On Extensions of Green's Relations in Semi groups
 ${ }^{1}$ D.V.Vijay Kumar and ${ }^{2}$ K.V.R.Srinivas

Abstract: In this paper mainly we have obtained interesting and independent results using the equivalences L^{*}, R^{*} and H^{*}.
Keywords: Union of groups, Periodic semigroup and Cancellative semigroup.

I. Introduction:

John M. Howie introduced relations L^{*}, R^{*} and H^{*} in the book entitled "Fun- damentals of Semigroup Theory " [1]. The relation L^{*} defined on a semigroup S by the rule that $a L^{*} b$ if and only if $a x=a y \Longleftrightarrow b x=b y, \forall x, y \in S^{1}$, and the relation R^{*} defined on a semigroup S by the rule that $a R^{*} b$ if and only if $x a=y a \Longleftrightarrow x b=y b, \forall x, y \in S^{1}$, and the relation H^{*} defined on a semigroup S by the rule that $a H^{*} b$ if and only if $a x a=a y a \Longleftrightarrow b x b=b y b, \forall x, y \in S^{1}$. If S is a semigroup then $L \subseteq L^{*}$, and L^{*} is a right congruence on S, and for every idempotent e in $S, a L^{*} e$ if and only if $a e=a$ and $a x=a y \Rightarrow e x=e y, \forall x, y \in S^{1}$. If S is regular then $L=L^{*}$. The containment $L \subseteq$ L^{*} well be proper. It is observed that in the cancellative semigroup S (see def 1.4) $L=1_{S}, L^{*}=S \times$ S. The equivalences R^{*} and H^{*} are defined by analogy with L^{*}. Then every H^{*}-class containing an idempotent is a subsemigroup of S and is a cancellative semigroup with identity element e.

In this paper we proved some interesting and independent results using the equiv- alences L^{*}, R^{*} and H^{*}.First we proved in theorem (2.4), that if S is a semi- group with zero, then $0 L^{*}=\{0\}$, $0 R^{*}=\{0\}$. Further it is obtained in theo- rem (2.5), that in a semigroup $S, L^{*}{ }^{\mathrm{T}}(\operatorname{Reg} S \times$ $\left.R e g S)=L^{\mathrm{T}}{ }_{(\operatorname{Reg} S} \times \operatorname{Reg} S\right)$ and $\left.R^{*}{ }^{\mathrm{T}}(\operatorname{Reg} S \times \operatorname{Reg} S)=R^{\mathrm{T}}{ }_{(R e g S} \times \operatorname{Reg} S\right)$ where RegS stands for semigroup S with regular elements. From Theorem (2.5) we obtained as a corollary (2.6), that if S is a regular semigroup then $L^{*}=L$ and $R^{*}=R$. It is interesting to observe that, if S is a periodic semigroup which is also cancellative, then S is a union of groups, which is obtained in lemma (2.7). It is observed in theorem (2.8), that in a periodic semigroup (see def 1.6) $H_{e}=H^{*}$. It is also observed in lemma (2.9), that H^{*} is a group if ande $e_{\text {only }}$ if $H^{*}=H_{e}$. Unlike the Green's relations L and \boldsymbol{R} the relations L^{*} and R^{*} do not permute, for this an example is obtained in (2.10). It is also very interesting to observe that on a semigroup S if a is a regular element of S, then every element of $a R^{*}$ need not be regular. For this an example is obtained in (2.11).

AMS sub ject classification number: 20M18
First we start with following preliminaries.
Definition 1.0: A pair (S, .) where S is a non empty set and ${ }^{0.0}$ is a binary operation defined on S is said to be a semigroup if $a .(b . c)=(a . b) . c$ for all $a, b, c \in S$.

Definition 1.1: A semigroup ($S,$.) is said to be a semigroup with zero if there exists an element $0 \in S$ such that $0 . a=a .0=0$ for all $a \in S$.

A semigroup (S, .) is said to be a semigroup with identity if there exists an element $1 \in S$ such that $1 . a=a .1=1$ for all $a \in S$.

Definition 1.2: A semigroup (S, .) is said to be commutative if $a . b=b . a$ for all $a, b \in S$.

Definition 1.3: Let S be a semigroup. An element $a \in S$ is said to be an idempotent if $a a=a$ and the set of all idempotents of S is denoted by $E(S)$ or E_{S} or E.

