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Abstract: This paper compares the performance of the former model order determination criteria with new 

Approach in terms of selecting the correct order of an autoregressive time series model in small and large 

samples. The considered criteria are the Akaike information criterion (AIC); Scwarz information criterion (SIC), 

the Hannan − Quinn criterion (HQ) and the three new median criteria. Our results show that the median 

between AIC and Scwarz (MAS) criterion performs best in terms of selecting the correct order of an 

Autoregressive model for small and large samples sizes. Scwarz, Hannan Quinn, the median of Akaike and 

Hannan Quinn (MAH) criteria and median of Scwarz and Hannan Quinn can be said to perform best in large 
samples. The comparison of the six model selection criteria was in terms of their percentage of number of times 

that they identify the “true” model. The simulation results indicate that overall, the proposed Median of Akaike 

and Scwarz (MAS) information criterion showed very good performance in this simulation study. So, we 

recommend median of Akaike & Schwarz (MAS), Median of Schwarz & Hannan Quinn (MSH), and median of 

Akaike &Hannan Quinn information criterion as reliable criteria to identify the “true” model. 

Keywords: Information criteria, best performance, new median information criteria.  

 

I. Introduction 
It is well known that most economic and financial series follow the Autoregressive Moving average [ARMA 

(p,q)] model, and more often than not the autoregressive [AR(p)] model where p and/or q are the order of the 

model. However, determination of the correct order p, q has been a source of serious concern to analysts over 

the years, since inappropriate order selection may result in inconsistent estimate of parameters if p< true value 

or may not be consistent and increase in the variance of the model if p>true, Shibata [1].  

In recent years, there has been a substantial literature on this problem and different criteria have been proposed 

to aid in choosing the order of the ARMA (p,q) process. These criteria are based on theoretical considerations 

that provide only asymptotic properties of the resulting estimators. The practitioner, however, usually faces the 

problem of making a choice on the basis of a limited data set.  

Among the criteria considered are the Akaike information criteria (AIC); Scwarz Information criteria (SIC), 
Hannan Quinn criteria (HQ); Carlos Information criteria (CIC) and others. It is rarely the case that the „true‟ 

order of a process is known. One of the most difficult and dedicate part of the time series analysis is the 

selection of the order of the process, based on a finite set of observations, since further analysis of that series is 

based on it. To overcome this difficulty several order selection criteria had been proposed in the literature but 

we don‟t have any criterion which could be considered as the best criterion in all situations 

This paper therefore compares the performance of the commonly used information criteria such as Akaike 

Information Criteria (AIC), Scwarz Information Criteria (BIC), and Hannan – Quinn criteria with other new 

introduced median information criteria. 

 

II. Review of Literature 

The information criterion has been widely used in time series analysis to determine the appropriate order of a 

model. The information criteria are often used as a guide in model selection. The goal of any order selection 

procedure is to estimate the order p for an AR model on the basis of n successive observations from a time series 

X(t) while the notion of an information criterion is to provide a measure of information in terms of the order of 

the model, that strikes a balance between these measures of goodness of fit and parsimonious specification of 

the model. The Kullback–Leibler quantity of information contained in a model is the distance from the “true” 

model and is measured by the log likelihood function.  

 Models, by true models definition, are only approximations to unknown reality or truth; there are no that true 

models perfectly reflect full reality.  George Box [2] made the famous statement “All models are wrong but 

some are useful."  Further, a “best model," for analysis of data, depends on sample size; smaller effects can 

often only be revealed as sample size increases. 
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Several criteria are used for this purpose, in particular, we discuss the AIC (Akaike, 1974), SIC (Scwarz, 1978) 

and HQ (Hannan and Quinn, 1979) amongst others to compare with our new criteria. All these criteria‟s 

objective is minimizing the residual sum of squares and impose a penalty for including an increasingly large 

number of regressors (lag values). 

 

2.1. Akaike Information Criterion  
The Akaike Information Criterion (AIC), Akaike [3] is an objective measure of model suitability which balances 

model fit and model complexity. Considering a stationary time series {Xt}, t = 1, 2, …, T, the Akaike 

information criteria consist of minimizing the function:  

   K (p) = Tlogσ2  + pc(n)                                                                                                       (1) 

  P = { 0, 1, 2, … m} 

  where σ2  is the estimated residual variance for a fitted AR (p) model, c(n) is a penalty term, n is the 

number of observations and m is a pre – determined upper autoregressive order.  

