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On Extensions of Green’s Relations in Semi groups
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Abstract: In this paper mainly we have obtained interesting and independent results using the

equivalences L*, R* and H”
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l. Introduction:

John M. Howie introduced relations £*, R and A~ in the book entitled Fun- damentals of
Semigroup Theory ” [1]. The relation L™ defined on a semigroup S by the rule that aL™ if and
only if ax = ay < bx = by, K,y € Sl, and the relation R” defined on a semigroup S by
the rule that aR’b if and only ifxa = ya < xb = yb, X,y € Sl, and the relation ~” defined
on a semigroup S by the rule that aH’b if and only if axa = aya <= bxb = byb, ¥,y € sl ifsisa
semigroup then L & L*, and L” isa right congruence on S, and for every idempotent e in S, aL™e if and
only if ae =a and ax =ay =ex = ey, XYy ESl. If S is regular then L = L™, The containment L <

L™ well be proper. It is observed that in the cancellative semigroup S (see def 1.4) L = 1g, L* =5 x

S. The equivalences R™ and H* are defined by analogy with L™ Then every H*class containing an
idempotent is a subsemigroup of S and is a cancellative semigroup with identity element e.

In this paper we proved some interesting and independent results using the equiv- alences L*, R*

and A First we proved in theorem (2.4), that if S is a semi-group with zero, then oL* = {0}

S

T
= g urther i1t Is obtaine in theo- rem .5), that In a semigroup o, eg X
OR {0} Further it is obtained in th (2.5), that i i s, L™ (Regs

T T T
RegS) = L (RegS X RegS) and R* (RegS x¥RegS) = R (RegS xRegS) where RegS stands for
semigroup S with regular elements. From Theorem (2.5) we obtained as a corollary (2.6), that if S is a

regular semigroup then L*=Lad R = R It is interesting to observe that, if S is a periodic
semigroup which is also cancellative, then S is a union of groups, which is obtained in lemma (2.7). It is

observed in theorem (2.8), that in a periodic semigroup (see def 1.6) He =H * It is also observed in
lemma (2.9), that H” isa group if andé €only if H* = He. Unlike the Green’s relations L and R the
relations L* and R* do not permute, for this an example is obtained in (2.10). It is also very

interesting to observe that on a semigroup S if a is a regular element of S, then every element of ar”™
need not be regular. For this an example is obtained in (2.11).

AMS sub ject classification number: 20M18
First we start with following preliminaries.

Definition 1.0: A pair (S, .) where S is a non empty set and 00

to be a semigroup if a.(b.c) = (a.b).c for all a,b,c €S.

is a binary operation defined on S is said

Definition 1.1: A semigroup (S, .) is said to be a semigroup with zero if there exists an element 0 € S
such that 0.a=a.0=0 forall a €S.

A semigroup (S, .) is said to be a semigroup with identity if there exists an element
1 €S such that 1.a=al=1 forall a €S.
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Definition 1.2: A semigroup (S, .) is said to be commutative if a.b = b.a for all
a,h €S.

Definition 1.3: Let S be a semigroup. An element a €S is said to be an idempotent if aa = a and the
set of all idempotents of S is denoted by E(S) or Eg or E.

Definition 1.4: A semigroup S is called cancellative semigroup in which for all a, b,c, ca = cb implies a="b
and ac = bc implies a =h.

Definition 1.5: An element a of a semigroup S is said to be regular if there exists an x €S such that
axa = a. If every element of S is regular, then we say that S isregular semigroup.

Definition 1.6: If every element of a semigroup S has finite order, then S is said to be periodic.

Definition 1.7: A semigroup S is called a union of groups if each of its elements is contained in some
subgroup of S.

Definition 1.8: If S is a semigroup the equivalence relations L, R, H, I and D defined by L = {(a,

T
by es xs /sla=slt R=flab) €s xs /as! = bslpand H=1L R, I={ab) es x5
/Sl asl =sl bSl}, and D = LoR are called Green’s relations on S.

Definition 1.9: A relation R on a semigroup S is said to be right(left) compatible if for a,b in S, (a, b)
€ R implies (ac,ba) € R and (ca,cb) € R for every ¢ € S. Aright(left) compatible equivalence relation
on S is called right(left) congruence. By a congruence on S we mean an equivalence on S which is both
right and left compatible.

