On Extensions of Green's Relations in Semi groups

¹D.V.Vijay Kumar and ²K.V.R.Srinivas

Abstract: In this paper mainly we have obtained interesting and independent results using the equivalences L^* , R^* and H^* . **Keywords:** Union of groups, Periodic semigroup and Cancellative semigroup.

I. Introduction:

John M. Howie introduced relations L^* , R^* and H^* in the book entitled "Fun-damentals of Semigroup Theory" [1]. The relation L^* defined on a semigroup S by the rule that aL^*b if and only if $ax = ay \iff bx = by$, $\forall x, y \in S^1$, and the relation R^* defined on a semigroup S by the rule that aR^*b if and only if $xa = ya \iff xb = yb$, $\forall x, y \in S^1$, and the relation H^* defined on a semigroup S by the rule that aH^*b if and only if $axa = aya \iff bxb = byb$, $\forall x, y \in S^1$. If S is a semigroup then $L \subseteq L^*$, and L^* is a right congruence on S, and for every idempotent e in S, aL^*e if and only if ae = a and $ax = ay \Rightarrow ex = ey$, $\forall x, y \in S^1$. If S is regular then $L = L^*$. The containment $L \subseteq$ L^* well be proper. It is observed that in the cancellative semigroup S (see def 1.4) $L = 1_S$, $L^* = S \times$ S. The equivalences R^* and H^* are defined by analogy with L^* . Then every H^* -class containing an idempotent is a subsemigroup of S and is a cancellative semigroup with identity element e.

In this paper we proved some interesting and independent results using the equiv- alences L^* , R^* and H^* . First we proved in theorem (2.4), that if S is a semi-group with zero, then $0L^* = \{0\}$, $0R^* = \{0\}$. Further it is obtained in theo- rem (2.5), that in a semigroup S, $L^* (RegS \times RegS) = L^* (RegS \times RegS)$ and $R^* (RegS \times RegS) = R^* (RegS \times RegS)$ where RegS stands for semigroup S with regular elements. From Theorem (2.5) we obtained as a corollary (2.6), that if S is a regular semigroup then $L^* = L$ and $R^* = R$. It is interesting to observe that, if S is a periodic semigroup which is also cancellative, then S is a union of groups, which is obtained in lemma (2.7). It is observed in theorem (2.8), that in a periodic semigroup (see def 1.6) $H_e = H^*$. It is also observed in lemma (2.9), that H^* is a group if and eonly if $H^* = H_e$. Unlike the Green's relations L and R the relations L^* and R^* do not permute, for this an example is obtained in (2.10). It is also very interesting to observe that on a semigroup S if a is a regular element of S, then every element of aR^* need not be regular. For this an example is obtained in (2.11).

AMS sub ject classification number: 20M18

First we start with following preliminaries.

Definition 1.0: A pair (S, .) where S is a non empty set and $\overset{\emptyset}{.}^{\theta}$ is a binary operation defined on S is said to be a semigroup if a.(b.c) = (a.b).c for all $a, b, c \in S$.

Definition 1.1: A semigroup (S, .) is said to be a semigroup with zero if there exists an element $0 \in S$ such that 0.a = a.0 = 0 for all $a \in S$.

A semigroup (S, .) is said to be a semigroup with identity if there exists an element $1 \in S$ such that 1.a = a.1 = 1 for all $a \in S$.

Definition 1.2: A semigroup (S, .) is said to be commutative if a.b = b.a for all $a, b \in S$.

Definition 1.3: Let S be a semigroup. An element $a \in S$ is said to be an idempotent if aa = a and the set of all idempotents of S is denoted by E(S) or E_S or E.

Definition 1.4: A semigroup S is called cancellative semigroup in which for all a, b, c, ca = cb implies a = b and ac = bc implies a = b.

Definition 1.5: An element a of a semigroup S is said to be regular if there exists an $x \in S$ such that axa = a. If every element of S is regular, then we say that S is regular semigroup.

Definition 1.6: If every element of a semigroup S has finite order, then S is said to be periodic.

Definition 1.7: A semigroup S is called a union of groups if each of its elements is contained in some subgroup of S.

Definition 1.8: If S is a semigroup the equivalence relations L, R, H, I and D defined by $L = \mathbf{f}(a, b) \in S \times S / S^1 a = S^1 b$, $R = \mathbf{f}(a, b) \in S \times S / aS^1 = bS^1 \mathbf{J}$, and $H = L^T R$, $I = \mathbf{f}(a, b) \in S \times S / S^1 aS^1 = S^1 bS^1 \mathbf{J}$, and D = LoR are called Green's relations on S.