To obtain:  
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Selection of the chosen model is then made by considering the minimum AIC = min {AIC (p)}, that is the 

model with smallest AIC is chosen. Details of the proof can be found in Akaike (1974) and Shibata (1976). One 

advantage of AIC is that it is useful for not only in sample data but also in out of sample forecasting 
performance of a model. This criterion also designed for minimizing the forecast error variance. In sample 

forecasting essentially tells us how the chosen model fits the data in a given sample while the out–of–sample 

forecasting is concerned with determining how a fitted model forecasts future values of the regressed, given the 

values of the regressors. It is also useful for both nested and non-nested models. The outstanding demerit of this 

criterion is that of inconsistency. The procedure has been criticized because it is inconsistent and tends to over 

fit a model, Shibata (1976) showed this for autoregressive model and Hannan [4] for ARMA models.  

 

2.2. Schwarz Information Criteria  

The Schwarz information criterion is obtained by replacing the non-negative function c(n) in (2) by loge(N). 

Hence, we have  

                     
2

ln lnˆ p

m
SC T

T
                                                                                                              (3) 

                                                                        p ∈  P = {0, 1, 2, … m}  

where σp
2  is obtained as above and the appropriate model is obtained as that which minimizes the SIC (p) above, 

that is min (SIC (p). Details of the discussion can be found in Rissanen [5]; Schwarz[6] and Stone[7].  
The SIC imposes a harsher penalty than AIC, as its obvious from comparing (2) and (3). An important 

advantage of SIC is that for a wide range of statistical problems, it is order consistent (i.e. when the sample size 

grows to infinity, the probability of choosing the right model converges to unity) leading to more parsimonious 

models. Like the AIC, the lower the value of SIC, the better the model.  The difference between AIC and SC is 

due to the way they were designed.  AIC is designed to select the model that will predict best and is less 

concerned with having a few too many parameters. SIC is designed to select the true values of p and q exactly 

Like AIC, SIC can be used to compare in–sample or out–of–sample forecasting performance of a model.  

 

2.3. Hannan – Quinn Criterion  

The Hannan-Quinn criterion for identifying an autoregressive model denoted by HQ(p) was introduced by 

Hannan and Quinn (1979). The adjusted version of it can also be applied to regression models, Al-Subaihi [8]. It 
is obtained by replacing the non – negative penalty function c (n) in equation (2) by log(logT).  

Thus, we have : 

2
ln 2 ln(ln )ˆ p

m
HQ T

T
                                                                                                                                    (4) 

p ∈  P = {0, 1, … m}.  

The best model is the model that corresponds to minimum HQ i.e. min (HQ (p)). The order selection procedure 
presented above have the advantage of being objective and automatic, but it over-fit when the sample size is 

small. Detailed discussion on this can be found in Hannan-Quinn (1979); McQuarrie and Tsai [9].  
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Having noticed the limitations of these criteria, the aim of this study is to examine the veracity of these claims 

by introducing other new median criteria and compare their performance using the simulated data. 

 

III. Methodology 
3.1. Identification of optimal orders: 

  If the order of the AR process is unknown, it can be estimated with the help of information criteria 

(Helmute Lutkepohl [10]. For this purpose, AR processes with successively increasing orders p = 1, 2..., pmax are 

estimated. Finally, the order p* is chosen which minimizes )(ˆ p
t  , the estimated residuals of the AR (p) 

process with the respective criterion, while m is the number of estimated parameters. If the constant term is 
estimated too, m is p plus one for an AR (p) process. These criteria are always based on the same principle: 

They consist of the sum of squared residuals (or its logarithm), which decreases when the number of estimated 

parameters increases, and of a „punishment term‟, which increases when the number of estimated parameters 

increases. This is also reflected in the following relations, which, because of the different punishing terms, hold 

for these criteria: 

ˆ ˆ P(SIC) P(HQ)                                                                                                          (5) 

 ˆ ˆP(SIC) P(AIC) for T 8                                                (6) 

 

16Tfor  (AIC)P̂ (HQ)P̂ 

                                                                             (7) 

These proofs are based on Quinn (1980) and Paulsen (1984) and the basic idea is to show that, for P> m, the 

quantity ln(SSE(p)/T)/ln(SSE(m)/T) is less than one in large samples, where p is the optimality of orders and m 

is the order of autoregressive and indicate minimum log likelihood function. This implies that ln (SSE (p)/T) is 

less than ln (SSE (m)/T). 