Definition 1.4: A semigroup S is called cancellative semigroup in which for all $a, b, c, c a=c b$ implies $a=b$ and $a c=b c$ implies $a=b$.

Definition 1.5: An element a of a semigroup S is said to be regular if there exists an $x \in S$ such that axa $=a$. If every element of S is regular, then we say that S is regular semigroup.

Definition 1.6: If every element of a semigroup S has finite order, then S is said to be periodic.
Definition 1.7: A semigroup S is called a union of groups if each of its elements is contained in some subgroup of S.

Definition 1.8: If S is a semigroup the equivalence relations L, R, H, \boldsymbol{I} and D defined by $L=\boldsymbol{f}(a$, b) $\in S \times S / S^{1} a=S^{1} b \boldsymbol{\}}, R=\left\{(a, b) \in S \times S / a S^{1}=b S^{1} \boldsymbol{\jmath}\right.$, and $H=L^{\mathrm{T}} R, \boldsymbol{I}=\boldsymbol{\{}(a, b) \in S \times S$ $/ S^{1} a S^{1}=S^{1} b S^{1} \boldsymbol{f}$, and $D=L o R$ are called Green's relations on S.

Definition 1.9: A relation R on a semigroup S is said to be $\operatorname{right}(\mathrm{left})$ compatible if for a, b in $S,(a, b)$ $\in R$ implies $(a c, b a) \in R$ and $(c a, c b) \in R$ for every $c \in S$. A right(left) compatible equivalence relation on S is called right(left) congruence. By a congruence on S we mean an equivalence on S which is both right and left compatible.

First we start with the following theorem due to J.M.Howie [1], which is stated in exercise. But for the sake of definiteness we proved the following theorem.

Theorem 2.1: The relation L^{*} on a semigroup S defined by the rule that $a L^{*} b$ if and only if $a x=a y$ $\Leftrightarrow b x=b y, \forall x, y \in S^{1}$ is an equivalence relation. If S is a semigroup then $L \subseteq L^{*}$ and that L^{*} is a right congruence on S and for every idempotent e in $S, a L^{*} e$ if and only if $a e=a$ and $a x=a y \Rightarrow e x=$ $e y, \forall x, y \in S^{1}$. If S is regular then $L=L^{*}$.

Proof : First we observe that L^{*} is an equivalence relation.
$a L^{*} a$ for every a as $a x=a y \Longleftrightarrow a x=a y$, so that L^{*} is reflexive.
Suppose $a L^{*} b$ then $a x=a y \Longleftrightarrow b x=b y, \forall x, y \in S^{1}$ and thus $b x=b y \Longleftrightarrow a x=a y$ and hence $b L^{*} a$ so that L^{*} is symmetric.
Suppose $a L^{*} b$ and $b L^{*} c$ so that $a x=a y \Longleftrightarrow b x=b y$ and $b x=b y \Longleftrightarrow c x=c y$,
$\forall x, y \in S^{1} \quad$ and thus $a x=a y \Leftrightarrow c x=c y, \forall x, y \in S^{1} \quad$ and hence $a L^{*} c$. Thus L^{*} is transtive. Hence L^{*} is an equivalence relation.
We claim that $L \subseteq L^{*}$.
Suppose $(a, b) \in L$ so that $S^{1} a=S^{1} b$ then $\exists u, v \in S^{1}$ such that $u a=b$ and $v b=a$. Assume that $a x=$ $a y$ then $b x=u a x=u a y=b y$ and also assume that $b x=b y$ then $a x=v b x=v b y=a y$ and hence $a x=$ $a y \Longleftrightarrow b x=b y, \forall x, y \in S^{1}$. Thus $(a, b) \in L^{*}$. Hence $L \subseteq L^{*}$.
Now we have to show that L^{*} is a right congruence on S.
Suppose let $(a, b) \in L^{*}$ so that $a x=a y \Longleftrightarrow b x=b y, \forall x, y \in S^{1}$.
Now we claim that $(a c, b c) \in L^{*}$. i.e. $(a c) x=(a c) y \Longleftrightarrow(b c) x=(b c) y, \forall x, y \in S^{1}$.
Let $c \in S$. Assume that $(a c) x=(a c) y$ and thus $a(c x)=a(c y)$ and hence $b(c x)=b(c y)$
by the definition of L^{*} and therefore $(b c) x=(b c) y$.

