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I. Introduction: 

John M. Howie introduced  relations  L∗, R∗  and H∗  in the book entitled  ”Fun- damentals  of  

Semigroup  Theory  ” [1].  The  relation  L∗  defined on a semigroup  S by  the  rule  that   aL∗b  if  and  

only  if ax   = ay  ⇐⇒  bx  = by, ∀x, y  ∈   S1 
,  and the  relation  R∗  defined on  a  semigroup  S  by  

the  rule  that   aR∗
b  if and  only  if xa  = ya ⇐⇒ xb = yb, ∀x, y ∈  S1

, and  the  relation  H∗  defined 

on a semigroup S by the  rule that  aH∗
b if and only if axa = aya ⇐⇒ bxb = byb, ∀x, y ∈ S1 

. If S is a 

semigroup then L ⊆ L∗, and L∗ is a right congruence on S , and for every idempotent e in S , aL∗e if and 

only if ae = a and ax = ay ⇒ ex = ey, ∀x, y ∈ S1 
. If S is regular then  L = L∗. The containment  L ⊆ 

L∗  well be proper.  It is observed that  in the cancellative semigroup S (see def 1.4) L = 1S , L
∗ 

= S × 

S .  The equivalences R∗ and H∗  are defined by analogy with  L∗. Then  every H∗-class containing  an 

idempotent is a subsemigroup  of S and is a cancellative semigroup with identity  element e. 

In this paper we proved some interesting  and independent results using the equiv- alences  L∗, R∗   

and  H∗. First  we proved  in  theorem  (2.4),  that   if S  is  a  semi- group  with  zero,  then  0L∗   =  {0}, 

0R∗   =  {0}. Further it  is  obtained  in  theo- rem  (2.5), that  in a semigroup S ,  L∗ 
T

(RegS × 

RegS)  = L 
T

(RegS × RegS)  and R∗ 
T

(RegS × RegS) = R 
T

(RegS × RegS)  where RegS  stands for 

semigroup S with regular elements.  From Theorem  (2.5) we obtained  as a corollary (2.6), that  if S is a 

regular semigroup then  L∗ 
= L and R∗ = R. It is interesting  to observe that,  if S is a periodic 

semigroup which is also cancellative, then  S is a union of groups, which is obtained in lemma (2.7). It is 

observed in theorem (2.8), that  in a periodic semigroup (see def 1.6) He   = H 
∗

. It is also observed in 

lemma (2.9), that  H 
∗  

is a group if ande  eonly if H 
∗  

= He.  Unlike the  Green’s relations  L and R the  

relations  L∗  and R∗  do not permute,  for this  an example is obtained  in (2.10).  It is also very 

interesting  to observe that  on a semigroup S  if a is a regular  element of S ,  then  every element of aR∗  

need not be regular.  For this an example is obtained  in (2.11). 

 

AMS sub ject classification number: 20M18 

 

First we start  with following preliminaries. 

 

Definition 1.0:  A pair (S, .) where S is a non empty set and 
0
.
0  

is a binary operation defined on S  is said 

to be a semigroup if a.(b.c) = (a.b).c for all a, b, c ∈ S. 

 

Definition 1.1:  A semigroup (S, .) is said to be a semigroup with zero if there exists an element 0 ∈ S 

such that  0.a = a.0 = 0  for all  a ∈ S. 

A semigroup (S, .) is said to be a semigroup with identity if there exists an element 

1 ∈ S such that  1.a = a.1 = 1  for all  a ∈ S. 
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Definition 1.2:   A semigroup (S, .) is said to be commutative  if a.b = b.a for all 

a, b ∈ S. 

 

Definition 1.3:  Let S be a semigroup.  An element a ∈ S is said to be an idempotent if aa = a and the 

set of all idempotents  of S is denoted  by E(S)  or ES  or E. 

 

Definition 1.4:  A semigroup S is called cancellative semigroup in which for all a, b, c, ca = cb implies a = b 

and ac = bc implies a = b. 