The relation can be proved in the following ways: 

From lemma stated in Lütkepohl (1991),let a0, a1,...,aM,  b0,b1,...,bM and c0,c1,...,cM be  real numbers. If bm+1 − bm 

<am+1 − am, m =0, 1,...,M − 1, holds and if nonnegative integers n and k are chosen such that  cn + an =min{cm + 

am|m =0, 1,...,M} and  ck + bk =min{cm + bm|m =0, 1,...,M}, then k ≥ n. and let cm =ln |SSE(m)/T|, bm =2mK2/T 
and am = mK2lnT/T. Then AIC (m) =cm + bm and SIC (m) = cm+am. The sequences am, bm, and cm satisfy the 

conditions of the lemma if 2K2/T =2(m +1)K2/T − 2mK2/T = bm+1 − bm <am+1 − am =(m +1)K2lnT/T − mK2lnT/T 

= K2lnT/T or, equivalently, if lnT> 2 or T>e2 =7.39.Hence, choosing k = p̂ (AIC) and n = p̂ (SC) gives  p̂ (SC) 

≤ p̂ (AIC) if T ≥ 8. Alternatively, it can be proved like as follows:  
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From the last term we can observe that (p+1)/T is always positive and AIC (m)-SIC (m) is less than zero from 

Lütkepohl (1991) then the value of 2-lnT must be negative. That means T is greater than or equal to eight and 

consequently the optimal order of AIC is greater than SC. Similarly for the case of (7), if we subtract HQ from 

AIC, AIC (p)-HQ (P) we also obtain                                               
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The right side of equation (9) is less than zero and it implies that 1-ln (lnT)0, that is Tee 16. 
        The purpose of this paper is to introduce a new information criteria between AIC and SC or AIC and 

HQ. We consider the median of AIC and SIC, HQ and SIC or AIC and HQ as a criteria. 
 

3.2. Median of SC and HQ denoted as MSH 
From equation (5), it is also possible to take the median of SIC and HQ as a new information criterion: 
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Proposition 1: if p̂ (SC)  p̂  (HQ), then p̂ (SIC)  p̂ (MSH) for T 1 

Proof: 

Take the difference between MSH and SIC 
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 than SIC for model selection.

 

Proposition 2: if p̂ (SC)  p̂  (HQ), then p̂ (MSH)  p̂ (HQ) for all T 
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From this equation we get -lnT 0 and which shows that T is greater than one.  MSH is more optimal criterion 
than HQ for any value of T. 

 

3.3. Median of AIC and SIC and denote as MAS 
  From equation (6), it is possible to take the median of AIC and SC as a new information criterion: 
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If we compare MAS with AIC and SC, does it have a contribution for identification   of model 

selection as equivalent as AIC and SIC? Does it have superiority in model selection with respect to number of 

observation?  

Proposition 3: if p̂ (SIC)  p̂  (AIC) for T 8, then p̂ (MAS)  p̂ (AIC) for T 8 

Proof: Take the difference between of AIC and MAS, 
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 This implies that    (1-lnT/2)  0 and T 8 

Proposition 4: if p̂ (SIC)  p̂  (AIC) for T 8, then p̂ (SC)  p̂ (MAS) for T 8 

Proof: Take the difference between MAS and SC 
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Then –lnT  -2 and this implies that lnT is greater than or equal to two this implies to T 8 
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3.4. Median of AIC and HQ and denote as MAH 

   From equation (7), it is also possible to take the median of AIC and HQ as a new information criterion. 
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Proposition 5: if p̂ (HQ)  p̂  (AIC) for T 16, then p̂ (MAH)  p̂ (AIC) for  

                T 16 
Proof: Take the difference between AIC and MAH 
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Proposition 6: if p̂ (HQ)  p̂  (AIC) for T 16, then p̂ (HQ)  p̂ (MAH) for  

              T 16 

Proof: Take the difference between HQ and MAH 
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 3.5. Model Selection 

A large effort has been spent on a coherent theory of model selection over the past 40 years. We will 

not re-view this material in detail as it is covered in a number of books (e.g., Linhart and Zucchini1986 [11], 

McQuarrie and Tsai 1998; Burnhamand and Anderson2002), research monographs, Sakamtoel [12], and 

hundreds of journals papers, deLeeuw [13].  

The starting point for effective model selection theory is Kullback-Leibler (K-L) information, I(f, g) Kullback 

and Leibler[14]. This is interpreted as the information, I, lost when full truth, f, is approximated by a model, g. 

Given a set of candidate models gi, one might compute K-L information for each of the R models and select the 

one that minimizes information loss that is, minimize I(f, g) across models. The starting point for effective 
model selection theory   Akaike (1973, 1974) provided a simple way to estimate expected K-L information, 

based on a bias corrected maximized log-likelihood value. This was a major breakthrough Parzen et al.,[15]. 

