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ABSTRACT: In this paper, we propose numerical method to solve singularly perturbed delay differential
equations which works smoothly in both the cases, i.e., whether the delay is of O(g) or of o(g) . The numerical

method uses the modified upwind finite difference scheme on a special type of mesh to tackle the delay
argument. The stability and error analysis is given for in both the cases, when the sign of the coefficient of the
reaction term is negative or positive. To demonstrate the efficiency of the method and how to discuss the size of
the delay argument affects the layer behaviour we have implemented it on several test examples.
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l. INTRODUCTION

A singularly perturbed delay differential equation is an ordinary differential equation in which the
highest derivative is multiplied by a small parameter and involving at least one delay term. In the past, less
attention had been paid for the numerical solution of singularly perturbed delay differential equations. But in
recent years, there has been a growing interest in the numerical treatment of such differential equations. The
literature on delay differential equations is mainly centered on first order initial value problems [1, 2]. The
boundary value problems of delay differential equations are ubiquitous in the variational problems in control
theory [3]. For the numerical treatment for first order singularly perturbed delay differential equations, one can
see the thesis by Tian [9]. Lange and Miura [6, 7] gave an asymptotic approach for a class of boundary-value
problems for linear second-order differential-difference equations in which the highest order derivative is
multiplied by small parameter and shows the effect of very small shifts (of the order of &) on the solution and
pointed out that they drastically affect the solution and therefore cannot be neglected. Kadalbajoo and Sharma
[4], presented a numerical approach to solve singularly perturbed differential-difference equation, which
contains only negative shift in the differentiated term. In this method they first approximate the shifted term by
Taylor series and apply a difference scheme, provided shifts are o(g). Kadalbajoo and Sharma [5], presented a

numerical method to solve singularly perturbed differential-difference equation which contains only negative
shift not in the differentiated terms. In this method they present a numerical method composed of a standard
upwind finite difference scheme on a special type of mesh shifts are either o(¢) or O(e).

In this paper, we propose numerical method to solve singularly perturbed delay differential equations which
works smoothly in both the cases, i.e., whether the delay is of O(g) or of o(¢) . The numerical method uses the
modified upwind finite difference scheme on a special type of mesh to tackle the delay argument. The stability
and error analysis is given for in both the cases, when the sign of the coefficient of the reaction term is negative
or positive. To demonstrate the efficiency of the method and how to discuss the size of the delay argument
affects the layer behaviour we have implemented it on several test examples.

1. DESCRIPTION OF THE METHOD
Consider a singularly perturbed delay differential equation

&"(x)+a(x)y'(x—56)+b(x)y(x) = f(x) D
on 0<x<1,0<6<<1,
with  y(X)=¢(x), —-0<x<0, y(Q)=24, 2)

where a(x), b(x),f(x) are smooth functions, y isaconstantand & is the delay. For the function y(x) be a

smooth solution to the problem (1), it must satisfy boundary value problem be continuous on [0,1] and be
continuously differentiable on (0,1).
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2.1. Layer on the left side Here, we consider the case a(x) > M > 0, x €[0,1], M being positive constant.
In this case the solution of the boundary value problem exhibits boundary layer behaviour on the left side of the
interval [0, 1] i.e.,atx=0
Numerical Scheme

In this section we construct a numerical scheme for solving the boundary value problem based on
modified upwind finite difference scheme for the case when the solution of the problem exhibits a layer on the
left side. The numerical method comprised a modified upwind finite difference operator on a special type of

uniform mesh. To tackle the delay term, we choose the mesh parameter as h = 9 , Where m=pq, p is a positive
m

integer and q is the mantissa of & .

The modified upwind difference scheme of the boundary value problem (1) is given by

LNy, =D, Dy, +a(x)D,y, n+b(x)y, = f,, for i=1,2,3..N-1, ®)
y,=¢ i=-m-m+1...0 (4)
Yn =7, ®)
(Yia = 2¥i +¥ia) Yia=Yi F _Ym—Yi h
where DDy =2 "2t il py =271 py=7IH "y
+ *yl hz +y| h y h zy

Then equation (3) gives

£
h_z(yi—l =2Y; +Yia) thy; =
fori=1,2,3...m-1

a a
fi - h (bmis = Fim) + 2h (¢i—m+1 =2, + ¢i7mfl)

& am am am " H—
h_z(ym—l_zym +ym+l)+T Yi +bmym = fm +T¢O+E 0 for i=m (6)
%(yif1 =2y, + Vi) + a{Mh_y‘m) —g yi”m] +by = f for i=m+I,m+2,.. N-1
with y, = ¢, (7

Yn =7 (8)
On simplification of the discrete problem (6), (7) and (8) reduces to a system of (N+1) linear difference
equations given by ANy =f 9)
where y = (Y, Y ....... yN>t, f=(fo fpo. fN>tand A" =[a,], f(x)="f foralli=1.2,......... N and
dx)=¢, Yi=1273,......... m.