Definition 1.9: A relation R on a semigroup S is said to be right(left) compatible if for a, b in S, $(a, b) \in R$ implies $(ac, ba) \in R$ and $(ca, cb) \in R$ for every $c \in S$. A right(left) compatible equivalence relation on S is called right(left) congruence. By a congruence on S we mean an equivalence on S which is both right and left compatible.

First we start with the following theorem due to J.M.Howie [1], which is stated in exercise. But for the sake of definiteness we proved the following theorem.

Theorem 2.1: The relation \mathcal{L}^* on a semigroup S defined by the rule that $a\mathcal{L}^*b$ if and only if ax = ay $\iff bx = by$, $\forall x, y \in S^1$ is an equivalence relation. If S is a semigroup then $\mathcal{L} \subseteq \mathcal{L}^*$ and that \mathcal{L}^* is a right congruence on S and for every idempotent e in S, $a\mathcal{L}^*e$ if and only if ae = a and $ax = ay \Rightarrow ex = ey$, $\forall x, y \in S^1$. If S is regular then $\mathcal{L} = \mathcal{L}^*$.

Proof : First we observe that L^* is an equivalence relation. aL^*a for every a as $ax = ay \iff ax = ay$, so that L^* is reflexive. Suppose aL^*b then $ax = ay \iff bx = by$, $\forall x, y \in S^1$ and thus $bx = by \iff ax = ay$ and hence bL^*a so that L^* is symmetric. Suppose aL^*b and bL^*c so that $ax = ay \iff bx = by$ and $bx = by \iff cx = cy$, $\forall x, y \in S^1$ and thus $ax = ay \iff cx = cy, \forall x, y \in S^1$ and hence aL^*c . Thus L^* is transitive. Hence L^* is an equivalence relation. We claim that $L \subseteq L^*$. Suppose $(a, b) \in L$ so that $S^1a = S^1b$ then $\exists u, v \in S^1$ such that ua = b and vb = a. Assume that ax = bay then bx = uax = uay = by and also assume that bx = by then ax = vbx = vby = ay and hence ax = vbx = vby = ay and hence ax = by = ay $ay \iff bx = by, \forall x, y \in S^1$. Thus $(a, b) \in L^*$. Hence $L \subseteq L^*$. Now we have to show that L^* is a right congruence on S. Suppose let $(a, b) \in L^*$ so that $ax = ay \iff bx = by$, $\forall x, y \in S^1$. Now we claim that $(ac, bc) \in L^*$. i.e. $(ac)x = (ac)y \iff (bc)x = (bc)y, \forall x, y \in S^1$. Let $c \in S$. Assume that (ac)x = (ac)y and thus a(cx) = a(cy) and hence b(cx) = b(cy)by the definition of L^* and therefore (bc)x = (bc)y.

Conversely, suppose that (bc)x = (bc)y and thus b(cx) = b(cy) and hence a(cx) = a(cy) by the definition of \mathcal{L}^* and therefore (ac)x = (ac)y. Thus $(ac)x = (ac)y \iff (bc)x = (bc)y$, $\forall x, y \in S^1$ and therefore $(ac, bc) \in \mathcal{L}^*$. Hence \mathcal{L}^* is a right congruence on S. Now we show that, for every idempotent e in S, $a\mathcal{L}^*e$ if and only if ae = a and $ax = ay \Longrightarrow ex = ey$, $\forall x, y \in S^1$. First we claim that ae = a. Assume that $a\mathcal{L}^*e$ so that $ax = ay \Longrightarrow ex = ey$, $\forall x, y \in S^1$. Put x = e and y = 1, then $ex = e.e = e^2 = e$ and ey = e.1 = e and thus ex = ey and now ax = ay so that a.e = a.1 and thus ae = a. Conversely suppose that ae = a and $ax = ay \Longrightarrow ex = ey$, $\forall x, y \in S^1$. Assume that ex = ey now ax = aex = aey = ay and thus $ex = ey \Longrightarrow ax = ay$ and hence ax = ay $\iff ex = ey$, $\forall x, y \in S^1$. Hence $(a, e) \in \mathcal{L}^*$. Now we prove that $\mathcal{L}^* = \mathcal{L}$, if S is regular. Suppose, let $(a, b) \in \mathcal{L}^*$ so that $ax = ay \iff bx = by$, $\forall x, y \in S$.

