 𝐸𝑏 ,𝑐  if and only if 𝛾𝑘 ,𝑏 ,𝑐(𝜑𝑗 ) → 0 for each 𝑘 ∈ 𝑁.Thus𝐸𝑏 ,𝑐  is provided with a structure 

of a countable multi-normed space. Also, 𝐸−∞,𝑐  is the inductive limit of 𝐸𝑏 ,𝑐as 𝑏 → −∞. This means that a 

sequence  𝜑𝑗  → 0 in 𝐸−∞,𝑐  if and only if there exist a 𝑏 < 𝑐 such that 𝜑𝑗 ∈ 𝐸𝑏 ,𝑐  and  𝜑𝑗  → 0 in 𝐸𝑏 ,𝑐  (i.e. 

𝛾𝑘 ,𝑏 ,𝑐(𝜑𝑗 ) → 0as 𝑗 → ∞). 

In a similar manner, 𝐸𝛼 ,∞ is the inductive limit of  𝐸𝑏 ,𝑐  as 𝑏 → 𝛼, 𝑐 → ∞ and 𝐸−∞,𝑤  is the inductive limit of 𝐸𝑏 ,𝑐as 

𝑏 → −∞, 𝑐 → 𝑤. 𝐸𝛼 ,∞
′  is the dual of  𝐸𝛼 ,∞ and 𝐸−∞,𝑤

′  is the dual of 𝐸−∞,𝑤 . 
 

III. Generalized Mellin Whittaker Transform: 

 For 𝑓(𝑥, 𝑡) ∈ 𝑀𝑊𝑎 ,𝑏
′ , we define distributional Mellin Whittaker transform of a function 𝑓(𝑥, 𝑡) as, 

𝑀𝑊 𝑓 𝑥, 𝑡  = 𝐹 𝑠, 𝑦 =  𝑓 𝑥, 𝑡 , 𝑥𝑠−1𝑒−𝑞
2𝑦𝑡  𝑦𝑡 𝑚−1

2𝑊𝑘 ,𝑚 (𝑝𝑦𝑡) (3.1) 

RHS of (3.1) has meaning, for 𝑓 ∈ 𝑀𝑊𝑎 ,𝑏
′ and  𝑥𝑠−1𝑒−

𝑞
2𝑦𝑡  𝑦𝑡 𝑚−

1
2𝑊𝑘 ,𝑚 (𝑝𝑦𝑡) ∈ 𝑀𝑊𝑎 ,𝑏 .  

 

IV. Initial Value Theorem For Generalized Mellin-Whittaker Transform: 
In this section we have proved initial value theorem for generalized Mellin-Whittaker transform. 

Theorem: Let 𝑓(𝑥, 𝑡) be locally integrable function with distributional derivatives w.r.to 𝑥 belonging to 𝐸𝛼 ,∞
,

 for 

some real number 𝛼 and having compact support for 𝑥 in  0, 𝑎 . Moreover 
𝑓(𝑥 ,𝑡)

𝑒𝑐𝑡 is absolutely integrable for 𝑐 ∈ 𝑅. 
𝑙𝑖𝑚
𝑥→𝑎
𝑡→0

𝑓(𝑥 ,𝑡)

 𝑙𝑜𝑔 𝑎
𝑥 

𝑣
𝑡𝜂

= 𝛽    𝑅𝑒𝑣 > −1,     𝜂 > −1. Then 
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𝑙𝑖𝑚
𝑠→∞
𝑦→∞

𝑠𝑣+1𝑦𝜂 +1𝐹(𝑠,𝑦)

𝑎𝑠  𝑣+1 𝐵 𝑚 ,𝜂 ,𝑚 ,𝑘 ,𝑞 ,𝑝  
= 𝛽in the half plane  𝑅𝑒𝑠 > 𝛼, 

where𝐵 𝑚, 𝜂, 𝑚, 𝑘, 𝑞, 𝑝 =
𝑝

𝑚 +
1
2𝛤 𝑚±𝑚+𝜂+1 

 1
2
 𝑞+𝑝  

𝑚 +𝑚 +𝜂+1
𝛤(𝑚−𝑘+𝜂+3

2)
 