Conversely, suppose that $(b c) x=(b c) y$ and thus $b(c x)=b(c y)$ and hence $a(c x)=$
$a(c y)$ by the definition of L^{*} and therefore $(a c) x=(a c) y$.
Thus $(a c) x=(a c) y \Longleftrightarrow(b c) x=(b c) y, \forall x, y \in S^{1}$ and therefore $(a c, b c) \in L^{*}$. Hence
L^{*} is a right congruence on S.
Now we show that, for every idempotent e in $S, a L^{*} e$ if and only if $a e=a$ and $a x=a y=\Rightarrow e x=$ $e y, \forall x, y \in S^{1}$. First we claim that $a e=a$. Assume that $a L^{*} e$ so that $a x=a y=\Rightarrow e x=e y, \forall x, y \in S^{1}$. Put $x=e$ and $y=1$, then $e x=e . e=e^{2}=e$ and $e y=e .1=e$ and thus $e x=e y$ and now $a x=a y$ so that $a . e=a .1$ and thus $a e=a$. Conversely suppose that $a e=a$ and $a x=a y=\Rightarrow e x=e y, \forall x, y \in$ S^{1}. Assume that $e x=e y$ now $a x=a e x=a e y=a y$ and thus $e x=e y=\Rightarrow a x=a y$ and hence $a x=a y$ $\Leftrightarrow e x=e y, \forall x, y \in S^{1}$. Hence $(a, e) \in L^{*}$.
Now we prove that $L^{*}=L$, if S is regular.
Suppose, let $(a, b) \in L^{*}$ so that $a x=a y \Longleftrightarrow b x=b y, \forall x, y \in S$.
Take $a^{0} \in V(a)$ so that $a=a a^{0} a$. Now $a=a .1=a\left(a^{0} a\right)$ so $b=b(1)=b\left(a^{0} a\right)$ and thus $S b=S b a^{0} a \subseteq S a$ and also take $b^{0} \in V(b)$ so that $b=b b^{0} b$. Now $b=b(1)=b\left(b^{0} b\right)$ so $a=a(1)=a\left(b^{0} b\right)$ and thus $S a=$ $S a b b^{0} \subseteq S_{b}$ and hence $S a=S b$. Thus $(a, b) \in L$ so that $L^{*} \subseteq L$. Since $L \subseteq L^{*}$, so we have $L=L^{*}$.

Theorem 2.2: The containment $L \subseteq L^{*}$ may well be proper. If S is the cancellative semigroup then L $=1_{S}, L^{*}=S \times S$.

Proof : Suppose S is the set of non negative integers, then S is a cancellative under addition. Suppose $(a, b) \in L$ so that $S^{0}+a=S^{0}+b$ (since S is additive and identity is 0) and thus $a=x+b, b=y+a$ for some $x, y \in S^{0}$ and hence $a=x+b \geq b$ and $b=y+a \geq a$. Hence $a=b$ and hence $L=1 S$.
Suppose $(a, b) \in L^{*}$ so that $a+x=a+y \Longleftrightarrow b+x=b+y$, for some $x, y \in S^{1}$ and thus $x=y$ as S is cancellative and hence $L^{*}=S \times S$.
Theorem 2.3: The equivalences R^{*} and H^{*} are defined by analogy with L^{*}. Then every H^{*}-class containing an idempotent is a subsemigroup of S and is a cancellative semigroup with identity element ' e '.
Proof : Suppose ' e ' is an idempotent and $a \in L^{*} e$ so that $(a, e) \in L^{*}$ if and only if $a e=a$ and $a x=$ $a y=e x=e y, \forall x, y \in S^{1}$ and $a \in R^{*} e$ so that $(a, e) \in R^{*}$ if and only if $e a=a$ and $x a=y a=\Rightarrow$ $x e=y e, \forall x, y \in S^{1}$. Assume that $(a, e) \in L^{*}$ so that $a x=a y \Rightarrow e x=e y, \forall x, y \in S^{1}$ put $x=e, y$ $=1$ then $e x=e . e=e^{2}=e, e y=e .1=e$ and thus $e x=e y$ and now $a x=a y$ so that $a . e=a .1$ and hence $a e=a$ and $a x=a y=\Rightarrow e x=e y$ (by definition).
Conversely, suppose that $a e=a$ and $a x=a y=\Rightarrow e x=e y$.
Now, we claim that $(a, e) \in L^{*}$. i.e. $a x=a y \Longleftrightarrow e x=e y$. Assume that $e x=e y$ and $a e=a$. Now $a x=a e x=a e y=a y$ and thus $(a, e) \in L^{*}$.
Now assume that $(a, e) \in R^{*}$ so that $x a=y a \Longleftrightarrow x e=y e, \forall x, y \in S^{1}$ put $x=e, y=1$, then $x e=$ $e . e=e^{2}=e, y e=1 . e=e$ and thus $x e=y e$ and now $x a=y a=\Rightarrow e . a=1 . a$ and hence $e a=a$ and $x a$ $=y a=\Rightarrow x e=y e$ (by definition).
Conversely, suppose that $e a=a$ and $x a=y a=\Rightarrow x e=y e$.
Now, we claim that $(a, e) \in R^{*}$. i.e. $x a=y a \Longleftrightarrow x e=y e$. Assume that $x e=y e$
and $e a=a$. Now $x a=x e a=y e a=y a$ and thus $(a, e) \in R^{*}$. Therefore $(a, e) \in R^{*} L^{*}=H^{*}$ so that $a \in H^{*} e$.