Take $a^{\ell} \in V(a)$ so that $a = aa^{\ell}a$. Now $a = a.1 = a(a^{\ell}a)$ so $b = b(1) = b(a^{\ell}a)$ and thus $Sb = Sba^{\ell}a \subseteq Sa$ and also take $b^{\ell} \in V(b)$ so that $b = bb^{\ell}b$. Now $b = b(1) = b(b^{\ell}b)$ so $a = a(1) = a(b^{\ell}b)$ and thus $Sa = Sab^{\ell}b \subseteq Sb$ and hence Sa = Sb. Thus $(a, b) \in L$ so that $L^* \subseteq L$. Since $L \subseteq L^*$, so we have $L = L^*$.

Theorem 2.2: The containment $L \subseteq L^*$ may well be proper. If S is the cancellative semigroup then $L = 1_S$, $L^* = S \times S$.

Proof : Suppose S is the set of non negative integers, then S is a cancellative under addition. Suppose $(a, b) \in L$ so that $S^0 + a = S^0 + b$ (since S is additive and identity is 0) and thus a = x + b, b = y + a for some x, $y \in S^0$ and hence $a = x + b \ge b$ and $b = y + a \ge a$. Hence a = b and hence $L = 1_S$.

Suppose $(a, b) \in L^*$ so that $a + x = a + y \iff b + x = b + y$, for some $x, y \in S^1$ and

thus x = y as S is cancellative and hence $L^* = S \times S$.

Theorem 2.3: The equivalences R^* and H^* are defined by analogy with L^* . Then every H^* -class containing an idempotent is a subsemigroup of S and is a cancellative semigroup with identity element 'e'.

Proof : Suppose 'e' is an idempotent and $a \in L^*e$ so that $(a, e) \in L^*$ if and only if ae = a and $ax = ay \implies ex = ey$, $\forall x, y \in S^1$ and $a \in R^*e$ so that $(a, e) \in R^*$ if and only if ea = a and $xa = ya \implies xe = ye$, $\forall x, y \in S^1$. Assume that $(a, e) \in L^*$ so that $ax = ay \implies ex = ey$, $\forall x, y \in S^1$ put x = e, y = 1 then $ex = e.e = e^2 = e$, ey = e.1 = e and thus ex = ey and now ax = ay so that a.e = a.1 and hence ae = a and $ax = ay \implies ex = ey$. Conversely, suppose that ae = a and $ax = ay \implies ex = ey$.

Now, we claim that $(a, e) \in L^*$ i.e. $ax = ay \iff ex = ey$. Assume that ex = ey and

ae = a. Now ax = aex = aey = ay and thus $(a, e) \in L^*$.

Now assume that $(a, e) \in \mathbb{R}^*$ so that $xa = ya \iff xe = ye$, $\forall x, y \in S^1$ put x = e, y = 1, then $xe = e.e = e^2 = e$, ye = 1.e = e and thus xe = ye and now $xa = ya \implies e.a = 1.a$ and hence ea = a and $xa = ya \implies xe = ye$ (by definition).

Conversely, suppose that ea = a and $xa = ya \implies xe = ye$.

Now, we claim that $(a, e) \in \mathbb{R}^*$. i.e. $xa = ya \iff xe = ye$. Assume that xe = ye

and ea = a. Now xa = xea = yea = ya and thus $(a, e) \in \mathbb{R}^*$. Therefore $(a, e) \in \mathbb{R}^* L^* = \mathbb{H}^*$ so that $a \in \mathbb{H}^* e$.

Let $a \in H^*e$, so that ea = a, ae = a. Suppose $a, b \in H^*e$ so that $(a, e) \in H^*$ and $(b, e) \in H^*$. Now we claim that $(ab, e) \in H^* = R^* L^*$. First we show that $(ab, e) \in R^*$. i.e. to show that $x(ab) = y(ab) \iff xe = ye$, $\forall x, y \in S^1$. Now, let x(ab) = y(ab) so that (xa)b = (ya)b and thus (xa)e = (ya)e (since $b \in R^*e$ then $xb = yb \iff xe = ye$) and hence x(ae) = y(ae) and therefore xa = ya so that xe = ye (since $(a, e) \in R^*$). Conversely, suppose that xe = ye. Now we claim that x(ab) = y(ab). We have xe = ye so that (xe)a = (ye)a and thus x(ea) = y(ea) and hence xa = ya and therefore (xa)b = (ya)b and hence x(ab) = y(ab). Hence $ab \in R^*e$.