  × 2𝐹1

 
 
 
 
 
 
 𝑚 + 𝑚 + 𝜂 + 1, 𝑚 − 𝑘 +

1

2
;              

𝑞 − 𝑝

𝑞 + 𝑝

𝑚 − 𝑘 + 𝜂 +
3

2
;

 
 
 
 
 
 
 

 

Proof: We prove the theorem for a restricted type of functions i.e. when 𝑓(𝑥, 𝑡) is seperable. 

                             Let 𝑓 𝑥, 𝑡 = 𝑔 𝑥 𝑕(𝑡) (4.1) 

            Therefore we can assume that 𝛽 = 𝛽1 . 𝛽2, where 𝛽1, 𝛽2 are real numbers such that, property (ii) becomes   

  

𝑙𝑖𝑚
𝑥→𝑎

𝑔 𝑥 

 𝑙𝑜𝑔 𝑎
𝑥 

𝑣 = 𝛽1      𝑅𝑒 𝑣 > −1

𝑙𝑖𝑚
𝑡→0

𝑕 𝑡 

𝑡𝜂 = 𝛽2        𝜂 > −1

 
 
 

 
 

,   (4.2) 

If we put 𝑥 = 𝑎𝑒−𝑉  then   
𝑙𝑖𝑚
𝑉→0

𝑔(𝑎𝑒−𝑉 )

𝑉𝑣 = 𝛽1 (4.3) 

(4.2) and (4.3) ⇒
𝑙𝑖𝑚
𝑥→𝑎
𝑡→0

𝑔 𝑥 𝑕(𝑡)

 𝑙𝑜𝑔 𝑎
𝑥 

𝑣
𝑡𝜂

= 𝛽1 . 𝛽2 = 𝛽 

or
𝑙𝑖𝑚
𝑉→0
𝑡→0

𝑔 𝑎𝑒−𝑉 𝑕(𝑡)

 𝑉 𝑣𝑡𝜂 = 𝛽1. 𝛽2 = 𝛽 

We know that   𝑀 𝑔 𝑥    𝑠 = 𝑎𝑠 𝐿𝑔 𝑎𝑒−𝑉  (𝑠).                                         (4.4) 

Also for 𝜂 > −1 and  𝑡 > 0 

 𝑡𝜂𝑒−𝑞
2𝑦𝑡  𝑦𝑡 𝑚−1

2𝑊𝑘 ,𝑚  𝑝𝑦𝑡 𝑑𝑡 =
1

𝑦𝜂+1 𝐵(𝑚, 𝜂, 𝑚, 𝑘, 𝑞, 𝑝)
∞

0
  (4.5) 

 𝑉𝑣𝑒−𝑠⋁𝑑𝑉
∞

0
=

 (𝑣+1)  

𝑠𝑣+1 for𝑣 > −1 (4.6) 

Now consider,  

 𝑠𝑣+1𝑦𝜂+1𝐹 𝑠, 𝑦 − 𝛽 (𝑣 + 1)  𝑎𝑠𝐵(𝑚, 𝜂, 𝑚, 𝑘, 𝑞, 𝑝)  

=  𝑠𝑣+1𝑦𝜂+1   𝑥𝑠−1𝑒−𝑞
2𝑦𝑡  𝑦𝑡 𝑚−1

2𝑊𝑘 ,𝑚  𝑝𝑦𝑡 𝑔 𝑥 𝑕 𝑡 𝑑𝑥𝑑𝑡 − 𝛽1 . 𝛽2  𝑣 + 1  𝑎𝑠𝐵(𝑚, 𝜂, 𝑚, 𝑘, 𝑞, 𝑝)
𝑎

0

∞

0

  