Let $a \in H^{*} e$, so that $e a=a$, ae $=a$. Suppose $a, b \in H^{*} e$ so that $(a, e) \in H^{*}$ and $(b, e) \in H^{*}$. Now we claim that $(a b, e) \in H^{*}=R^{*} L^{*}$. First we show that $(a b, e) \in R^{*}$. i.e. to show that $x(a b)=y(a b) \Leftrightarrow x e=y e, \forall x, y \in S^{1}$. Now, let $x(a b)=y(a b)$ so that $(x a) b=(y a) b$ and thus $(x a) e$ $=(y a) e$ (since $b \in R^{*} e$ then $x b=y b \Longleftrightarrow x e=y e$) and hence $x(a e)=y(a e)$ and therefore $x a=$ $y a$ so that $x e=y e\left(\operatorname{since}(a, e) \in R^{*}\right)$. Conversely, suppose that $x e=y e$. Now we claim that $x(a b)=$ $y(a b)$.We have $x e=y e$ so that $(x e) a=(y e) a$ and thus $x(e a)=y(e a)$ and hence $x a=y a$ and therefore $(x a) b=(y a) b$ and hence $x(a b)=y(a b)$. Hence $a b \in R^{*} e$.
Now, we show that $(a b, e) \in L^{*}$. i.e. to show that $(a b) x=(a b) y \Leftrightarrow e x=e y$,
$\forall x, y \in S^{1}$. Let $(a b) x=(a b) y$ so that $a(b x)=a(b y)$ and thus $e(b x)=e(b y)$ (since $(a, e) \in L^{*} e$ i.e. $a x$ $=a y \Longleftrightarrow e x=e y$). Since e is the identity, so we have $b x=b y$ and hence $e x=e y$ (since $(b, e) \in L^{*} e$ i.e. $b x=b y \Longleftrightarrow e x=e y$).

Conversely, suppose that $e x=e y$. Now, we claim that $(a b) x=(a b) y$. We have
$e x=e y$ so that $b(e x)=b(e y)$ and thus $b x=b y$ and hence $a(b x)=a(b y)$ and therefore $(a b) x=$ (ab)y. Thus $a b \in L^{*} e$. Hence $a b \in R^{*} e^{\mathrm{T}} L^{*} e=H^{*} e$. Thus $a b \in H^{*} e$.
Let $a, x, y \in H^{*} e$. Now suppose that $a x=a y$ so that $e x=e y$ and hence $x=y$ (since $x \in H^{*} e$ and e is the identity of $H^{*} e$) and also suppose that $x a=y a$ so that $x e=y e$ and hence $x=y$. Thus $H^{*} e$ is a cancellative semigroup with identity.