Soon thereafter, better approximations to the bias were derived, Sugiura, Hurvich and Tsai1[16] and the result, 

of relevance here, is an estimator Akaike Information Criterion (AICc) of twice the expected K-L information 

loss 
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where σ2 is the estimated residual variance, n is the number of observations, and k is the number of 

estimated parameters for the model. Here, the estimator of σ2 =WSSR/n, where WSSR is the weighted sum of 

squared residuals. The second term accounts for first-order bias, and the third term accounts for second-order 
bias resulting from a small number of observations. This is a precise mathematical derivation, with the third 

term depending on the assumed distribution of residuals, in this case, normally distributed error. Accounting for 

second-order bias is important when n/k <40. The aforementioned expression applies to analyses undertaken by 

a least squares approach; similar expressions are available for those using maximum likelihood procedures 

(Akaike1973). AICc is computed for each of the models; the model with the lowest AICc value is the best 

model, and the remaining models are ranked from best to poorest, with increasing AICc values. 

Model probabilities: Remember from the derivation of the BIC  
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where, M= {M1...Mk} are the specified list of models used and P (Mj) prior probabilities. 

Using Schwarz‟s approximation: 
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Using this as weights and rescaled of normalized such that the weights sum to one. 

This motivates the smooth BIC weights in frequents model averaging and easy to compute approximation to 

posterior probabilities. Smoothed weights from model selection, for instance AIC, BIC, FIC, Akaike weights – 

Burnham Anderson, 2002[17] 
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Calculation of the AICc values can be posed to retain or omit values that are constant across models 

(e.g., multinomial coefficients) and are affected by the number of observations; thus, it is essential to compute 
and use simple differences  

AICAIC ccii min                                                                                                        (24) 

For each model, i, in the set of R models, where AICcmin is the minimum AICc value of all the models 

in the set. These values are on an information scale (-log [probability]), free from constants and sample size 

issues. A ∆i represents the information loss of model i relative to the best model. As discussed by Burnham and 

Anderson (2002), models with ∆i < 2 are very good models, while models with 4 < ∆i < 7 have less empirical 

support. In most cases, models with ∆i greater than 10 can be discarded from further consideration. 

Simple transformation yields model probabilities or Akaike weights (also referred to as posterior model 

probabilities) 
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W i
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5.

5.

exp

exp
                                                                                  (25)                                                                                                               

where wi is the weight of evidence in favour of model i being the best model in the sense of minimum 

K-L information loss. These weights are also useful in multimodel inference.  

As parameters are added to a model, accuracy and variance increase, (fit improves, while uncertainty increases). 
Use of AICc selects models with a balance between accuracy and variance; this is the principle of parsimony. 

Prediction can be further improved by basing inference on all the models in the set. 

 

IV. Data Illustrations and discussion 

In order to contrast the performance of the order identification criteria, simulation study was conducted on a 

wide range of autoregressive (AR) processes with different characteristics.  

The following assumptions were made. The random numbers follow a standard normal distribution with mean 

zero and variance unity. Data were generated for samples of T = 2-10, 50, 100, 1000, and 2000 with 100 

replications each. Autoregressive models of orders p is equal to  zero was generated and compared with 1, 2, 3, 
4 and 5 lags. For each of the model structure, an autoregressive model was fit. The model order were examined 

using the criteria AIC, BIC, HQ and the 3 other new criteria using both the Eviews software package and 

Microsoft Excel.  

The performance criterion is that, the information criterion with the highest number of cases (or weight 

of evidence) of selecting the correct order of the given autoregressive (AR), process is considered the best. To 

achieve our objectives we compute the probability of the correct estimation for each of these criteria. This 

probability (weight of evidence) could be any number between zero and one. Possible results are as follows:  

1. If this probability is 1, then it means that the criterion picks up the true lag length in all the cases and 

therefore is an excellent criterion. 

2. If the probability is close to 1 or greater than 0.5, then it implies that the criterion manages to pick up the 

true lag length in most of the cases and hence is a good criterion.   
3. If the probability is close to zero or less than 0.5 then it mean that the criterion fails to select the true lag 

length in most of the cases therefore it is not a good criterion.   
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4. If this probability is zero, it implies that criterion fails to pick up the true lag length in all the cases and 

hence is poor criteria.   

5. A criterion under estimate the true lag length if it picks up a lag length, which is lower than the true lag 

length and if it selects a lag length, which is greater than the true lag length then it over estimates the lag 

length.  