(4.7) 

∵ 𝑓 𝑥, 𝑡 has compact support in [0, 𝑎] w.r.t. 𝑥. 
Put  𝑥 = 𝑎𝑒−𝑉    ∴ 𝑥𝑠−1𝑑𝑥 = −𝑎𝑠𝑒−𝑠𝑉𝑑𝑉 

Also 𝑓 𝑥, 𝑡 = 𝑔 𝑥 𝑕 𝑡 = 𝑔 𝑎𝑒−𝑉 𝑕(𝑡) and as 𝑥 varies from 0 to 𝑎 and 𝑉 varies from 

∞to 0. 

Therefore absorbing negative sign and using (4.5), (4.6) we have LHS of (4.7) as, 

𝐿𝐻𝑆 =  𝑠𝑣+1𝑦𝜂+1   𝑒−𝑞
2𝑦𝑡  𝑦𝑡 𝑚−1

2𝑊𝑘 ,𝑚  𝑝𝑦𝑡 𝑎𝑠𝑒−𝑠𝑉𝑔 𝑎𝑒−𝑉 𝑕 𝑡 𝑑𝑉𝑑𝑡
𝑎

0

∞

0

− 𝛽1 . 𝛽2𝑠𝑣+1  𝑉𝑣𝑒−𝑠𝑉𝑑𝑉

∞

0

𝑎𝑠𝑦𝜂+1  𝑡𝜂𝑒−𝑞
2𝑦𝑡  𝑦𝑡 𝑚−1

2𝑊𝑘 ,𝑚  𝑝𝑦𝑡 𝑑𝑡

∞

0

  

=  𝑠𝑣+1𝑦𝜂+1   𝑒−𝑞
2𝑦𝑡  𝑦𝑡 𝑚−1

2𝑊𝑘 ,𝑚  𝑝𝑦𝑡 𝑎𝑠𝑒−𝑠𝑉  𝑔 𝑎𝑒−𝑉 𝑕 𝑡 − 𝛽1. 𝛽2𝑉𝑣𝑡𝜂  𝑑𝑉𝑑𝑡
∞

0

∞

0

  

 = 𝑠𝑣+1𝑦𝜂+1   𝑒−
𝑞
2𝑦𝑡  𝑦𝑡 𝑚−

1
2𝑊𝑘 ,𝑚  𝑝𝑦𝑡 𝑎𝑠𝑒−𝑠𝑉 𝑔 𝑎𝑒−𝑉 𝑕 𝑡 − 𝛽1 . 𝛽2𝑉

𝑣𝑡𝜂  𝑑𝑉𝑑𝑡
∞

−∞

∞

0
  

≤ 𝐼1 + 𝐼2 (4.8) 

where 

𝐼1 =  𝑠𝑣+1𝑦𝜂+1   𝑒−
𝑞
2𝑦𝑡  𝑦𝑡 𝑚−

1
2𝑊𝑘 ,𝑚  𝑝𝑦𝑡 𝑎𝑠𝑒−𝑠𝑉 𝑔 𝑎𝑒−𝑉 𝑕 𝑡 − 𝛽1. 𝛽2𝑉𝑣𝑡𝜂  𝑑𝑥𝑑𝑡

𝑌

0

𝑌

0

  

𝐼2 =  𝑠𝑣+1𝑦𝜂+1   𝑒−𝑞
2𝑦𝑡  𝑦𝑡 𝑚−1

2𝑊𝑘 ,𝑚  𝑝𝑦𝑡 𝑎𝑠𝑒−𝑠𝑉  𝑔 𝑎𝑒−𝑉 𝑕 𝑡 − 𝛽1. 𝛽2𝑉𝑣𝑡𝜂  𝑑𝑥𝑑𝑡
∞

𝑌

∞

𝑌

  