 

Definition 1.5:  An element a of a semigroup S is said to be regular  if there  exists an x ∈ S such that  

axa = a.  If every element of S is regular,  then  we say that  S is regular semigroup. 

 

Definition 1.6:  If every element of a semigroup S has finite order, then S is said to be periodic. 

 

Definition 1.7:  A semigroup S is called a union of groups if each of its elements is contained  in some 

subgroup of S. 

 

Definition 1.8:   If S  is a  semigroup  the  equivalence  relations  L, R, H, I and  D defined by L = {(a, 

b) ∈ S × S  | S
1

a = S
1

b},  R = {(a, b) ∈ S × S  | aS
1   

= bS
1}, and H = L 

T 
R,  I = {(a, b) ∈ S × S 

| S1   
aS

1   
= S

1   
bS

1}, and D = LoR are called Green’s relations  on S. 

 

Definition 1.9:  A relation  R  on a semigroup S is said to be right(left)  compatible if for a, b in S,  (a, b) 

∈ R implies (ac, ba) ∈ R and (ca, cb) ∈ R for every c ∈ S .  A right(left)  compatible equivalence relation  

on S is called right(left)  congruence.  By a congruence on S we mean an equivalence on S which is both 

right and left compatible. 

First we start  with the following theorem due to J.M.Howie [1], which is stated  in exercise. But 

for the sake of definiteness we proved the following theorem. 

 

Theorem 2.1:  The relation L∗ on a semigroup S defined by the rule that  aL∗b if and only if ax = ay 

⇐⇒ bx = by, ∀x, y ∈ S1  
is an equivalence relation.  If S is a semigroup then  L ⊆ L∗  and that  L∗  

is a 

right congruence on S  and  for every idempotent e in S , aL∗e if and only if ae = a and ax = ay ⇒ ex = 

ey, ∀x, y ∈ S1
. If S is regular then L = L∗. 

 

Proof : First  we observe that  L∗ is an equivalence relation. 

aL∗a for every a as ax = ay ⇐⇒ ax = ay, so that  L∗ is reflexive. 

Suppose aL∗b then  ax = ay ⇐⇒ bx = by, ∀x, y ∈ S1   
and thus bx = by ⇐⇒ ax = ay 

and hence bL∗a so that  L∗ 
is symmetric. 

Suppose aL∗b  and bL∗c  so that  ax  = ay ⇐⇒ bx = by and bx = by ⇐⇒ cx = cy, 

∀x, y ∈ S
1     

and thus ax = ay ⇐⇒ cx = cy, ∀x, y ∈ S
1     

and hence aL∗c. Thus L∗  is transtive.  

Hence L
∗  

is an equivalence relation. 

We claim that  L ⊆ L∗. 

Suppose (a, b) ∈ L so that  S
1

a = S
1

b   then  ∃u, v ∈ S1   
such that  ua = b and vb = a. Assume that ax = 

ay  then bx = uax = uay = by  and also assume that  bx = by  then ax = vbx = vby = ay and hence ax = 

ay ⇐⇒ bx = by, ∀x, y ∈ S1
. Thus (a, b) ∈ L∗. Hence L ⊆ L∗. 

Now we have to show that  L∗ is a right congruence on S. 

Suppose let (a, b) ∈ L∗ so that  ax = ay ⇐⇒ bx = by, ∀x, y ∈ S1
. 

Now we claim that  (ac, bc) ∈ L∗. i.e.(ac)x = (ac)y ⇐⇒ (bc)x = (bc)y, ∀x, y ∈ S1
. 

Let c ∈ S . Assume that  (ac)x = (ac)y and thus a(cx) = a(cy) and hence b(cx) = b(cy) 

by the definition of L∗ and therefore (bc)x = (bc)y. 
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Conversely, suppose that  (bc)x = (bc)y and  thus b(cx)  = b(cy)  and  hence a(cx)  = 

a(cy) by the definition of L∗ 
and therefore (ac)x = (ac)y. 