First we start with the following theorem due to J.M.Howie [1], which is stated in exercise. But
for the sake of definiteness we proved the following theorem.

Theorem 2.1: The relation L™ ona semigroup S defined by the rule that aL™ if and only if ax = ay
<= bx = by, KX,y es! isan equivalence relation. If S is a semigroup then L & L* and that L isa
right congruence on S and for every idempotent e in S, aL™eifand only ifae =aand ax = ay =ex =
ey, b,y ESl. If S is regular then L = L*

Proof : First we observe that £ is an equivalence relation.

aL™a for every a as ax = ay <= ax = ay, so that L™ is reflexive.

Suppose aL™ then ax = ay <=hx = by, KX,y ES1 and thus bx = by <= ax = ay

and hence bL™a so that L™ is symmetric.

Suppose aL™ and bL™c so that ax = ay <= bx = by and bx = by <= cx = cy,

X,y ESl and thus ax = ay <= cx = ¢y, X,y ESl and hence aL™c. Thus L™ is transtive.
Hence L™ is an equivalence relation.

We claim that £ € L™

Suppose (a, b) € L so that sla = sl then Ju,v esl such that ua =b and vb = a. Assume that ax
ay then bx = uax = uay = by and also assume that bx = by then ax = vbx = vby = ay and hence ax

ay <= bx = by, &,y esl Thus (a,b) €L Hence L € L™,

Now we have to show that L* isa right congruence on S.
Suppose let (a, b) eL™ sothat ax = ay <=bx =by, &,y esl,

Now we claim that (ac, bc) eL’” i.e.(ac)x = (ac)y <= (bc)x = (bc)y, X,y esl,
Let c €S. Assume that (ac)x = (ac)y and thus a(cx) = a(cy) and hence b(cx) = b(cy)

by the definition of L™ and therefore (bc)x = (bc)y.
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Conversely, suppose that (bc)x = (bc)y and thus b(cx) = b(cy) and hence a(cx) =

a(cy) by the definition of L™ and therefore (ac)x = (ac)y.

Thus (ac)x = (ac)y <= (bc)x = (bc)y, X,y € S1 and therefore (ac, bc) € L™, Hence

L isa right congruence on S.

Now we show that, for every idempotent e in S, aL™e if and only if ae = a and ax = ay == ex =
ey, X,y ESl. First we claim that ae = a. Assume that aL’e sothat ax = ay ==ex =ey, X,y ESl.

Put x =e and y =1, then ex =e.e=e2 =eand ey =e.l = e and thus ex = ey and now ax = ay so
that a.e = a.1 and thus ae = a. Conversely suppose that ae = a and ax = ay == ex = ey, /X,y €

sl Assume that ex = ey now ax = aex = aey = ay and thus ex = ey == ax = ay and hence ax = ay
ex =ey, XYy esl. Hence (a, e) eL”

Now we prove that L* = L, if S is regular.

Suppose, let (a, b) L™ sothat ax = ay <=bx =by, &,y €S.

Take a’ €V (a) so that a = aa’a. Nowa=al= a(a”a) sob=0b(1) = b(aﬂa) and thus Sb = Sha’a < sa
and also take b’ €V (b) so that b = bbth. Now b = b() = b(bh) soa = a(1) = a@h) and thus sa =
sabh £Sp and hence Sa = Sh. Thus (a,b) € L so that L* L. Since L EL*, sowe have L= L%

Theorem 2.2: The containment L € L* may well be proper. If S is the cancellative semigroup then L
=1g,L* =5 xs.

Proof : Suppose S is the set of non negative integers, then S is a cancellative under addition. Suppose
(a, b) € L so that SO +a= S0 +b (since S is additive and identity is 0) and thus a =x +b, b=y +a
for some X,y ESO and hence a=x +h =band b=y +a =a. Hence a="h and hence L= 1g.
Suppose (a, b) eL™ sothat a+x = a+y <b+x =b+y, for some x,y esl and

thus x =y as S is cancellative and hence L* =5 xs.