As  𝑊𝑘 ,𝑚  𝑧 = 𝑂  𝑧𝑘𝑒−𝑧
2 ,      𝑧 → ∞ 

= 𝑂 (𝑧𝑚+1
2),        𝑧 → 0, 𝑚 < 0 
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= 𝑂 (𝑧𝑚−1
2),        𝑧 → 0, 𝑚 > 0 

The function  𝑠𝑣+1𝑦𝜂+1𝑒−𝑞
2𝑦𝑡  𝑦𝑡 𝑚−1

2𝑊𝑘 ,𝑚  𝑝𝑦𝑡 𝑎𝑠𝑒−𝑠𝑉  is bounded as 𝑠 → ∞ and 𝑦 → ∞. 

That is  𝑠𝑣+1𝑦𝜂+1𝑒−𝑞
2𝑦𝑡  𝑦𝑡 𝑚−1

2𝑊𝑘 ,𝑚  𝑝𝑦𝑡 𝑎𝑠𝑒−𝑠𝑉  ≤ 𝑀 as 𝑠 → ∞ and 𝑦 → ∞ for 0 < 𝑥 < 𝑌and 0 < 𝑡 < 𝑌. 

Therefore  𝐼1 ≤
𝑠𝑢𝑝

0<𝑥<𝑌
0<𝑡<𝑌

 𝑀𝑌2  𝑔 𝑎𝑒−𝑉 𝑕 𝑡 − 𝛽1. 𝛽2𝑉𝑣𝑡𝜂   

∴ for 𝜖 =
𝜖

2𝑀𝑌2 > 0  there exists 𝛿 > 0 such that 

 𝑥 < 𝛿1,  𝑡 < 𝛿2 ⇒  𝑔 𝑎𝑒−𝑉 𝑕 𝑡 − 𝛽1 . 𝛽2𝑉
𝑣𝑡𝜂  <

𝜖

2𝑀𝑌2
 

∴𝐼1 <
∈

2
as𝑡 → 0, 𝑉 → 0 using (3), for all ∈> 0.                              (4.9) 

Now for𝐼2 =  𝑠𝑣+1𝑦𝜂+1   𝑒−
𝑞
2𝑦𝑡  𝑦𝑡 𝑚−

1
2𝑊𝑘 ,𝑚  𝑝𝑦𝑡 𝑎𝑠𝑒−𝑠𝑉  𝑔 𝑎𝑒−𝑉 𝑕 𝑡 −   𝛽1 . 𝛽2𝑉

𝑣𝑡𝜂  𝑑𝑉𝑑𝑡
∞

𝑌

∞

𝑌
  

By the property (i)  
𝑓(𝑥 ,𝑡)

𝑒𝑐𝑡  is absolutely integrable hence  
𝑔 𝑎𝑒−𝑉 𝑕 𝑡 

𝑒𝑐𝑡  is absolutely integrable and 𝐼2 can be written 

as, 

𝐼2 =  𝑠𝑣+1𝑦𝜂+1   𝑒−
1
2(𝑞𝑦 −2𝑐)𝑡 𝑦𝑡 𝑚−

1
2𝑊𝑘 ,𝑚  𝑝𝑦𝑡 𝑎𝑠𝑒−𝑠𝑉𝑒−𝑐𝑡  𝑔 𝑎𝑒−𝑉 𝑕 𝑡 −   𝛽1 . 𝛽2𝑉𝑣𝑡𝜂  𝑑𝑉𝑑𝑡

∞

𝑌

∞

𝑌

  

Now the function  𝑒−𝑠𝑉𝑒−
1
2(𝑞𝑦 −2𝑐)𝑡 𝑦𝑡 𝑚−

1
2𝑊𝑘 ,𝑚  𝑝𝑦𝑡  is finite and continuous in 𝑌 < 𝑇 < ∞and  it→ 0 as 𝑡 → ∞  

if 𝑅𝑒 𝑞 + 𝑝 𝑥 > 2𝑐. 