Thus (ac)x = (ac)y ⇐⇒ (bc)x = (bc)y, ∀x, y ∈ S1   
and therefore (ac, bc) ∈ L∗. Hence 

L∗ is a right congruence on S. 

Now we show that,   for every idempotent  e in S ,  aL∗e if and  only if ae = a and ax = ay =⇒ ex = 

ey, ∀x, y ∈ S1
.  First  we claim that  ae = a.  Assume that  aL∗e so that  ax = ay =⇒ ex = ey, ∀x, y ∈ S1

.   

Put  x = e and y = 1, then  ex = e.e = e
2  

= e and ey = e.1 = e and thus ex = ey and now  ax = ay so 

that  a.e = a.1 and thus ae = a.  Conversely suppose that  ae = a and  ax  = ay  =⇒ ex  = ey, ∀x, y ∈  

S
1

. Assume that  ex = ey  now ax = aex = aey = ay and thus ex = ey =⇒ ax = ay and hence ax = ay 

⇐⇒ ex = ey, ∀x, y ∈ S1
. Hence (a, e) ∈ L∗. 

Now we prove that  L∗ = L, if S is regular. 

Suppose, let (a, b) ∈ L∗ so that  ax = ay ⇐⇒ bx = by, ∀x, y ∈ S. 

Take a
0  ∈ V (a) so that  a = aa

0
a.  Now a = a.1 = a(a

0
a) so b = b(1) = b(a

0
a) and thus Sb = Sba

0
a ⊆ Sa 

and also take b
0  ∈ V (b) so that  b = bb

0
b.  Now b = b(1) = b(b

0
b) so a = a(1) = a(b

0
b) and thus Sa = 

Sab
0
b ⊆ Sb   and hence Sa = Sb.  Thus (a, b) ∈ L so that  L∗ ⊆ L. Since L ⊆ L∗, so we have L = L∗. 

 

Theorem 2.2:  The containment L ⊆ L∗ 
may well be proper.  If S is the cancellative semigroup then L 

= 1S , L
∗ 

= S × S. 

 

Proof : Suppose S is the set of non negative integers, then S is a cancellative under addition.  Suppose 

(a, b) ∈ L so that  S
0  

+ a = S
0  

+ b (since S is additive and identity is 0) and thus a = x + b, b = y + a 

for some x, y ∈ S0   
and hence a = x + b ≥ b and b = y + a ≥ a. Hence a = b and hence L = 1S . 

Suppose (a, b) ∈ L∗  so that  a + x = a + y ⇐⇒ b + x = b + y, for some x, y ∈ S1   and 

thus x = y as S is cancellative and hence L∗ = S × S . 

Theorem 2.3:  The equivalences R∗  and H∗  are defined by analogy with L∗. Then every H∗-class 

containing  an idempotent is a subsemigroup of S and is a cancellative semigroup with identity  element 

’e’. 

Proof :  Suppose ’e’ is an idempotent  and a ∈ L∗e so that  (a, e) ∈ L∗  if and only if ae = a and ax = 

ay =⇒ ex = ey, ∀x, y ∈ S
1   

and a ∈ R∗e so that  (a, e) ∈ R∗  if and  only if ea = a and  xa = ya =⇒ 

xe = ye, ∀x, y ∈ S
1 

.  Assume that  (a, e) ∈ L∗ so that  ax = ay =⇒ ex = ey, ∀x, y ∈ S1  
put x = e, y 

= 1 then  ex = e.e = e
2  

= e, ey = e.1 = e and thus ex = ey and now ax = ay so that a.e = a.1 and 

hence ae = a and ax = ay =⇒ ex = ey ( by definition ). 

Conversely, suppose that  ae = a and ax = ay =⇒ ex = ey. 

Now, we claim that  (a, e) ∈ L∗. i.e. ax = ay ⇐⇒ ex = ey. Assume that  ex = ey and 

ae = a. Now ax = aex = aey = ay and thus (a, e) ∈ L∗. 