Now we prove the following interesting and independent results.
Theorem 2.4: If S is a semigroup with zero, then $0 L^{*}=\left\{0 \boldsymbol{\}}, 0 R^{*}=\{0 \boldsymbol{\}}\right.$.
proof : Let $a \in 0 L^{*}$ so that $(a, 0) \in L^{*}$ and hence $a x=a y \Longleftrightarrow 0 x=0 y, \forall x, y \in S^{1}$, putting $x=1$ and $y=0$ we have $0 . x=0.1=0$ and $0 . y=0.0=0$ and hence $a x=a y$ so that $a x=a .1=a$ and $a y=a .0=0$ and thus $a=0$. Hence $L^{*}=\{0 \boldsymbol{\}}$.
Let $a \in 0 R^{*}$ so that $(a, 0) \in R^{*}$ and hence $x a=y a \Longleftrightarrow x 0=y 0, \forall x, y \in S^{1}$, putting
$x=1$ and $y=0$ we have $x .0=1.0=0$ and $y 0=0.0=0$ and hence $x a=1 . a=a$
and $y a=0 . a=0$ and thus $a=0$. Hence $0 R^{*}=\{0\}$.
Theorem 2.5: In a semigroup $S, L^{*}{ }^{\mathrm{T}}(\operatorname{Reg} S \times \operatorname{Reg} S)=L^{\mathrm{T}}(\operatorname{Reg} S \times \operatorname{Reg} S)$ where
Reg S stands for semigroup S with regular elements.
Proof : Let $(a, b) \in L^{*}{ }^{\mathrm{T}}(\operatorname{Reg} S \times \operatorname{Reg} S)$ so that $(a, b) \in L^{*}$ and a, b are regular elements of S and thus $a x=a y \Longleftrightarrow b x=b y, \forall x, y \in S^{1} \quad$ and $a=a a^{0} a, b=b b^{0} b$ (since a, b are regular). As a is regular, there exists $a^{0} \in V(a)$ such that $a=a a^{0} a$. Now $a=a .1=a\left(a^{0} a\right)$, so $b=b .1=b\left(a^{0} a\right)$ and thus $S^{1} b=S^{1} b a^{0} a \subseteq S^{1} a \longrightarrow(1)$ and also b is regular, so there exists $b^{0} \in V(b)$ such that $b=b b^{0} b$. Now $b=$ $b .1=b\left(b^{0} b\right)$, so $a=a .1=a\left(b^{0} b\right)$ and thus $S^{1} a=S^{1} a b^{0} b \subseteq S^{1} \longrightarrow$ (2). From (1) and (2) $S^{1} a=S^{1} b$ and thus $(a, b) \in L$. Hence $(a, b) \in L^{\mathrm{T}}(\operatorname{Reg} S \times \operatorname{Reg} S)$.
Since $L \subseteq L^{*}$, so $L^{\mathrm{T}}{ }_{(\operatorname{Reg} S \times \operatorname{Reg} s)} \subseteq L^{*}{ }^{\mathrm{T}}(\operatorname{Reg} S \times \operatorname{Reg} S)$. Hence $L^{*}{ }^{\mathrm{T}}{ }_{(\operatorname{Reg} S} \times$ T
$R e g s)=L(\operatorname{Reg} S \times \operatorname{Reg} S)$.
Remark : By the above theorem (2.5), similarly we can prove that $R^{*}{ }^{\mathrm{T}}(\operatorname{Reg} S \times$
$\operatorname{Reg} S)=R^{\mathrm{T}}(\operatorname{Reg} S \times \operatorname{Reg} S)$.

Corollary 2.6: If S is a regular semigroup, then $L^{*}=L$ and $R^{*}=R$.
Lemma 2.7: If S is a periodic semigroup which is also cancellative then S is a union of groups.
Proof : Suppose S is a periodic semigroup. Let $a \in S$, such that index of a is m and period of a is r.
Then $(a)=\left\{a, a^{2}, \ldots, a^{m}, a^{m+1}, \ldots, a^{m+r-1}\right\}$. Since S is periodic, so (a) is finite and also S is cancellative, so (a) is cancellative. Thus (a) is finite cancellative group. Thus S is a union of groups.

Theorem 2.8: In a periodic semigroup $H e=H^{*} e$.
Proof : Suppose $a \in H^{*} e$. Since S be periodic, so by Lemma (2.7) S is a union of groups. So $a \in H f$, where $H f$ is a subgroup of S. Also we have $H^{*} e$ is cancellative semigroup with identity ${ }_{0}{ }_{e}{ }^{0}$ so we have $e a=a$ and $f a=a$ and thus $e a=f a$ and hence $e=f$. Thus $a \in H e$ and therefore $H^{*} e \subseteq H e$, we have He $\subseteq H^{*} e$ so that $H^{*} e=H e$.