Let the upper bound of this function be attained at the point  𝑉, 𝑡 = (𝑟1 , 𝑟2) and 

   𝑔 𝑎𝑒−𝑉 𝑕 𝑡 −   𝛽1 . 𝛽2𝑉
𝑣𝑡𝜂  𝑑𝑉𝑑𝑡 = 𝑀1

∞

𝑌

∞

𝑌
say then 

𝐼2 ≤ 𝑀1  𝑒−𝑠𝑟1𝑒−1
2(𝑞𝑦 −2𝑐)𝑟1 𝑦𝑟2 𝑚−1

2𝑊𝑘 ,𝑚  𝑝𝑦𝑟2  𝑠𝑣+1𝑦𝜂+1 (4.10) 

Choose 𝑦 sufficiently small so that r.h.s. of (4.10) becomes less than
𝜖

2
. 

Hence (4.8) becomes    

 𝑠𝑣+1𝑦𝜂+1𝐹 𝑠, 𝑦 − 𝛽 (𝑣 + 1)  𝑎𝑠𝐵(𝑚, 𝜂, 𝑚, 𝑘, 𝑞, 𝑝) ≤ 𝐼1 + 𝐼2 <
𝜖

2
+

𝜖

2
= 𝜖 

Hence the theorem is proved. 

 

V. Final Value Theorem For Generalized Mellin-Whittaker Transform: 
In this section we established final value theorem for generalized Mellin-Whittaker transform. 

Theorem: Let 𝑓(𝑥, 𝑡) be locally integrable function with all distributional derivatives w.r.to 𝑥 belonging to 

𝐸−∞,𝑤
,

, for some real number 𝑤 and having compact support for 𝑥 in [𝑏, ∞). Moreover 
𝑓(𝑥 ,𝑡)

𝑥𝑐 is absolutely integrable for some 𝑐 ∈ 𝑅. 

𝑙𝑖𝑚
𝑥→∞
𝑡→∞

𝑓(𝑥 ,𝑡)

 𝑙𝑜𝑔 𝑥
𝑏 

𝑣
𝑡𝜂

= 𝛽   𝑅𝑒𝑣 > −1, 𝑅𝑒𝜂 > −1. Then 

𝑙𝑖𝑚
 𝑠 →0
𝑦→0

𝑠𝑣+1𝑦𝜂 +1𝐹(𝑠,𝑦)

𝑏𝑠𝛤 𝑣+1 𝐵 𝑚 ,𝜂 ,𝑚 ,𝑘 ,𝑞 ,𝑝 
= 𝛽in the half plane 𝑅𝑒𝑠 > 𝛼, 

where𝐵 𝑚, 𝜂, 𝑚, 𝑘, 𝑞, 𝑝 =
𝑝

𝑚 +
1
2𝛤 𝑚±𝑚+𝜂+1 

 1
2
 𝑞+𝑝  

𝑚 +𝑚 +𝜂+1
𝛤(𝑚−𝑘+𝜂+3

2)
 

  × 2𝐹1

 
 
 
 
 
 
 𝑚 + 𝑚 + 𝜂 + 1, 𝑚 − 𝑘 +

1

2
;              

𝑞 − 𝑝

𝑞 + 𝑝

𝑚 − 𝑘 + 𝜂 +
3

2
;

 
 
 
 
 
 
 

 

Proof: We prove the theorem for a restricted type of functions i.e. when 𝑓(𝑥, 𝑡) is seperable. 