Now assume that  (a, e) ∈ R∗  so that  xa = ya ⇐⇒ xe = ye, ∀x, y ∈ S
1   

put  x = e, y = 1, then xe = 

e.e = e
2  

= e, ye = 1.e = e and thus xe = ye and now xa = ya =⇒ e.a = 1.a and hence ea = a and xa 

= ya =⇒ xe = ye ( by definition ). 

Conversely, suppose that  ea = a and xa = ya =⇒ xe = ye. 

Now, we claim that  (a, e) ∈ R∗. i.e.  xa  = ya ⇐⇒ xe  = ye.  Assume that  xe  = ye 

and ea = a. Now xa = xea = yea = ya and thus (a, e) ∈ R∗. Therefore (a, e) ∈ R∗ 
T 

L∗ = H∗ so that  

a ∈ H∗e. 
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b 

Let a ∈  H∗e, so that  ea  = a,  ae  = a.   Suppose a, b  ∈ H∗e so that  (a, e)  ∈  H∗ and (b, e) ∈ H∗. 

Now we claim that  (ab, e) ∈  H∗  = R∗ 
T 

L∗. First  we show that  (ab, e) ∈  R∗. i.e.  to show  that  

x(ab) = y(ab) ⇐⇒ xe = ye, ∀x, y ∈  S1
.  Now, let x(ab)  = y(ab) so that  (xa)b = (ya)b  and  thus (xa)e 

= (ya)e  (since b  ∈ R∗e then xb = yb  ⇐⇒  xe  = ye)  and  hence x(ae)  = y(ae)  and  therefore  xa  = 

ya so that  xe = ye (since (a, e) ∈ R∗). Conversely, suppose that  xe = ye.  Now we claim that  x(ab)  = 

y(ab) .We have xe  = ye so that  (xe)a  = (ye)a  and  thus  x(ea)  = y(ea) and  hence xa  = ya and  

therefore  (xa)b = (ya)b  and  hence x(ab)  = y(ab).   Hence ab ∈ R∗
e. 

Now, we show that  (ab, e) ∈  L∗.  i.e.   to  show that  (ab)x  = (ab)y  ⇐⇒  ex  = ey, 

∀x, y ∈ S
1

.  Let (ab)x  = (ab)y so that  a(bx)  = a(by) and thus e(bx) = e(by) (since (a, e) ∈ L∗e i.e.  ax 

= ay ⇐⇒ ex = ey).  Since e is the  identity,  so we have bx = by and hence ex = ey (since (b, e) ∈ L∗e 

i.e. bx = by ⇐⇒ ex = ey). 

Conversely,  suppose that  ex  = ey.   Now, we claim that  (ab)x  = (ab)y.   We have 

ex  = ey  so that  b(ex)  = b(ey)  and  thus  bx  = by and  hence  a(bx)  = a(by)  and therefore  (ab)x  =  

(ab)y.   Thus  ab ∈  L∗e.   Hence ab ∈  R∗
e 

T 
L∗e = H∗e.  Thus ab ∈ H∗

e. 

Let a, x, y ∈ H∗e. Now suppose that  ax = ay so that  ex = ey and hence x = y (since x ∈ H∗e and e is 

the identity of H∗e) and also suppose that  xa = ya so that  xe = ye and hence x = y. Thus H∗e is a 

cancellative semigroup with identity. 

 

Now we prove the following interesting  and independent results. 

 

Theorem 2.4:  If S is a semigroup with zero, then  0L∗ = {0}, 0R∗ 
= {0}. 

 

proof  : Let a ∈ 0L∗  so that  (a, 0) ∈ L∗ and hence ax = ay ⇐⇒ 0x = 0y, ∀x, y ∈ S1
, putting  x = 1 and 

y = 0 we have 0.x = 0.1 = 0 and 0.y = 0.0 = 0 and hence ax = ay so that  ax = a.1 = a and ay = a.0 = 0 

and thus a = 0. Hence L∗ 
= {0} . 