.1 Error estimate
Case(i): When b(x) < —6€ < 0, where @ is a positive constant

Lemma 2.1 (Discrete Minimum Principle). Suppose y, >0 and w, >0.Then LNy, <0 forall i
=1,2,...... N-1 implies w; >0 for all i =0,1,2,......,N.

Proof. One can see [6]
Theorem 2.1: Under the assumptions that a(x) >M >0 and b(x) <—-60 <0where M and & are positive

constants, the solution of the discrete problem with boundary conditions exist, is unique and satisfies
¥1,.. <6711, +C.lal,.. 1) (10)

where C, >1 is a positive constant. Here, |||, _is the discrete I, —norm defined by x|, = gn_a?ﬂxi |
B v <I<

Proof. To prove the unigueness and existence, suppose (u; )to and (v, >|N:O be two solutions to the discrete
problem then z; =u; —v; isa mesh function satisfying z, =0 and for 1<i <N -1,

wehave  L“z; =L"u, —L"v,. Since u; and v, satisfy therefore LNz, =0, 1<i <N -1, Thus the mesh
function z; satisfies the hypothesis of the discrete minimum principle and so by an application of it to the mesh
function z,
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weget z; =u; -V, 20, 0<i<N, (11)
Again if we set z, =—(u; —v,) ,then z, is a mesh function satisfying z, =0 = z,, and along the same lines we

did above , we get L"z, =0,1<i< N —1. Thus the application of the discrete minimum principle for the mesh
function z; gives

z; =—(U; —v;) =0, ie,u;, —v, <0, 0<i<N, (12)

From equations (11) and (12), we getu, —v; =0, which implies the uniqueness of the solution to the discrete
problem. For linear equations, the existence is implied by uniqueness. Now we shall prove the bound on

<yi>iN:0. For that, we introduce two barrier functions ;" defined by ;" = 971"‘("“% +Cl(]|¢|| +|;/|)J_r Vi,
1<i <N, where C, >1 isan arbitrary positive constant.

Thenwe have yg =607, +C,(d], . +]1) v

=07\t +(Culd, . £ )+ Cul|. since y, =4,

>0, since ¢, . >4 and C, 21, yis =07 ||, +C.(d], . +]7])= v =

67| f],.. +Cil4,.. +(C1|7/|i;/), since y, =y >0, since |y|>y and C, >1,

and for 0 <i<m,we have
LMy, =D, D i +a(x)D, ", +b(x )y’

=000 1]+, + )=y )
Using equation (5) for LMy, in equation (13) we get ~ Since b(x,) < -0 <0,i.e., b(x,)0™" <-1
Ly =be)O 1+l +17)
a. (14)
£(f =800 =) N+ (b =21 + 6]
we get
Ly <[], = )+ oo, +17D
(15)

+ (a(xi )(¢i—m+l - ¢i—m ) / h) + %( i-m+1 2¢i—m + ¢i—m—1 )j

Since in the above inequality (15) the first and second terns are negative, so we choose the constant C, so that

the sum of the moduli of the first and second terms dominates the modulus of the third term in the above
inequality. We then obtain

Ny, <0,1<i<m, for m<i<N,
We have
LYy =D, Dy +a()y +b(x)yi
=b0x)0 11, +Culle,, +1A)Ly.

Using equation (5) for L"y,, in equation (16) we get L"w," =Db(x; )(9’1||f||hyw +C1(”¢"h,w +|)/|))i f,

(16)

< (— |f ||hm +f, )+ b(x, )Cl(]|¢||h’w +|}/|) ,since b(x,)0" <-1<0, sinceb(x;) <-0<0,
Combining both cases, we obtain LNy, <0, 1<i<N. an
Using Lemma 2.1 for y;*, obtain " = 67| | +Cl(||¢||+|y|)i y; 20 1<i<N,

This proves the required estimate (10).
2.2. Case (ii): When b(x)>6>0

Lemma 2.2. (Discrete Maximum Principle): Suppose w, >0 and y,, >0.Then LNy, >0 for all i =

1,2,....N-1implies that ;, >0 foralli=0,1,2,....,N.
Proof: One can see [6]
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Theorem 2.2. Under the assumption that a(x) >M >0 and b(x) > 8 >0, where M and @ are positive
constants, the solutions of the discrete problem with boundary conditions exists, is unique and satisfies .
I¥1,... <071l +C2al, . +171). (18)
where C, >1 is a positive constant.