                             Let 𝑓 𝑥, 𝑡 = 𝑔 𝑥 𝑕(𝑡) (5.1) 

Therefore we can assume that 𝛽 = 𝛽1 . 𝛽2, where 𝛽1, 𝛽2 are real numbers such that,  

Property (ii) becomes   

  

𝑙𝑖𝑚
𝑥→∞

𝑔 𝑥 

 𝑙𝑜𝑔
𝑥
𝑏 

𝑣 = 𝛽1         𝑅𝑒 𝑣 > −1

𝑙𝑖𝑚
𝑡→∞

𝑕 𝑡 

𝑡𝜂 = 𝛽2           𝜂 > −1

 
 
 

 
 

,(5.2) 

We also know that   𝑀 𝑔 𝑥    𝑠 =  𝑔 𝑥 𝑥𝑠−1𝑑𝑥
∞

0
 

Since 𝑔(𝑥) has compact support in [𝑏, ∞) we have,  



Abelian Theorem for Generalized Mellin-Whittaker Transform 

www.iosrjournals.org                                                            22 | Page 

 =  𝑔 𝑥 𝑥𝑠−1𝑑𝑥
∞

𝑏
 

If we put 𝑥 = 𝑏𝑒𝑉  in above equation  

 =  𝑔 𝑏𝑒𝑉 𝑏𝑠𝑒𝑠𝑉𝑑𝑉 = 𝑏𝑠∞

0
 𝑔 𝑏𝑒𝑉 𝑒−𝑒 𝑖𝜋 𝑠𝑉𝑑𝑉

∞

0
 

 = 𝑏𝑠 𝐿𝑔 𝑏𝑒𝑉  (𝑒𝑖𝜋𝑠).        (5.3) 

Also for  𝜂 > −1 and  𝑡 > 0 

 𝑡𝜂𝑒−𝑞
2𝑦𝑡  𝑦𝑡 𝑚−1

2𝑊𝑘 ,𝑚  𝑝𝑦𝑡 𝑑𝑡 =
1

𝑦𝜂+1 𝐵(𝑚, 𝜂, 𝑚, 𝑘, 𝑞, 𝑝)
∞

0
  (5.4) 

 𝑉𝑣𝑒𝑠𝑉𝑑𝑉
∞

0
=

𝛤(𝑣+1)

(−1)𝑣+1𝑠𝑣+1for𝑅𝑒𝑣 > −1     (5.5) 

Now consider,  

 𝑠𝑣+1𝑦𝜂+1𝐹 𝑠, 𝑦 − 𝛽𝑏𝑠𝛤(𝑣 + 1)𝐵(𝑚, 𝜂, 𝑚, 𝑘, 𝑞, 𝑝)  

=  𝑠𝑣+1𝑦𝜂+1   𝑥𝑠−1𝑒−𝑞
2𝑦𝑡  𝑦𝑡 𝑚−1

2𝑊𝑘 ,𝑚  𝑝𝑦𝑡 𝑔 𝑥 𝑕 𝑡 𝑑𝑥𝑑𝑡 − 𝛽1𝛽2𝑏
𝑠𝛤(𝑣 + 1)

∞

𝑏

∞

0

  

 𝐵 𝑚, 𝜂, 𝑚, 𝑘, 𝑞, 𝑝 
 (∵ 𝑔(𝑥)has compact support in  𝑏, ∞ . )(5.6) 

Put  𝑥 = 𝑏𝑒𝑉    ∴ 𝑥𝑠−1𝑑𝑥 = 𝑏𝑠−1𝑒𝑉(𝑠−1). 𝑏𝑒𝑉𝑑𝑉 = 𝑏𝑠𝑒𝑉𝑑𝑉 

As 𝑥 varies from 𝑏 to ∞ and 𝑉 varies from 0to ∞. 