Let a ∈ 0R∗ so that  (a, 0) ∈ R∗ and hence xa = ya ⇐⇒ x0 = y0, ∀x, y ∈ S1, putting 

 

x = 1 and  y = 0 we have x.0 = 1.0 = 0 and  y0 = 0.0 = 0 and  hence xa = 1.a = a 

and ya = 0.a = 0 and thus a = 0. Hence 0R∗ 
= {0}. 

Theorem 2.5:  In a semigroup S , L∗ 
T

(RegS × RegS)  = L 
T

(RegS × RegS)  where 

 

RegS  stands  for semigroup S with regular elements. 

Proof :  Let (a, b) ∈  L∗ 
T

(RegS × RegS)  so that  (a, b) ∈  L∗  and a, b are regular elements  of S  and  

thus ax  = ay ⇐⇒ bx = by, ∀x, y ∈  S1    
and a = aa

0
a,  b = bb

0
b (since a, b are regular).   As a  is  

regular,  there  exists a
0  ∈ V (a) such that  a = aa

0
a. Now a = a.1 = a(a

0
a), so b = b.1 = b(a

0
a) and thus 

S
1

b = S
1

ba
0
a ⊆ S1

a −→ (1) and also b is regular, so there exists b
0  ∈ V (b) such that  b = bb

0
b.  Now b = 

b.1 = b(b
0
b), so a = a.1 = a(b

0
b) and thus S

1
a = S

1
ab

0
b ⊆ S

1   −→ (2).  From  (1) and (2) S
1 

a = S
1

b 

and thus (a, b) ∈ L. Hence (a, b) ∈ L 
T

(RegS × RegS). 

Since L ⊆ L∗, so L 
T

(RegS × Regs)  ⊆ L∗ T(RegS × RegS).   Hence L∗ 
T

(RegS × 

Regs)  = L 
T

(RegS × RegS). 

Remark :  By the above theorem  (2.5), similarly we can prove that  R∗ T
(RegS × 

RegS)  = R 
T

(RegS × RegS). 
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Corollary 2.6:  If S is a regular semigroup, then  L∗ = L and R∗ = R. 

 

Lemma 2.7:  If S is a periodic semigroup which is also cancellative then S is a union of groups. 

Proof : Suppose S is a periodic semigroup.  Let a ∈ S , such that  index of a is m and period of a is r.  

Then  (a) = {a, a
2 

, . . . , a
m 

, a
m+1 

, . . . , a
m+r−1}.  Since S  is periodic, so (a)  is finite and  also S  is  

cancellative,  so (a)  is cancellative.   Thus  (a)  is finite 

cancellative  group.  Thus S is a union of groups. 

 

Theorem 2.8:  In a periodic semigroup H e = H 
∗

e. 

Proof :  Suppose a ∈ H 
∗

e.  Since S be periodic, so by Lemma (2.7) S is a union of groups.  So a ∈ H f , 

where H f is a subgroup  of S .  Also we have H 
∗

e is cancellative semigroup with identity 
0
e

0  
so we have 

ea = aand f a = a and thus ea = f a and hence e = f . Thus a ∈ H e and therefore H 
∗

e ⊆ H e, we have H e 

⊆ H 
∗

e so that  H 
∗

e = H e. 

 

Lemma 2.9:  H 
∗

e is a group if and only if H 
∗

e = H e. 

Proof :  Assume that  H e = H 
∗

e, then  H 
∗

e is a group (since H e is a group).  Con- versely, suppose 

that  H 
∗

e is group.  Let a ∈ H 
∗

e  so that  ∃a
0  3 aa

0  
= e, a

0
a = e and ae = ea = a. 

Now we claim that  a ∈ H e, i.e. a ∈ Le 
T 

Re.  We have S1a = S1 ae ⊆ S1e = S1a0a ⊆ 

S
1

a and thus S
1

a = S
1

e and hence (a, e) ∈ L. Let aS
1  

= eaS
1  ⊆ eS

1  
= aa

0
S

1  ⊆ aS
1 

and thus  aS
1  

= eS
1    

and hence (a, e) ∈ R. Thus (a, e) ∈ L 
T 

R = H. Hence a ∈ H e. Thus H 
∗

e ⊆ H e. We have H e ⊆ 

H 
∗

e and Hence H 
∗

e = H e. 