Since we want to study the behavior of all these criteria, therefore, along with the cases of correct 
estimation we also observe the selected lag length of all these criteria in all the cases to compute the probability 

of under estimation and over estimation.   

After fitting the models to the generated data, the number of times each identification criteria (AIC, 

BIC, HQ, MAS, MAH and MSH) was able to accurately identify the correct order of a given AR structure and 

frequencies obtained.  

In measuring the performance of the generated models, the criterion that has the highest number of 

cases (or percentage frequency) of selecting the correct order of the given AR structure is considered to be the 

best criterion. The results of the analysis were tabulated for different criterion of T = 2-10, 50, 100, 1000 and 

2000 with replication R=100 in Table 1, Table 2 and Table 3.The new approach median information criterion 

(MAS) show outstanding performance for large samples and small samples of data. Among the criteria, MAS, 

SIC and MSH for large sample series are consistent in the sense that if the set of candidate models contains the 

true" model, then these criteria select the true model with probability 1 asymptotically.  We found that MAS 
performed better for small sample and for large samples. Other criteria like AIC, HQ, MSH and MAH are 

inconsistent for small sample size of the series. AIC, SC, HQ, MSH and MAH over estimate for T=7 and AIC 

over estimate for T=2000 the true lag.  

      Based on information criteria differences in Table 5, the constant intercept parameters (order 0) is 

substantial supported by all criteria regardless of the sample size. Order one or 1st lag is considerably less 

support by all samples, except MAS for n=50, and except SC and MSH for n=1000 and 2000. Furthermore, the 

5th lag is essentially discarded by some criteria for small size but for large samples of T=100, 1000 and 2000 all 

criteria discards lag five. 

 

V. Summary and conclusion 
 The output from Table 1-5 show that the performance of the MAS criteria approach is better than the 

others approach. All criteria estimate the true lag length for large samples except AIC. 

 The output of the study shows that for a series having more than 10 observations, there is an 

improvement in performance for each of these five criteria except AIC as the sample size grows. A criterion 

under estimate the true lag length if it picks up a lag length, which is lower than the true lag length, and if it 

selects a lag length, which is greater than the true lag length then it over estimates the lag length. This study also 

shows that AIC is inconsistent to select the correct lag length and over estimate the true lag length for large 

observation. Then AIC is not a good criteria to select the true lag.  
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Table 1: Frequency and percentage distribution from simulated distribution data for different sample 

size with replication R=100 

sample 

size   order           

  criteria 0 1 2 3 4 5 

T=2 AIC             

  Sc             

  HQ             

  MAS             

  MAH             

  MSH             

T=3 AIC 0.823938 0.176062         

  Sc 0.748864 0.251136         

  HQ 0.654144 0.345856         

  MAS 0.890178 0.109822         

  MAH 0.748435 0.251565         

  MSH 0.522823 0.477177         

T=4 AIC 0.859472 0.140525         

  Sc 0.818179 0.181817         

  HQ 0.757227 0.242766         

  MAS 0.924427 0.075573         

  MAH 1.00000  0.0000         

  MSH 0.789314 0.210681         

T=5 AIC 0.481211 0.086237 0.354237 0.078315     

  Sc 0.384897 0.083852 0.418718 0.112533     

  HQ 0.238853 0.072295 0.501568 0.187283     

  MAS 0.805199 0.064532 0.118548 0.011721     

  MAH 0.352929 0.082197 0.4388 0.126074     

  MSH 0.307975 0.079084 0.465483 0.147458     

T=6 AIC 0.190194 0.035824 0.539077 0.177832 0.057073   

  Sc 0.15546 0.03249 0.54264 0.19865 0.07075  

  HQ 0.010651 0.003043 0.934603 0.034772 0.01693   

  MAS 0.616811 0.04743 0.291377 0.039241 0.005141   

  MAH 0.125473 0.029109 0.539535 0.219224 0.086658   

  MSH 0.112242 0.027431 0.535604 0.229256 0.095467   

T=7 AIC 0.39879 0.077502 0.25884 0.25884 0.005836 0.000192 

  Sc 0.488915 0.097623 0.334975 0.070246 0.007972 0.00027 

  HQ 0.419325 0.096318 0.380198 0.091719 0.011974 0.000466 

  MAS 0.852054 0.062588 0.079005 0.006095 0.000254   

  MAH 0.419325 0.096318 0.380198 0.091719 0.011974 0.000466 

  MSH 0.409411 0.095321 0.381386 0.100111 0.013247 0.00052 

T=8 

  

  

  

  

  