Now, we show that $(ab, e) \in L^*$. i.e. to show that $(ab)x = (ab)y \iff ex = ey$,

 $\forall x, y \in S^1$. Let (ab)x = (ab)y so that a(bx) = a(by) and thus e(bx) = e(by) (since $(a, e) \in L^*e$ i.e. $ax = ay \iff ex = ey$). Since e is the identity, so we have bx = by and hence ex = ey (since $(b, e) \in L^*e$ i.e. $bx = by \iff ex = ey$).

Conversely, suppose that ex = ey. Now, we claim that (ab)x = (ab)y. We have

ex = ey so that b(ex) = b(ey) and thus bx = by and hence a(bx) = a(by) and therefore (ab)x = (ab)y. Thus $ab \in L^*e$. Hence $ab \in \mathbb{R}^*e^T L^*e = \mathbb{H}^*e$. Thus $ab \in \mathbb{H}^*e$.

Let $a, x, y \in H^*e$. Now suppose that ax = ay so that ex = ey and hence x = y (since $x \in H^*e$ and e is the identity of H^*e) and also suppose that xa = ya so that xe = ye and hence x = y. Thus H^*e is a cancellative semigroup with identity.

Now we prove the following interesting and independent results.

Theorem 2.4: If S is a semigroup with zero, then $0L^* = \{0\}, 0R^* = \{0\}$.

proof : Let $a \in 0L^*$ so that $(a, 0) \in L^*$ and hence $ax = ay \iff 0x = 0y$, $\forall x, y \in S^1$, putting x = 1 and y = 0 we have 0.x = 0.1 = 0 and 0.y = 0.0 = 0 and hence ax = ay so that ax = a.1 = a and ay = a.0 = 0 and thus a = 0. Hence $L^* = \{0\}$. Let $a \in 0R^*$ so that $(a, 0) \in R^*$ and hence $xa = ya \iff x0 = y0$, $\forall x, y \in S^1$, putting x = 1 and y = 0 we have x.0 = 1.0 = 0 and y0 = 0.0 = 0 and hence xa = 1.a = a and ya = 0.a = 0 and thus a = 0. Hence $0R^* = \{0\}$. Theorem 2.5: In a semigroup S, $L^* (RegS \times RegS) = L (RegS \times RegS)$ where

RegS stands for semigroup S with regular elements.

 $RegS) = \mathbf{R}^{\mathrm{T}}(RegS \times RegS).$

Proof : Let $(a, b) \in L^* {}^{\mathsf{T}}(\operatorname{RegS} \times \operatorname{RegS})$ so that $(a, b) \in L^*$ and a, b are regular elements of S and thus $ax = ay \iff bx = by$, $\forall x, y \in S^1$ and $a = aa^{d}a$, $b = bb^{d}b$ (since a, b are regular). As a is regular, there exists $a^{d} \in V(a)$ such that $a = aa^{d}a$. Now $a = a.1 = a(a^{d}a)$, so $b = b.1 = b(a^{d}a)$ and thus $S^1b = S^1ba^{d}a \subseteq S^1a \longrightarrow (1)$ and also b is regular, so there exists $b^{d} \in V(b)$ such that $b = bb^{d}b$. Now b = $b.1 = b(b^{d}b)$, so $a = a.1 = a(b^{d}b)$ and thus $S^1a = S^1ab^{d}b \subseteq S^1 \longrightarrow (2)$. From (1) and (2) $S^1a = S^1b^{d}a$ and thus $(a, b) \in L$. Hence $(a, b) \in L$ (RegS $\times \operatorname{RegS})$. Since $L \subseteq L^*$, so L (RegS $\times \operatorname{RegS}) \subseteq L^*$ (RegS $\times \operatorname{RegS})$). Hence L^* (RegS \times Regs) = L (RegS $\times \operatorname{RegS})$. Remark : By the above theorem (2.5), similarly we can prove that R^* (RegS \times

www.iosrjournals.org

Corollary 2.6: If S is a regular semigroup, then $L^* = L$ and $R^* = R$.