Theorem 2.3: The equivalences R™ and H™ are defined by analogy with L™, Then every H*class
containing an idempotent is a subsemigroup of S and is a cancellative semigroup with identity element
e’.

Proof : Suppose ’e’ is an idempotent and a € L™e so that (a,e) € L™ ifand only if ae = a and ax =
ay == ex = ey, X,y esl and a € R™e so that (a,e) € R™ ifand only ifea = a and xa = ya ==
Xe =ye, X,y esl. Assume that (a,e) € L% sothat ax = ay == ex = ey, I,y esl put x =e,y

= 1then ex = ee = e2 =eey =el =-¢e and thus ex = ey and now ax = ay so that a.e = a.l and
hence ae = aand ax = ay == ex = ey ( by definition ).
Conversely, suppose that ae = a and ax =ay == ex = ey.

Now, we claim that (a, e) eL™ ie ax = ay <=ex =ey. Assume that ex = ey and
ae = a. Now ax = aex = aey = ay and thus (a, e) eL”
Now assume that (a,e) € R* sothat xa = ya <= xe =ye, X,y esl put x = e,y =1, then xe =

ee=el = e, ye = 1l.e = e and thus xe = ye and now xa = ya == e.a = 1.a and hence ea = a and xa

= ya == xe = ye ( by definition ).
Conversely, suppose that ea = a and xa = ya == xe = ye.

Now, we claim that (a,e) € R* ie xa = ya <= xe = ye. Assume that xe = ye

T
and ea =a. Now xa = xea = yea = ya and thus (a, €) € R*. Therefore (a e) eR™ L™ = H" sothat

a€H"e,
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Let a € Fﬁe, so that ea = a, ae = a. Suppose a,bh € He so that (a,e) € H* and (b,e) € H*
T
Now we claim that (ab,e) € H* = R" L™ First we show that (ab,e) € R ie. to show that
x(ab) = y(ab) <= xe =ye, &,y € Sl. Now, let x(ab) = y(ab) so that (xa)b = (ya)b and thus (xa)e
= (ya)e (since b € R*e then xb = yb <= xe = ye) and hence x(ae) = y(ae) and therefore xa =

ya so that xe = ye (since (a,€) € R$). Conversely, suppose that xe = ye. Now we claim that x(ab) =
y(ab) .We have xe = ye so that (xe)a = (ye)a and thus x(ea) = y(ea) and hence xa = ya and

therefore (xa)b = (ya)b and hence x(ab) = y(ab). Hence ab e R,
Now, we show that (ab,e) € L™ ie to show that (ab)x = (ab)y <= ex = ey,
X,y € Sl. Let (ab)x = (ab)y so that a(bx) = a(by) and thus e(bx) = e(by) (since (a,e) € L™eie. ax

= ay <= ex = ey). Since e is the identity, so we have bx = by and hence ex = ey (since (b,e) € L™e
i.e. bx = by <=ex = ey).

Conversely, suppose that ex = ey. Now, we claim that (ab)x = (ab)y. We have

ex = ey so that b(ex) = b(ey) and thus bx = by and hence a(bx) = a(by) and therefore (ab)x =

T
(ab)y. Thus ab € L™e. Hence ab € R"e L¥e= H™e. Thusab € H™.

Leta,x, y € H'e. Now suppose that ax = ay so that ex = ey and hence x =y (since x eH e and e is
the identity of /—ﬁe) and also suppose that xa = ya so that xe = ye and hence x =y. Thus H'e is a
cancellative semigroup with identity.

Now we prove the following interesting and independent results.
Theorem 2.4: If S is a semigroup with zero, then oL™ = 0} 0R" = o}

proof : Let a e0L™ sothat (a,0) e L™ and hence ax = ay <=0x =0y, K,y ESl, putting x = 1 and
y =0we have 0.x =0.1 =0and 0.y =0.0=0and hence ax =ay sothat ax =a.l =aand ay =a.0=0

and thus a = 0. Hence L™ = {0}.
Let a €0R™ so that (a,0) € R™ and hence xa = ya <=x0 =y0, KX,y ESl, putting

x=21and y =0 we have x.0 =1.0=0and y0 =0.0 =0 and hence xa =la=a
and ya =0.a =0 and thus a = 0. Hence oR" = fo}

T T
Theorem 2.5: In a semigroup S, L* (RegS xRegS) = L (RegS xRegS) where

RegS stands for semigroup S with regular elements.