AIC 0.277649 0.055133 0.513691 0.132628 0.019445 0.001453 

Sc 0.295181 0.056332 0.504421 0.125163 0.017636 0.001266 

HQ 0.162514 0.042185 0.513799 0.17341 0.098474 0.009618 

MAS 0.755454 0.053037 0.174712 0.015948 0.000827   

MAH 0.208352 0.047303 0.503908 0.148751 0.08447 0.007216 

MSH 0.230448 0.051291 0.535644 0.15501 0.025473 0.00213 

T=9 AIC 0.310858 0.062705 0.403941 0.193343 0.026331 0.002821 

  Sc 0.360368 0.065866 0.384457 0.166737 0.020575 0.001997 

  HQ 0.215481 0.053774 0.428554 0.253767 0.042756 0.005667 

  MAS 0.809232 0.054412 0.116839 0.018641 0.000846   

  MAH 0.260899 0.058536 0.41942 0.22329 0.033824 0.00403 

  MSH 0.283537 0.060555 0.413008 0.209298 0.030179 0.00342 

T=10 

  

  

  

  

AIC 0.261627 0.05341 0.473008 0.181694 0.02696 0.0033 

Sc 0.33171 0.05821 0.443134 0.14632 0.018663 0.001964 

HQ 0.194842 0.046958 0.490939 0.222628 0.038998 0.005635 

MAS 0.788405 0.050897 0.14254 0.017314 0.000812 3.14E-05 

MAH 0.226774 0.050301 0.484016 0.20201 0.032568 0.004331 
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  MSH 0.258434 0.053147 0.474142 0.183471 0.027424 0.00338 

T=50 AIC 0.023396 0.00514 0.004772 0.003347 0.633822 0.329523 

  Sc 0.545665 0.046086 0.016448 0.004435 0.322843 0.064524 

  HQ 0.101051 0.015427 0.009952 0.00485 0.638177 0.230543 

  MAS 0.954939 0.02967 0.003896 0.000386 0.010348 0.000761 

  MAH 0.049612 0.009086 0.007031 0.004111 0.64893 0.28123 

  MSH 0.274711 0.031193 0.014967 0.005426 0.531017 0.000126 

T=100 AIC 0.086581 0.019172 0.036778 0.554139 0.128102 0.175229 

  Sc 0.812206 0.048889 0.025493 0.104411 0.006561 0.00244 

  HQ 0.342512 0.044769 0.050692 0.450837 0.061518 0.049671 

  MAS 0.968092 0.021437 0.004112 0.006196 0.000143   

  MAH 0.185852 0.031619 0.0466 0.539434 0.095808 0.100687 

  MSH 0.614564 0.054512 0.041887 0.252802 0.023409 0.01283 

T=1000 

  

  

AIC 0.691688 0.154221 0.077645 0.057921 0.012946 0.005579 

Sc 0.980345 0.018789 0.000813       

HQ 0.900294 0.07899 0.01565 0.004594 0.000404  

  MAS 0.992885 0.007001 0.000111 0 0 0 

  MAH 0.827546 0.115745 0.036555 0.017106 0.002399 0.000648 

  MSH 0.956619 0.039228 0.003632 0.000498 2.05E-05 1.62E-06 

T=2000 AIC 0.354081 0.078976 0.030043 0.024968 0.291331 0.2206 

  Sc 0.986292 0.013372 0.000309       

  HQ 0.900132 0.071801 0.009768 0.002903 0.012115 0.003281 

  MAS 0.994994 0.004963         

  MAH 0.750924 0.100163 0.022786 0.011325 0.07902 0.035783 

  MSH 0.965822 0.031761 0.001781 0.000218 0.000375 0.00004 

 

Table 2: Probability of correctly estimated the true lag length of AR process ( p̂  5) 

Sample size Lag length selection criteria 

       AIC                   SIC                  HQ                   MAS                   MAH                     

MSH 

3                             
4 

5 

6 

7 

8 

9 

10 

50 

100 

1000 

2000 

0.823938 
0.859472 

0.481211 

0.539077 

0.39879 

0.513691 

0.403941 

0.473008 

 0.633822   

0.554139 

0.691688 

0.354081 
 

 

 