Proof. The proof of the uniqueness and existence is similar as in Theorem 2.1.Now we shall prove the bound
on (y, >|N:0 For that, we introduce two barrier functionsy,” defined by ;" = 07| f ||h’w +C, (||¢|| +|y|)J_r Vi,

0<i<N,where C, >1 is an arbitrary positive constant. Using the same argument as we used in the proof of
Theorem 2.1, we obtain w, >0, y, =0 and for 0<i<m, we have
LYy =D, Dy +a(6) Dyt +b06)y; =
o0 .+, + L
Ly =)o o1, +ll,,, +11) +
Using equation (5) we get [ fi-=@(Xi)(#in.a—4in)/h Since h(x,)>6>0,i.e.,
a, :
+30) B =) [+ 2 (B =201 + i)

b(x, )0 >1, we get
Ly < (It + £ Cb0x )l .+
_ a, (19)
F| 200G =) [N+ 2 (s =20 + i)
Since ||f||h’w > f, in the above inequality the first and second terns are positive, so we choose the constant C,

such that the sum of the moduli of the first and second terms dominates the modulus of the third term in the
above inequality. We then obtain

Ny >0 (20)
For m<i<N, we have LNy," =D, D_w;" +a(X)w;” +b(x, )y,
=000)(0 1], +Coli, .+,
Using Eqg. (5), we get
Ly =000+ Clal,,. +iA)

=be)o ¢, £ )+ o), +17]) >0 since b(x)=6>0 1)
From inequalities (20) and (21) we get Ny >0, 1<i<N. (22)
Thus an application of Lemma 2.2 to mesh function ;" gives
W= 9’1||f||hvw +C2(||¢||+|7|)i y; >0 0<i<N, which proves the required bound on the discrete solution
<yi >iN:0'

Thus theorems (2.1) and (2.2) imply that the solution to the discrete problem (1.1), (1.2) is uniformly bounded,
independently of the mesh parameter h and the parameter ¢, which proves the difference scheme is stable for
all mesh sizes.

Corollary2.1. Under the assumption that a(x;) > M >0, the error e; = y(X;) — Y, between the solution y(x;) of
the continuous problem (1) and the solution Y; of the discrete problem (1) and (2) satisfies the estimate

[ell,... <&ITl,.. (23)
n max |y"®|+
. 12 xia<xsxig
where T, satisfies T, < he he .
la] ~ max {— y'"(x)|+—|y”(x)|}
Xiem<X<Xi_ms1 | 6 24
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Proof: The truncation error T, is given by
T = 5[(Yi71 -2y + yi+1)/h2 - y”(xi)]

vago)| Yema ) Ny oy
h 2
Now using the Taylor’s series and after some simplifications, we obtain
2
—— Mmax

12 xia<x<xig

< h2
o, mex {0
i m+1

—mSXSXj-

iv(x) +

We have

y”(x)|} |

LNe(x) = L"y(x,)—L"y, =T,, where i=1,2,3,...N-1  and e, =0=e¢,.

" h’
X)|+—
y" (X)) 24

Then by using theorems (2.1) and (2.2), we obtain the required error estimate

1. LAYER ON THE RIGHT SIDE
we consider the case a(x) <—M <0, M being positive constant i.e., the solution of the boundary value problem

exhibits boundary layer behaviour on the right side of the interval [0, 1] i.e., at x =1 and construct a numerical
scheme to solve the problem.

Numerical Scheme
The modified upwind difference scheme of the boundary value problem (1) and (2) is given by\

LYy, =¢D,D_y, +a(xi)67yi—m+b(xi)Yi =f;, 1<i<N-1, (24)
y,=¢ 1i=—-m-m+1,,0 (25a)
Yn =7 (25b)
(Vi =2Yi +Yia) Yi —Via 5 Yi—Yiu  h

where D, D_y; == L i py =2 ity =2 Jid gy

+ —yl h2 —yl h —yl h 2 yl
The equation (24) gives the system of equations

£ a; _
F(yi—l —2Y; + Vi) by = _F(ﬂfm $ms) fori=1.23 .. ml
_%(ﬂfmd - 2¢|—m + ¢|—m—1)

Loy an Zf 4 Bny @D, for i=m
h2 (ym—l 2ym + ym+1) + h yo +bmym - fm + h ¢0 2 ¢0
hiz (Vi -2y, +Y,0)+a [Lhymlhg y;m]+ by =f fori=m+lm+2,...N-1 (26)
Yo =0, (272)
Yn =7 (27b)

On simplification the discrete problem reduces to a system of (N+1) linear difference equations given by
t t n
Ay =f, wherey=(yoYy;.....yy) . F=(fo f oo fy ) and A" =[a ],