Lemma 2.7: If S is a periodic semigroup which is also cancellative then S is a union of groups. Proof : Suppose S is a periodic semigroup. Let $a \in S$, such that index of a is m and period of a is r. Then $(a) = \mathbf{I}_{a}, a^{2}, \ldots, a^{m}, a^{m+1}, \ldots, a^{m+r-1} \mathbf{J}$. Since S is periodic, so (a) is finite and also S is cancellative, so (a) is cancellative. Thus (a) is finite cancellative group. Thus S is a union of groups.

Theorem 2.8: In a periodic semigroup $He = H^*e$.

Proof : Suppose $a \in H^*e$. Since S be periodic, so by Lemma (2.7) S is a union of groups. So $a \in Hf$, where Hf is a subgroup of S. Also we have H^*e is cancellative semigroup with identity ${}^{\ell}e^{\ell}$ so we have ea = a and fa = a and thus ea = fa and hence e = f. Thus $a \in He$ and therefore $H^*e \subseteq He$, we have $He \subseteq H^*e$ so that $H^*e = He$.

Lemma 2.9: H^*e is a group if and only if $H^*e = He$. Proof : Assume that $He = H^*e$, then H^*e is a group (since He is a group). Conversely, suppose that H^*e is group. Let $a \in H^*e$ so that $\exists a^{\ell} \exists aa^{\ell} = e$, $a^{\ell}a = e$ and ae = ea = a. Now we claim that $a \in He$, i.e. $a \in Le^T Re$. We have $S^1a = S^1 ae \subseteq S^1e = S^1a^{\ell}a \subseteq$ S^1a and thus $S^1a = S^1e$ and hence $(a, e) \in L$. Let $aS^1 = eaS^1 \subseteq eS^1 = aa^{\ell}S^1 \subseteq aS^1$ and thus aS^1 T

 $= eS^1$ and hence $(a, e) \in \mathbb{R}$. Thus $(a, e) \in L^T \mathbb{R} = H$. Hence $a \in He$. Thus $H^*e \subseteq He$. We have $He \subseteq H^*e$ and Hence $H^*e = He$.

Example 2.10: Unlike the Green's relations L and R the relations L^* and R^* do not permute an example is given to show that the inequality $R^* o L^* = L^* o R^*$ does not hold in general.

Let S be the set of all 2×2 matrices of the form

 $\tilde{A} \stackrel{!}{a \ b}$, where *a*, *b*, *d* are all real 0 *d*

numbers. \tilde{A} ! Ã 1 a b с е ∈S Let ${\stackrel{0}{{}}}{\stackrel{d}{{}}}{}^d$ Ã $ac \quad ae + bf$ a b С е €S Now $\tilde{\mathbf{A}} \stackrel{0}{\overset{d}{\mathbf{!}}} \tilde{\mathbf{A}} \stackrel{0}{\overset{f}{\mathbf{!}}} \tilde{\mathbf{A}}$ 0 Ã 1 1 1 1 1 1 = e is an idempotent, Let =0 0 0 0 0 0 ! A Ã 0 0 0 0 0 0 = f is an idempotent $\tilde{A} \stackrel{0}{\overset{1}{}}$ 1 0 1 0 Ã $\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} =$ 1 0 1 and ef ==a.0 0 0 0 0 1 Thus product of two idempotents is not an idempotent. 0 1 0 1 0 0 Also = $= a^2$. 0 0 ♥ 0_0 0 0 А 0 1 is regular, Suppose 0_0 ! Ã !Ã ! Ã !Ã Ã $\begin{array}{cccc} \mathbf{A} & \mathbf{I} \mathbf{A} & \mathbf{I} \mathbf{A} \\ 0 & 1 & a & b & 0 & 1 \\ & & & & & & \\ \end{array} =$! Ã 0 1 then $\begin{bmatrix} 0 & 0 \\ \tilde{A} \end{bmatrix} \begin{bmatrix} 0 & d \end{bmatrix} \begin{bmatrix} 0 & d \end{bmatrix} \begin{bmatrix} 0 & d \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & d \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix}$ 00 0 1 is not regular. Thus 0 0

Let $S = \{0, e, f, a\}$ be a semigroup.