0.748864 
0.818179 

0.418718 

0.54264 

0.48890 

0.504421 

0.384457 

0.443134 

0.545665 

0.812206 

0.980345 

0.986292 
 

0.654144 
0.757227 

0.501568 

0.934603 

0.419325 

0.513799    

0.428554 

0.490939 

0.638177 

 0.450837  

 0.900294 

 0.900132 

0.890178   
0.924427  

0.805199 

0.54264 

0.852054 

0.755454 

0.809232 

0.788405 

0.954939 

0.968092 

0.992885 

0.994994 

0.748435                                                  
1.00000 

0.43880 

0.539535 

0.419325 

0.503908     

0.41942 

0.484016  

0.64893    

0.539434 

0.827546  

0.750924                   

0.522823 
0.789314  

0.465483 

0.535604 

0.409411 

0.535644 

0.413008 

0.474142 

0.531017 

0.614564 

0.956619 

0.965822 
 

 

Table 3. Probability of over and under estimated the true lag length of AR process ( p̂  5) 

Sample size and estimate Order selection criteria 

AIC               SIC                    HQ             MAS               MAH                 MSH 

3            

            

over 0.176062 

 

0.251136 

 

0.345856 

 

0.109822 

 

0.251565 

 

0.477177 

under       

4 over 0.140525 

 

0.181817 

 

0.242766 

 

0.075573 

 

0.0000 0.210681 

under       

5 over 0.518789 

 

0.112533 

 

0.187283 

 

0.311148 

 

0.126074 

 

0.324723 

under - 0.468748 0.238853  0.435126 0.139673 
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6 over 0.234905 

 

0.269402 

 

0.051703 

 

0.383189 

 

0.305882 

 

0.324723 

under 0.226018 

 

0.187956 

 

0.013694 

 

- 0.154582 

 

0.139673 

7 over 0.60121 

 

0.511085 

 

0.580675 

 

0.147943 

 

0.580675 

 

0.590585 

under       

8 over 0.153526 

 

0.144066 

 

0.281502 

 

0.244524 

 

0.240437 

 

0.240437 

under 0.332783 

 

0.351513 

 

0.204699 

 

- 0.255655 

 

0.281739 

9 over 0.222495 

 

0.189309 

 

0.30219 

 

0.190768 

 

0.261144 

 

0.242897 

under 0.373564 
 

0.426233 
 

0.269255 
 

- 0.319436 
 

0.344092 

10 over 0.211955 

 

0.166946 

 

0.267261 

 

0.211595 

 

0.238909 

 

0.214275 

under 0.315037 

 

0.38992 

 

0.2418 

 

- 0.277075 

 

0.311581 

50 over 0.329523 

 

0.454335 

 

0.230543 

 

0.045061 

 

0.28123 

 

0.000126 

under 0.023396 - 0.13128 

 

- 0.06984 

 

0.326297 

100 over 0.303331 

 

0.187794 

 

0.11119 

 

0.031889 

 

0.196495 

 

0.38544 

under 0.142531 

 

- 0.437973 

 

- 0.26407 

 

- 

1000 over 0.308312 

 

0.019602 

 

0.099638 

 

0.007112 

 

0.172454 

 

0.04338 

under - - - - - - 

2000 over 0.645919 

 

0.013681 

 

0.099868 

 

0.004963 

 

0.034175 0.034175 

under - - - - - - 

 

Table 4: Estimated lag length of AR process, ( p̂ <=5). 

Sample size Lag length selection criteria 

   AIC              SIC                HQ                  MAS              MAH            MSH 

3                             

4 

5 

6 

7 

8 

9 

10 

50 

100 
1000 

2000 

0 

0 

0 

2 

0 

2 

2 

4 

3 

0 
0 

 

0 

0 

2 

2 

0 

2 

2 

0 

0 

0 
0 

0 

0 

2 

2 

0 

2 

2 

4 

3 

0 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

0 

0 

2 

2 

0 

2 

2 

4 

3 

0 
0 

0 

0 

2 

2 

0 

2 

2 

4 

0 

0 
0 
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Table 5. Confidence set for Kullback-Leibler best model based on information criteria differences (i
) 