V. NUMERICAL EXAMPLES
To describe the method we consider six test examples with left and right end boundary layers.

Example 1. gy"(x) + y'(x—8) — y(x) = 0 under the interval with boundary conditions y(x) =1, -6 <x <0,
1)=0

)I/E(x;mple 2. &y"(x) +0.25y'(x — ) — y(x) = 0 under the interval with boundary conditions  y(x) = 1,

-6<x<0, y@®)=0

Example3.[6, p. 257] &y"(X)— y'(x—3) — y(x) = 0 under the interval with boundary conditions y(x) = 1,

-6<x<0, y@)=-1

Example 4. &y"(x)+0.25y'(x— &) — y(x) = 0 under the interval with boundary conditions y(x) =1, -6 < x <0,

y(1)=-1
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Example 5. [7, 275] &y"(x) + y'(x— &) + y(x) =0 under the interval with boundary conditions y(x) =1,

-6<x<0, y)=1

Example 6. gy"(x) — y'(x—6) + y(x) = 0 under the interval with boundary conditions y(x) =1, -6 < x <0,
y1)=-1

Table 1. The maximum absolute errors for &=0.1

S\N 100 200 300 400 500

Example 1

0.03 0.010738 0.005458 0.0041115 0.002542 0.0020691
0.05 0.010711 0.005452 0.0041079 0.002541 0.0020679
0.08 0.010672 0.005441 0.0041008 0.002537 0.0020655
Example 5
0.03 0.009977 0.004899 0.003386 0.002504 0.001987
0.05 0.009961 0.004903 0.003391 0.002509 0.001991
0.08 0.009969 0.004923 0.003406 0.002522 0.002002
Example 6
0.03 5.809e-005 1.443e-005 6.689e-006 3.715e-005 2.359 e-006
0.05 9.872e-005 2.420e-005 1.118e-005 6.192e-006 3.922e-006
0.08 1.614e-004 3.877e-005 1.788e-005 9.843e-006 6.205e-006

Table 2. The maximum absolute errors for § =0.03

¢\N

100

200 300 400

Example 2

2—1
2—2
2—3
2—4
2—5
2—6
2—7

0.010026
0.010018
0.010004
0.009974
0.009916
0.009798
0.009559

Example 3

2—1
2—2
2—3
2—4
2—5
2—6
2—7

1.1301e-005
2.2807e-005
4.6429e-005
9.6118e-005
2.0526e-004
4.6264e-004
0.001133

Example 4
27" 2.8006e-007 7.1060e-008 3.3105e-008 1.8462e-008

2—2
2—3
2—4
2—5
2—6
2—7

5.6024e-007
1.1209e-006
2.2438e-006
4.4954e-006
9.0217e-006
1.8167e-005

0.004905 0.003387 0.002504
0.004903 0.003386 0.002503
0.004898 0.003383 0.002501
0.004888 0.003377 0.002497
0.004867 0.003366 0.002489
0.004827 0.003343 0.002473
0.004745 0.003296 0.002441

2.8562e-006 1.3285e-006 7.4052e-007
5.7406e-006 2.6661e-006 1.4851e-006
1.1594e-005 5.3679e-006 2.9869e-006
2.3641e-005 1.0878e-005 6.0402e-006
4.9100e-005 2.2331e-005 1.2346e-005
1.0551e-004 4.6976e-005 2.5763e-005
2.4061e-004 1.0333e-004 5.5864e-005

1.4213e-007 6.6216e-008 3.6927e-008
2.8433e-007 1.3245e-007 7.3863e-008
5.6892e-007 2.6498e-007 1.4776e-007
1.1388e-006 5.3028e-007 2.9566e-007
2.2817e-006 1.0618e-006 5.9187e-007
4.5797e-006 2.1287e-006 1.1859e-006
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V. DISCUSSIONS AND CONCLUSIONS
The maximum absolute errors are presented in tables 1 and 2 for the considered examples in support of
the proposed method to show the effect of delay on the boundary layer behaviour of the solution. We have

presented maximum absolute errors by the double mesh principle given by 7, = max|y;‘ - yj“’2| L ji=0,1, ..
]

N-1 where y{ is the computed solution on the mesh {xj }(']“ at the nodal point x; whereand y{'? is the

computed solution at the nodal point x; on the mesh {xj }2” where x; =X;, +h/2, j=1(1)2N . The existence

and uniqueness of the discrete problem along with stability estimates are discussed.
We observe that if 6 =0(g) and as & increases, the thickness of the boundary layer decreases in the case when

the solution exhibits layer behaviour on the left side, while in the case of the right side boundary layer, it
increases. This method gives good.
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