Lemma 2.9: $H^{*} e$ is a group if and only if $H^{*} e=H e$.
Proof : Assume that $H e=H^{*} e$, then $H^{*} e$ is a group (since $H e$ is a group). Con- versely, suppose that $H^{*} e$ is group. Let $a \in H^{*} e$ so that $\exists a^{0} 3 a a^{0}=e, a^{0} a=e$ and $a e=e a=a$.
Now we claim that $a \in H e$, i.e. $a \in L e e^{\mathrm{T}} R e$. We have $S^{1} a=S^{1} a e \subseteq S^{1} e=S^{1} a^{0} a \subseteq$ $S^{1} a$ and thus $S^{1} a=S^{1} e$ and hence $(a, e) \in L$. Let $a S^{1}=e a S^{1} \subseteq e S^{1}=a a^{0} S^{1} \subseteq a S^{1}$ and thus $a S^{1}$ $=e S^{1} \quad$ and hence $(a, e) \in R$. Thus $(a, e) \in L^{\mathrm{T}} R=H$. Hence $a \in H e$. Thus $H^{*} e \subseteq H e$. We have $H e \subseteq$ $H^{*} e$ and Hence $H^{*} e=H e$.
Example 2.10: Unlike the Green's relations L and R the relations L^{*} and R^{*} do not permute an example is given to show that the inequality $R^{*}{ }_{o} L^{*}=L^{*}{ }_{o} R^{*}$ does not hold in general.

Let S be the set of all 2×2 matrices of the form
 , where a, b, d are all real $0 d$ numbers. $\tilde{\mathrm{A}}_{a} \quad{ }^{\text {! }}{ }^{\text {! }}{ }_{c} \quad e^{\text {! }}$

Let $a b$, $c e \in S$.

$\begin{array}{lll}0 & 0 & 0\end{array} 0^{-}=0^{-} \quad 0^{-}=f$ is an idempotent
$\begin{array}{llll}0 & 1 & \AA_{\mathrm{A}} & 1 \\ & & \tilde{\mathrm{~A}}^{0} & 1 \\ 0 & 1 & \tilde{\mathrm{~A}}_{0} & \text { ! }\end{array}$
and $e f=\begin{array}{llll}1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1\end{array}=\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}=a$.
Thus product \AA^{f} two ${ }_{\mathbf{1}}$ idempotent is not an idempotent.
Also $\begin{array}{llll}0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}=\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}=a^{2}$.
Suppose $\begin{array}{cc}0 & 1\end{array}$ is regular,

Thus $\begin{array}{lll}0 & 1 \\ 0 & 0\end{array}$ is not regular.
Let $S=\{0, e, f, a\}$ be a semigroup.

.	0	e	f	a
0	0	0	0	0
e	0	e	e	e
f	0	0	f	0
a	0	0	a	0

We have $(a, e) \in R^{*}$ since $x a=y a \Longleftrightarrow x e=y a$, for $x, y \in S^{1}$.
Now, we have $e a=a=1 . a$, putting $x=e, y=1$ and $e . e=e=1 . e$ also $a . a=a^{2}=0$, $0 . a=0$ and a.e $=0,0 . e=0$ and also $f . a=0=a . a$ and $f . e=0=$ a.e.
If $(a, f) \in R^{*}$ then $x a=y a \Longleftrightarrow x f=y f$. Now $e a=a=1 . a$, ef $=a, 1 . f=f$, $f a=0=0 a, f f=f, 0 f=0$. Thus $(a, f) \notin R^{*}$. Thus $R^{*}=1_{S} \quad \mathbf{S} \quad\{(a, e),(e, a) \boldsymbol{f}$.
We have $(a, f) \in L^{*}$ since $a x=a y \Longleftrightarrow f x=f y$. Now, we have $a \cdot a=a^{2}=0$, $a .0=0, f . a=0=f .0$ and $a \cdot e=0=a \cdot a, f . e=0=f . a$.

If $(a, e) \in L^{*}$ then $a x=a y \Longleftrightarrow e x=e y$. Now a.e $=0=a .0$, e.e $=e, e .0=0$, a.f $=a=a . f$, e.f $=a, e .1=e$. Thus $(a, e) \notin L^{*}$. Thus $L^{*}=1_{S}{ }^{\mathbf{S}}\{(a, f),(f, a) \boldsymbol{\jmath}$.