Sample 

size 

AR 

orders 

Information Criteria 

AIC                SC             HQ             MAS          MAH            MSH 

T=10 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

1 4.8622 4.9541 4.3430 6.9541 4.6026 4.6485 

2 3.7451 3.6808 2.4696 7.6808 3.1074 3.0752 

3 8.9637 8.4448 6.6215 14.4448 7.7926 7.5331 

4 17.9854 16.6416 14.1493 24.6416 16.0673 15.3954 

5       

T=50 0 0 0 0 0 0 0 

1 4.413467 6.285084 5.120865 8.285084 4.767166 5.702975 

2 6.042664 9.744244 7.435943 13.74424 6.739303 8.590093 

3 8.299879 13.78845 10.35666 19.78845 9.32827 12.07255 

4 0.337637 7.568821 3.034628 15.56882 1.686133 5.301725 

5 3.524631 12.45258 6.837555 22.45258 5.181093 9.645069 

T=100 0 0 0 0 0 0 0 

1 4.184122 6.769192 5.229742 4.706932 4.706932 5.999467 

2 4.127142 9.276874 6.209481 5.168312 5.168312 7.743178 

3 0.149258 7.842932 3.259247 1.704253 1.704253 5.55109 

4 4.352086 14.56866 8.480484 6.416285 6.416285 11.52457 

5 5.171234 17.88933 10.30862 7.739928 7.739928 14.09897 

T=1000 0 0 0 0 0 0 0 

1 4.022103 8.927857 5.886813 4.954458 4.954458 7.407335 

2 6.417443 16.22695 10.14628 8.281862 8.281862 13.18661 

3 8.03107 22.74232 13.62346 10.82726 10.82726 18.18289 

4 12.04929 31.66027 19.50464 15.77697 15.77697 25.58246 

5 14.76033 39.26903 24.07807 19.4192 19.4192 31.67355 

T=2000 0 0 0 0 0 0 0 

1 3.993893 9.593796 6.050164 5.022029 5.022029 7.82198 

2 6.920652 18.11946 11.03293 8.976791 8.976791 14.57619 

3 8.287323 25.08403 14.45534 11.37133 11.37133 19.76969 

4 4.382939 26.77654 12.60644 8.49469 8.49469 19.69149 

5 5.942231 33.93172 16.22095 11.08159 11.08159 25.07634 

 

References 
[1]. Shibata. 1976.  “Selection of the Order of an Autoregressive Mode by Akaike  information Criterion”, Biomertica, 63, pp.117-126.  

[2]. Box, G.E.P. and G.M. Jenkins, 1976. Time Series Analysis: Forecasting and Control.1st Edn, Holden-Day, San Francisco, and 

ISBN: 0816211043, pp: 575.   

[3]. Akaike, H .1974. “Information Theory and an Extention of the Maximum Likelihood Principle” In B.N Petror and F. Csaki, ed. 2nd, 

International symposium on Inference Theory,  

[4]. Hannan, E.J and Quinn B.G (1979): “The Determination of the Order of an Auto regression”, JRSS, B41, 190-195. 

[5]. Rissanen, J .1978. “Modelling by Shortest data Description” Automatica, 14, pp. 445- 71.  

[6]. Schwarz.1978. “Estimating the Dimension of a Model” Ann. Statist., 6, pp. 461-464. 

[7]. Stone, M.1979. “Comments on Model Selection Criteria of Akaike and Swartz” J.R.Statistics, B41, No.2, pp. 276-278.  

[8]. Al-Subaihi, Ali.A. 2007.  “Variable Selection in Multivariate Regression using SAS / IML, Saudi Arabia.  

[9]. McQuarrie, A.D and Tsai .1998.  “Regression and Time Series Model Selection”, World Scientific Publishing Co. Plc, LTD, River  

Edge, N.J  

[10]. Lutkepohl, H. 1985. “Comparison of Criteria for estimating the Order of a Vector Autoregressive Process” Journal of Time Series 

Analysis vol. 6, 35 – 36, 47, 50.  

[11]. Linhart, H. and Walter Zucchini. 1986. Model Selection. New York. Wiley.  

[12]. Sakamoto, Y., Ishiguro, M. and Kitagawa, G.1986. Akaike Information Criterion Statistics,  D.Reidel, Dordrecht. 

[13]. DeLeeuw, Jan. 1992. “Introduction to Akaike (1973) Information Theory and an extension of the Maximum Likelihood Principle." 

Pp. 599-609, in Breakthroughs in Satistics, vol. 1, edited by Samuel Kotz and Norman L. Johnson. London: Springer-Verlag. 

[14]. Kullback, Soloman and Richard A. Leibler. 1951. “On Information and Sufficiency."Annals of Mathematical Statistics 22:79-86. 

[15]. Parzen, Emmanuel, Kunio Tanabe, and Genshiro Kitagawa. (Eds.). 1998. SelectedPapers of Hirotugu Akaike. New York: Springer-

Verlag. 

[16]. Sugiura, Nariaki. 1978. “Further Analysis of the Data by Akaike's Information Criterion and the Finite Corrections."  

Communications in Statistics, Theory and MethodsA7:13-2626. 

[17]. Burnham, Kenneth P. and David R. Anderson. 2002. Model Selection and Multimodal Inference: A Practical Information-

Theoretical Approach. 2
nd

  Ed. New York: Springer-Verlag. 