Using (5.4), (5.5) and the suggested substitution (5.6) becomes  

 𝑠𝑣+1𝑦𝜂+1𝐹 𝑠, 𝑦 − 𝛽𝑏𝑠𝛤(𝑣 + 1)𝐵(𝑚, 𝜂, 𝑚, 𝑘, 𝑞, 𝑝)  

=  𝑠𝑣+1𝑦𝜂+1   𝑒−𝑞
2𝑦𝑡  𝑦𝑡 𝑚−1

2𝑊𝑘 ,𝑚 𝑝𝑦𝑡 𝑏𝑠𝑒𝑠𝑉𝑔 𝑏𝑒𝑉 𝑕 𝑡 𝑑𝑉𝑑𝑡
∞

0

∞

0

−  𝛽1. 𝛽2(−1)𝑣+1𝑠𝑣+1𝑏𝑠  𝑉𝑣𝑒𝑠𝑉𝑑𝑉

∞

0

𝑦𝜂+1  𝑡𝜂𝑒−𝑞
2𝑦𝑡  𝑦𝑡 𝑚−1

2𝑊𝑘 ,𝑚  𝑝𝑦𝑡 𝑑𝑡

∞

0

  

=  𝑠𝑣+1𝑦𝜂+1   𝑒−𝑞
2𝑦𝑡  𝑦𝑡 𝑚−1

2𝑊𝑘 ,𝑚  𝑝𝑦𝑡 𝑏𝑠𝑒𝑠𝑉 𝑔 𝑏𝑒𝑉 𝑕 𝑡 −  𝛽1 . 𝛽2𝑉
𝑣𝑡𝜂  𝑑𝑉𝑑𝑡

∞

0

∞

0

  

≤ 𝐼1 + 𝐼2       (5.7) 

where 

𝐼1 =  𝑠𝑣+1𝑦𝜂+1   𝑒−𝑞
2𝑦𝑡  𝑦𝑡 𝑚−1

2𝑊𝑘 ,𝑚  𝑝𝑦𝑡 𝑏𝑠𝑒𝑠𝑉  𝑔 𝑏𝑒𝑉 𝑕 𝑡 − 𝛽1 . 𝛽2𝑉
𝑣𝑡𝜂  𝑑𝑉𝑑𝑡

𝑌

0

𝑌

0

  

𝐼2 =  𝑠𝑣+1𝑦𝜂+1   𝑒−𝑞
2𝑦𝑡  𝑦𝑡 𝑚−1

2𝑊𝑘 ,𝑚  𝑝𝑦𝑡 𝑏𝑠𝑒𝑠𝑉 𝑔 𝑏𝑒𝑉 𝑕 𝑡 − 𝛽1 . 𝛽2𝑉
𝑣𝑡𝜂  𝑑𝑉𝑑𝑡

∞

𝑌

∞

𝑌

  

Consider  

𝐼1 =  𝑠𝑣+1𝑦𝜂+1   𝑒−𝑞
2𝑦𝑡  𝑦𝑡 𝑚−1

2𝑊𝑘 ,𝑚  𝑝𝑦𝑡 𝑏𝑠𝑒𝑠𝑉𝑉𝑣𝑡𝜂  
𝑔 𝑏𝑒𝑉 𝑕 𝑡 

𝑉𝑣𝑡𝜂
− 𝛽1. 𝛽2 𝑑𝑉𝑑𝑡

𝑌

0

𝑌

0

  

Using the asymptotic behaviour of 𝑊𝑘 ,𝑚  𝑧 = 𝑂  𝑧𝑘𝑒−𝑧
2 ,     𝑧 → ∞ 

= 𝑂 (𝑧𝑚+1
2),          𝑧 → 0, 𝑚 < 0 

= 𝑂 (𝑧𝑚−1
2),           𝑧 → 0, 𝑚 > 0 

As  
𝑓(𝑥 ,𝑡)

𝑥𝑐 =
𝑔 𝑥 𝑕(𝑡)

𝑥𝑐 =
𝑔 𝑏𝑒𝑉 𝑕(𝑡)

𝑏𝑐𝑒𝑉𝑐   is absolutely integrable for some 𝑐 ∈ 𝑅. 

 Therefore   
𝑔 𝑏𝑒𝑉 𝑕(𝑡)

𝑒𝑉𝑐   is absolutely integrable as 𝑏𝑐  is constant.  