T
Proof : Let (a,b) € L (RegS X RegS) so that (a,b) € L* and a,b are regular elements of S and

)

thus ax = ay <= bx = by, X,y € S1 and a = aa’a, b = bbﬂb (since a, b are regular). As a is

/ €V (a) such that a = aa”a. Now a =a.l = a(aﬂa), sobh=bl= b(aﬂa) and thus
Slb = Slbaﬂa _CSla — (1) and also b is regular, so there exists b” €V (b) such that b= bbﬂb. Now b =

b.1=bbh), soa = a1 = ap’h) and thus sta = stabh cs! — (2). Fom (1) and (2) sta=slb

regular, there exists a

T
and thus (a,b) € L. Hence (a,b) € L (RegS x RegS).
) % T w1 b w1
Since L € L™,s0 L (RegS xRegs) € L™ (RegS xRegS). Hence L™ (RegS x
T
Regs) = L (RegS x RegS).
T
Remark : By the above theorem (2.5), similarly we can prove that R* (RegS x

T
RegS) = R (RegS x RegS).
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Corollary 2.6: If S is a regular semigroup, then L*=rLand R" = R

Lemma 2.7: If S is a periodic semigroup which is also cancellative then S is a union of groups.
Proof : Suppose S is a periodic semigroup. Let a € S, such that index of a is m and period of a is r.

Then (@) = {3, a2,...,am,am+1,...,am+r_l}. Since S is periodic, so (a) is finite and also S is
cancellative, so (a) is cancellative. Thus (a) is finite
cancellative group. Thus S is a union of groups.

Theorem 2.8: In a periodic semigroup He = H ™.

Proof : Suppose a € H™. Since S be periodic, so by Lemma (2.7) S is a union of groups. So a € Hf,
where HT is a subgroup of S. Also we have H *e is cancellative semigroup with identity %% 50 we have
ea = aand fa = a and thus ea = fa and hence e = f. Thus a € He and therefore H e < He, we have He

CH™ sothat H™ = He.

Lemma2.9: H'eisa group if and only if H™ = He.
Proof : Assume that He = H*e, then H™e is a group (since He is a group). Con- versely, suppose

J

that H™e is group. Let a € H™e so that Ja” 3aa” =e, aa=eand ae =ea =a.

: : T 1, _ ol 1, _cl.0
Now we claim that a €He, i.e. a €Le Re. We have STa =S~ ae £S~e =S~a‘a &
sla and thus sta = sle and hence (a,e) € L. Let asl = eas! cesl = aa’s! cas!and thus as!
T
= eS1 and hence (a,e) € R. Thus (a,e) € L R = H. Hence a € He. Thus H"e € He. We have He <
* *
H" e and Hence H e = He.

Example 2.10: Unlike the Green’s relations L and R the relations L* and R* do not permute an

example is given to show that the inequality R*oL™ = L*0R™ doesnot hold in general.

www.iosrjournals.org 8 | Page



On Extensions Of Green’s Relations In Semigroups

numbers.x 1 A |

~

A

Let S be the set of all 2 x 2 matrices of the form

b
Lot a | ce .o
0d_ _0f ~
A ! I A I
a b c e ac ae + bf
Now =
~.0d_ . 0f _ O df
A 1A 1 A I
11 1 11 : :
Let = =e is an idempotent,
~ 0Q 00 . 00
A A T A 1
0 00 0 0 . .
= =f isan idempotent
01 ~ 01
A A I A !
11 00 01
and ef = = =a.
00 01 00
Thus grodugt Rf twoidempotenty is not an idempotent.
01 01 00
Also = = a.
0.0 00 00
A L|
01 .
Suppose is regular,
-~ 0.0 ~ ~ ~ ~
A 1A TA L] A TA I A
01 b 0 d
then = =
00 0d 0O 00 00O

01 .
Thus is not regular.
00

Let S = {0,e, f,a} be a semigroup.