Example 2.10:   Unlike the Green’s relations  L and R the relations  L∗  and R∗  do not  permute an 

example  is given to show that  the  inequality  R∗
oL∗  

= L∗oR∗  
does not hold in general. 
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Let S  be the  set of all 2 × 2 matrices  of the  form 

numbers. 

Ã
a  b

!
 

 

0 d 

 
, where a, b, d are all real 

 

Let 

Ã
a  b

!
 
, 

0 d 

Ã
c  e 

!
 

 

0  f 

 

∈ S. 

 

 

Now 

Ã
a  b

! Ã
c  e 

!
 

Ã
ac   ae + bf 

!
 

= ∈ S 
0 d  0   f 0 df 

 

 

Let 

Ã
1   1

! Ã
1   1

!
 

Ã
1   1

!
 

= 

 

 

= e  is an idempotent, 
0  0 0   0 0   0 

Ã
0   0

! Ã
0   0

!
 
= 

Ã
0   0

!
 

 

 

= f  is an idempotent 
0  1 0   1 0   1 

 

 

and ef = 

Ã
1   1

! Ã
0   0

!
 

Ã
0   1

!
 

= 

 

 

= a. 
0  0 0   1 0   0 

Thus product  of two idempotents  is not an idempotent. 
 

Also 

Ã
0   1

! Ã
0   1

!
 

Ã
0   0

!
 

= 

 

= a2. 
0  0 0   0 0   0 

 

 

Suppose 

Ã
0   1

!
 

 

0  0 

 

 

is regular, 

 

 

then 

Ã
0   1

!Ã
a b

!Ã
0   1

!
 

Ã
0   d

!Ã
0   1

!
 

= 

Ã
0   0

!
 

= = 

Ã
0   1

!
 
. 

0  0 0 d  0   0 
Ã

0   1
!

 
Thus  is not regular. 

0  0 

0 0 0   0 0   0 0   0 

Let S = {0, e, f, a} be a semigroup. 

 

. 0 e f a 

0 0 0 0 0 

e 0 e e e 

f 0 0 f 0 

a 0 0 a 0 
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f a = 

Ã
0   0

!Ã
0   1

!
 

Ã
0   0

!
 

= 
0  1 0   0 0   0 

 

 

ea = 

Ã
1   1

!Ã
0   1

!
 

Ã
0   1

!
 

= = a 
0  0 0   0 0   0 

 

 

f e = 

Ã
0   0

!Ã
1   1

!
 
= 

Ã
0   0

!
 

0  1 0   0 0   0 
 

 

ae = 

Ã
0   1

!Ã
1   1

!
 

Ã
0   0

!
 

= 
0  0 0   0 0   0 

 

 

af = 

Ã
0   1

!Ã
0   0

!
 
= 

Ã
0   1

!
 
 

 

= a. 
0  0 0   1 0   0 

We have (a, e) ∈ R∗ since xa = ya ⇐⇒ xe = ya, for x, y ∈ S1. 
 

Now, we have ea = a = 1.a, putting  x = e, y = 1 and e.e = e = 1.e also a.a = a2  = 0, 
 

0.a = 0 and a.e = 0, 0.e = 0 and also f.a = 0 = a.a and f.e = 0 = a.e. 

If (a, f ) ∈  R∗  then xa = ya ⇐⇒ xf = yf .  Now ea = a = 1.a, ef = a, 1.f  = f , 

f a = 0 = 0a, f f = f , 0f  = 0. Thus (a, f ) ∈/ R∗. Thus R∗  = 1S 

S
{(a, e), (e, a)}. 

We have (a, f ) ∈  L∗  since ax  = ay  ⇐⇒ f x  = f y.   Now, we have a.a = a2   = 0, 
 

a.0 = 0, f.a = 0 = f.0 and a.e = 0 = a.a, f.e = 0 = f.a. 