Therefore 

𝐼1 =  𝑠𝑣+1𝑦𝜂+1   𝑒−
𝑞
2𝑦𝑡  𝑦𝑡 𝑚−

1
2𝑊𝑘 ,𝑚  𝑝𝑦𝑡 𝑏𝑠𝑒(𝑠+𝑐)𝑉𝑉𝑣𝑡𝜂  

𝑔 𝑏𝑒𝑉 𝑕 𝑡 

𝑉𝑣𝑡𝜂
− 𝛽1 . 𝛽2 𝑑𝑉𝑑𝑡

𝑌

0

𝑌

0

  

Therefore   𝑒−𝑐𝑉𝑉𝑣𝑡𝜂  
𝑔 𝑏𝑒𝑉 𝑕 𝑡 

𝑉𝑣𝑡𝜂 − 𝛽1 . 𝛽2 𝑑𝑉𝑑𝑡 = 𝑀
𝑌

0

𝑌

0
 

Let (𝑟1 , 𝑟2) be the point where the r.h.s. function has upper bound 𝑀. 

≤
𝑠𝑢𝑝

0 < 𝑉 < 𝑌
0 < 𝑡 < 𝑌

 𝑠𝑣+1𝑦𝜂+1𝑒−𝑞
2𝑦𝑟2 𝑦𝑟2 

𝑚−1
2𝑊𝑘 ,𝑚  𝑝𝑦𝑟2 𝑏𝑠𝑒 𝑠+𝑐 𝑟1  𝑀. 

Choose 𝑦 sufficiently small that r.h.s.  <
𝜖

2
 .   (5.8) 

Consider  

𝐼2 =  𝑠𝑣+1𝑦𝜂+1   𝑒−
𝑞
2𝑦𝑡  𝑦𝑡 𝑚−

1
2𝑊𝑘 ,𝑚  𝑝𝑦𝑡 𝑏𝑠𝑒𝑠𝑉 𝑔 𝑏𝑒𝑉 𝑕 𝑡 − 𝛽1 . 𝛽2𝑉

𝑣𝑡𝜂  𝑑𝑉𝑑𝑡
∞

𝑌

∞

𝑌
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𝑠𝑣+1𝑦𝜂+1𝑒−𝑞
2
𝑦𝑡  𝑦𝑡 𝑚−1

2𝑊𝑘 ,𝑚  𝑝𝑦𝑡 𝑏𝑠𝑒𝑠𝑉 is finite and continuous in  𝑌 < 𝑡 < ∞ and 𝑌 < 𝑥 < ∞ and it converges 

to zero as 𝑡 → ∞ and 𝑉 → ∞. 

Therefore it is bounded (say) by 𝑀 as 𝑡 → ∞and  𝑉 → ∞. 

Now property (ii) ⇒   
𝑙𝑖𝑚
𝑉→∞
𝑡→∞

𝑔 𝑏𝑒𝑉  𝑕(𝑡)

𝑉𝑣𝑡𝜂 = 𝛽1𝛽2 

⇒ for all (  ∴ for 
𝜖

2𝑀
 also ) there exists 𝑀 such that for 𝑉 > 𝑌, 𝑡 > 𝑌 

 
𝑔 𝑏𝑒𝑉 𝑕 𝑡 

𝑉𝑣𝑡𝜂
− 𝛽1𝛽2 <

𝜖

2𝑀
 

∴ 𝐼2 < 𝑀
𝜖

2𝑀
=

𝜖

2
     (5.9) 

Using (5.8) and (5.9) statement (5.7) becomes   

 𝑠𝑣+1𝑦𝜂+1𝐹 𝑠, 𝑦 − 𝛽𝑏𝑠𝛤(𝑣 + 1)𝐵(𝑚, 𝜂, 𝑚, 𝑘, 𝑞, 𝑝) < 𝜖 

Hence the theorem. 
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