(]

o
QO | =
o | D

o
—
o

@D

O O oo o
D
D
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A 1A 1 A |
00 01 00
fa= =
.01 _00 _00O
A 1A I A 1
11 01 0 1
ea= = =a
.00 _0O .00
1 1 1
00 11 00
fe= =
.01 _00 .00
A 1A 1 A |
01 11 00
ae: =
00 0O 00
A 1A T A 1
01 00O 0 1
af = = =a.

00 01 00
We have (a,e) € R* since xa = ya <= xe = ya, for x,y €S

Now, we have ea = a = l.a, putting x =e,y =1and ee =e = l.ealsoa.a =a =0,
0a=0and ae=0,0e=0and also fa=0=aaand f.e=0=a.e.

If (a, f) € R" then xa =ya <= xf =yf. Nowea=a = 1la, ef = a, 1.f = f,
fa=0=0a, ff =f, 0f =0. Thus (a, f) £ R". Thus R* = 1g S{(a, e), (e, a)}

We have (a, f) € L™ since ax = ay <= fx = fy. Now, we have a.a = a> = 0,
a0=0,fa=0=f0and ae=0=aa fe=0=f.a.

If (a,e) € L" then ax =ay <=ex =ey. Nowae =0=a.0, ee =¢, e0 =0,
af =a=af,ef =a el=e Thus (a,e) £L* Thus L™ = 1g S[(a,f), (f,a)t
Now (e,a) € R“and (a, f) € L" then (e, f) € RoL"and suppose that (e,z) € L* and
(z, ) E R"but (e, ) £ L"0R"(since (e,a) £L" (a, f) € R"). Thus R'oL* = L*oR".

Example 2.11: This is an example to show that, if a is a regular element of S, then
every element of aR* need not be regular.

Suppose G is a group with more than two elements and let S = #X, 0.} be a null semi-
group. Let ((a, x), (b,x)) €(G xS) x(G xS). Now, we claim that ((a, x), (b,x)) € R
so that (a, X)(G xS)! = (b,x)(G xS)! and thus (a, x) = (b,x).1, where 1 €(G xS)},
if a =D, then (a, x) is not R-equivalent to (b,x). Now ((a, x), (b,0)) € R so that
(@, x)(G xS = (b,0)(G xS)' sothat (a,x) = (b,0).(c,x) = (bc,0) which is
not true (since x = 0). Now it can be verified that ((a,0),(b,0)) € R so that

www.iosrjournals.org 10 | Page



On Extensions Of Green’s Relations In Semigroups

10

(a,0)(G xS)! =(b,0)(G xS)! and thus (a, 0) = (b, 0).(c, x) = (bc, 0).

Thus, R=1gxsy {1(a 0),(b,0)} forab €G.

Now, we claim that ((a, x), (b,x)) € R*. We have (u, v)(a, X) = (m, n)(a, Xx) <=
(u, v)(b, x) = (m, n)(b, x) and thus (ua, vx) = (ma, nx) <= (ub,vx) = (mb, nx) and
hence (ua, 0) = (ma, 0) <= (ub, 0) = (mb, 0) (since vx = 0,nx = 0).

Thus ua = ma == u = m (since a € G, G has cancellative property) so thus ub = mb

and suppose that ub = mb == ua = ma. Thus ((a, x), (b,x)) € R".

Now, we claim that (a,x) € A"(b,0). We have (u,Vv)(a, x) = (m, n)(a x) <
(u, v)(b,0) = (m, n)(b, 0) and thus (ua, vx) = (ma, nx) <= (ub,0) = (mb, 0). Hence
(ua, 0) = (ma, 0) <= (ub,0) = (mb, 0). Thus ((a, x), (b,0)) € R".

Hence R* = {(a, x), (b,X), (a, 0), (b,0)} Thus R*=(G xS) x(G x9).

Let (e, 0)(e, 0) = (€2, 0) = (e, 0). Thus (e, 0) is an idempotent in R*.

Now, we claim that (e, x) is not regular. Suppose (e, x) is regular, then there exists
(a, u) such that (e, x)(a, u)(e, X) = (e, x). Now (e, x)(a, u)(e, X) = (ea, xu)(e, x) =
(ea, 0)(e, x) = (eae, 0) = (e, X) (since x = 0). Thus particular (e, x) is in (g, 0)R*

which is not regular.
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