If (a, e) ∈  L∗  then ax  = ay ⇐⇒ ex  = ey.  Now a.e = 0 = a.0, e.e = e, e.0 = 0, 

a.f  = a = a.f , e.f  = a, e.1 = e. Thus (a, e) ∈/ L∗. Thus L∗ = 1S 

S
{(a, f ), (f, a)}. 

Now (e, a) ∈ R∗ and (a, f ) ∈ L∗, then (e, f ) ∈ R∗oL∗ and suppose that (e, z) ∈ L∗ and 

(z, f ) ∈ R∗ but (e, f ) ∈/ L∗oR∗ (since (e, a) ∈/ L∗, (a, f ) ∈ R∗). Thus R∗oL∗  = L∗oR∗. 

 
Example 2.11:  This is an example to show that,  if a is a regular element of S, then 

every element of aR∗  need not be regular. 

Suppose G is a group with more than  two elements and let S = {x, 0} be a null semi- 

group. Let ((a, x), (b, x)) ∈ (G × S) × (G × S).  Now, we claim that  ((a, x), (b, x)) ∈ R 

so that  (a, x)(G × S)1   = (b, x)(G × S)1   and thus (a, x) = (b, x).1, where 1 ∈ (G × S)1, 

if a = b, then  (a, x)  is not  R-equivalent  to (b, x).   Now ((a, x), (b, 0)) ∈  R so that  

(a, x)(G  × S)1     = (b, 0)(G × S)1    so that  (a, x)   = (b, 0).(c, x)   = (bc, 0)  which  is 

not  true  (since  x  = 0). Now it  can  be  verified that   ((a, 0), (b, 0))  ∈  R so that 
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(a, 0)(G × S)1   = (b, 0)(G × S)1   and thus (a, 0) = (b, 0).(c, x) = (bc, 0). 

Thus, R = 1(G×S) 

S
{(a, 0), (b, 0)}, for a, b ∈ G. 

Now, we claim that  ((a, x), (b, x))  ∈  R∗.  We have (u, v)(a, x)  = (m, n)(a, x)  ⇐⇒ 

(u, v)(b, x) = (m, n)(b, x)  and thus (ua, vx)  = (ma, nx)  ⇐⇒ (ub, vx)  = (mb, nx)  and 

hence (ua, 0) = (ma, 0) ⇐⇒ (ub, 0) = (mb, 0) (since vx = 0, nx = 0). 

Thus ua = ma =⇒ u = m (since a ∈ G, G has cancellative property)  so thus ub = mb 

and suppose that  ub = mb =⇒ ua = ma.  Thus ((a, x), (b, x)) ∈ R∗. 

Now,  we claim  that   (a, x)  ∈  R∗(b, 0).  We  have  (u, v)(a, x)  = (m, n)(a, x)  ⇐⇒ 

(u, v)(b, 0) = (m, n)(b, 0) and thus (ua, vx) = (ma, nx)  ⇐⇒ (ub, 0) = (mb, 0).  Hence 

(ua, 0) = (ma, 0) ⇐⇒ (ub, 0) = (mb, 0). Thus ((a, x), (b, 0)) ∈ R∗. 

Hence R∗ = {(a, x), (b, x), (a, 0), (b, 0)}.  Thus R∗ = (G × S) × (G × S). 

Let (e, 0)(e, 0) = (e2, 0) = (e, 0). Thus (e, 0) is an idempotent in R∗. 

Now, we claim that  (e, x)  is not  regular.  Suppose (e, x)  is regular,  then  there  exists 

(a, u) such that  (e, x)(a, u)(e, x)  = (e, x).   Now (e, x)(a, u)(e, x)  = (ea, xu)(e, x)  = 

(ea, 0)(e, x)  = (eae, 0) = (e, x)  (since x  = 0).  Thus particular (e, x)  is in (e, 0)R∗
 

which is not regular. 
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