Now $(e, a) \in R^{*}$ and $(a, f) \in L^{*}$, then $(e, f) \in R^{*} o L^{*}$ and suppose that $(e, z) \in L^{*}$ and $(z, f) \in R^{*}$ but $(e, f) \notin L^{*} o R^{*}$ (since $\left.(e, a) \notin L^{*},(a, f) \in R^{*}\right)$. Thus $R^{*}{ }_{o} L^{*}=L^{*}{ }_{o} R^{*}$.

Example 2.11: This is an example to show that, if a is a regular element of S, then every element of $a R^{*}$ need not be regular.
Suppose G is a group with more than two elements and let $S=\{x, 0\}$ be a null semigroup. Let $((a, x),(b, x)) \in(G \times S) \times(G \times S)$. Now, we claim that $((a, x),(b, x)) \in R$ so that $(a, x)(G \times S)^{1}=(b, x)(G \times S)^{1}$ and thus $(a, x)=(b, x) .1$, where $1 \in(G \times S)^{1}$, if $a=b$, then (a, x) is not \boldsymbol{R}-equivalent to (b, x). Now $((a, x),(b, 0)) \in \boldsymbol{R}$ so that $(a, x)(G \times S)^{1}=(b, 0)(G \times S)^{1}$ so that $(a, x)=(b, 0) .(c, x)=(b c, 0)$ which is not true (since $x=0$). Now it can be verified that $((a, 0),(b, 0)) \in \boldsymbol{R}$ so that
$(a, 0)(G \times S)^{1}=\left(\underset{\mathbf{S}}{(b, 0)}(G \times S)^{1}\right.$ and thus $(a, 0)=(b, 0) .(c, x)=(b c, 0)$.
Thus, $\boldsymbol{R}=1_{(G \times S)} \mathbf{S}\{(a, 0),(b, 0) \boldsymbol{f}$, for $a, b \in G$.
Now, we claim that $((a, x),(b, x)) \in R^{*}$. We have $(u, v)(a, x)=(m, n)(a, x) \Longleftrightarrow$ $(u, v)(b, x)=(m, n)(b, x)$ and thus $(u a, v x)=(m a, n x) \Longleftrightarrow(u b, v x)=(m b, n x)$ and hence $(u a, 0)=(m a, 0) \Longleftrightarrow(u b, 0)=(m b, 0)($ since $v x=0, n x=0)$.

Thus $u a=m a=\Rightarrow u=m$ (since $a \in G, G$ has cancellative property) so thus $u b=m b$ and suppose that $u b=m b=\Rightarrow u a=m a$. Thus $((a, x),(b, x)) \in R^{*}$.

Now, we claim that $(a, x) \in R^{*}(b, 0)$. We have $(u, v)(a, x)=(m, n)(a, x) \Longleftrightarrow$ $(u, v)(b, 0)=(m, n)(b, 0)$ and thus $(u a, v x)=(m a, n x) \Longleftrightarrow(u b, 0)=(m b, 0)$. Hence $(u a, 0)=(m a, 0) \Longleftrightarrow(u b, 0)=(m b, 0)$. Thus $((a, x),(b, 0)) \in R^{*}$.
Hence $\boldsymbol{R}^{*}=\left\{(a, x),(b, x),(a, 0),(b, 0) \boldsymbol{\}}\right.$. Thus $R^{*}=(G \times S) \times(G \times S)$.
Let $(e, 0)(e, 0)=\left(e^{2}, 0\right)=(e, 0)$. Thus $(e, 0)$ is an idempotent in R^{*}.
Now, we claim that (e, x) is not regular. Suppose (e, x) is regular, then there exists (a, u) such that $(e, x)(a, u)(e, x)=(e, x)$. Now $(e, x)(a, u)(e, x)=(e a, x u)(e, x)=$ $(e a, 0)(e, x)=(e a e, 0)=(e, x)($ since $x=0)$. Thus particular (e, x) is in $(e, 0) R^{*}$ which is not regular.

References:

[1] Howie, J. M. Fundamentals of semigroup theory, Oxford University Press Inc., New York.
(1) D.V. VijayKumar

Assistant Prof essor
T.S.R and T.B.K PG Centre

Visakhapatnam - 530026.
NDIA.
(2) Dr.K.V.R. Srinivas

Associate Prof essor
Regency Institute of Technology Yanam - 533464.I

INDIA.