•	0	e	f	a
0	0	0	0	0
e	0	e	e	e
f	0	0	f	0
a	0	0	a	0

9

$$\begin{split} \tilde{A} \quad !\tilde{A} \quad !\tilde{A} \quad !\tilde{A} \quad !\tilde{A} \quad !\\ fa &= \begin{array}{c} 0 & 0 & 0 & 1 \\ \tilde{A}^{0} & 1 & \tilde{A}^{0} & 0 \\ \tilde{A}^{0} & !\tilde{A}^{0} & 0 \\ \tilde{A}^{0} & !\tilde{A}^{0} & 0 \\ ea &= \begin{array}{c} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 \\ ea &= \begin{array}{c} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ \tilde{A}^{0} & 0 & \tilde{A}^{0} & 0 \\ \tilde{A}^{0} & !\tilde{A}^{0} & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 \\ \tilde{A}^{0} & !\tilde{A}^{0} & 0 \\ 0 & 0 & 1 \\ \tilde{A}^{0} & 0 & 0 \\ \tilde{A}^{0} & !\tilde{A}^{0} & !\tilde{A}^{0} \\ \tilde{A}^{0} & !\tilde{A}^{0}$$

Example 2.11: This is an example to show that, if *a* is a regular element of *S*, then every element of aR^* need not be regular.

Suppose G is a group with more than two elements and let $S = \{x, 0\}$ be a null semigroup. Let $((a, x), (b, x)) \in (G \times S) \times (G \times S)$. Now, we claim that $((a, x), (b, x)) \in \mathbb{R}$ so that $(a, x)(G \times S)^1 = (b, x)(G \times S)^1$ and thus (a, x) = (b, x).1, where $1 \in (G \times S)^1$, if a = b, then (a, x) is not \mathbb{R} -equivalent to (b, x). Now $((a, x), (b, 0)) \in \mathbb{R}$ so that $(a, x)(G \times S)^1 = (b, 0)(G \times S)^1$ so that (a, x) = (b, 0).(c, x) = (bc, 0) which is not true (since x = 0). Now it can be verified that $((a, 0), (b, 0)) \in \mathbb{R}$ so that

10

 $(a, 0)(G \times S)^1 = (b, 0)(G \times S)^1$ and thus (a, 0) = (b, 0).(c, x) = (bc, 0).Thus, $\mathbf{R} = \mathbf{1}_{(G \times S)} \mathbf{f}(a, 0), (b, 0) \mathbf{f}$, for $a, b \in G$. Now, we claim that $((a, x), (b, x)) \in \mathbb{R}^*$. We have $(u, v)(a, x) = (m, n)(a, x) \iff$ (u, v)(b, x) = (m, n)(b, x) and thus $(ua, vx) = (ma, nx) \iff (ub, vx) = (mb, nx)$ and hence $(ua, 0) = (ma, 0) \iff (ub, 0) = (mb, 0)$ (since vx = 0, nx = 0). Thus $ua = ma \implies u = m$ (since $a \in G$, G has cancellative property) so thus ub = mband suppose that $ub = mb \Longrightarrow ua = ma$. Thus $((a, x), (b, x)) \in \mathbb{R}^*$. Now, we claim that $(a, x) \in \mathbb{R}^*(b, 0)$. We have $(u, v)(a, x) = (m, n)(a, x) \iff$ (u, v)(b, 0) = (m, n)(b, 0) and thus $(ua, vx) = (ma, nx) \iff (ub, 0) = (mb, 0)$. Hence $(ua, 0) = (ma, 0) \iff (ub, 0) = (mb, 0)$. Thus $((a, x), (b, 0)) \in \mathbb{R}^*$. Hence $\mathbf{R}^* = \{(a, x), (b, x), (a, 0), (b, 0)\}$. Thus $\mathbf{R}^* = (G \times S) \times (G \times S)$. Let $(e, 0)(e, 0) = (e^2, 0) = (e, 0)$. Thus (e, 0) is an idempotent in \mathbb{R}^* . Now, we claim that (e, x) is not regular. Suppose (e, x) is regular, then there exists (a, u) such that (e, x)(a, u)(e, x) = (e, x). Now (e, x)(a, u)(e, x) = (ea, xu)(e, x) =(ea, 0)(e, x) = (eae, 0) = (e, x) (since x = 0). Thus particular (e, x) is in $(e, 0)R^*$ which is not regular.

References:

[1] Howie, J. M. Fundamentals of semigroup theory, Oxford University Press Inc., New York.

(1) D.V. VijayKumar	(2) Dr.K.V.R. Srinivas		
Assistant Prof essor	Associate Prof essor		
T.S.R and T.B.K PG Centre	Regency Institute of Technology		
Visakhapatnam – 530026.	Y anam – 533464. I		
NDIA.	IN DIA.		