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ABSTRACT : This note presents the discussion regarding the flow of a dusty viscous fluid through hexagonal 
duct, i.e. , the cross-section of the long rectilinear duct is a regular hexagon. Developed integral transform and 

trilinear co-ordinates have been employed to solve the problem. The pressure gradient has been taken any 

function of time. A few particular cases, i.e. , flow under an impulsive pressure gradient and flow under constant 

pressure gradient have also been discussed. 

I. INTRODUCTION 
Unsteady laminar viscous incompressible flow through large rectilinear duct has been studied by Chien 

Fan (1965) when the axial pressure gradient is any arbitrary function of time. Saffman (1962) studied the 

stability of the laminar flow of a dusty gas where in dust particles were uniformly distributed and their size and 

shape were also uniform and neglected the bulk concentration. Michael (1965) , Michael and Norway (1968) 

and Rao (1969) have studied unsteady flow of a dusty viscous fluid for viscous geometries. 

 In this chapter we consider the unsteady flow of dusty viscous fluids through a rectilinear duct having 

cross-section as a regular hexagon and pressure gradient is assumed to be any function of time. For the 

suitability of boundaries a special not-orthogonal co-ordinate system, a system of trilinear co-ordinates, has been 

used and the corresponding integral transform has been considered to solve the differential equation. Two 

particular cases have also been discussed. 

II. GOVERNING EQUATIONS OF MOTION 
 Using Cartesian co-ordinates  𝑥,𝑦, 𝑧   , let 𝑧 −axis be along the axis of the duct. For the present 

geometry, the components of the fluid velocity   𝑢𝑥 ,𝑢𝑦 , 𝑢𝑧   and those of duct particle   𝑣𝑥 ,𝑣𝑦 ,𝑣𝑧   are assumed 

as: 

𝑢𝑥 = 0,        𝑢𝑦 = 0,        𝑢𝑧 = 𝑢𝑧 𝑥, 𝑦, 𝑡  

and  

𝑣𝑥 = 0,        𝑣𝑦 = 0,        𝑣𝑧 = 𝑣𝑧 𝑥,𝑦, 𝑡 . 

 It is further assumed that the number density of the duct particle  𝑁 = 𝑁0,  a constant. 

The governing equation of motion (Saffman, 1962) are 

𝜕𝑢𝑧

𝜕𝑡
= −

1

𝜌
 
𝜕𝑝

𝜕𝑧
+  𝜈  

𝜕2𝑢𝑧

𝜕𝑥2
+

𝜕2𝑢𝑧

𝜕𝑦2
 +

𝐾𝑁0

𝜌
 𝑣𝑧 − 𝑢𝑧             …………………………………… 1  

and   

𝑚
𝜕𝑣𝑧

𝜕𝑡
= 𝐾 𝑢𝑧 − 𝑣𝑧                                                                  ………………………………… . (2) 

where 𝐾 is the Stoke’s resistance coefficient,  𝜈  is the kinematic viscosity,  𝜌  is the fluid density, 𝑚  is the 

mass of the dust particle and  𝑝 is the fluid pressure. 

We further assume    −
1

𝜌
 
𝜕𝑝

𝜕𝑧
= 𝑎𝑛𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 = 𝑓 𝑡      ………………………… . .  3  
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Eliminating  𝑣𝑧   between (1) and (2) and using (3), we get 

𝜕2𝑢𝑧

𝜕𝑡2
+ 𝐾  

𝑁0

𝜌
+

1

𝑚
  

𝜕𝑢𝑧

𝜕𝑡
=  

𝐾

𝑚
+

𝜕

𝜕𝑡
 𝑓 𝑡 +  𝜈  

𝐾

𝑚
+

𝜕

𝜕𝑡
   

𝜕2𝑢𝑧

𝜕𝑥2
+

𝜕2𝑢𝑧

𝜕𝑦2
   …………… . . . (4) 

Let    𝑓 𝑡 = 𝑃 + 𝐹 𝑡                                                                                                    ……………… .  5  

where   𝑃  is a constant and  𝐹 𝑡  is a function of time. Also let 

𝑢𝑧 = 𝑢1 𝑥, 𝑦 +  𝑢2 𝑥,𝑦, 𝑡                                                            ………………………………… . . (6) 

where   𝑢1   is steady component and  𝑢2  is unsteady component of velocity of the fluid. 

Substituting (5) and (6) in (4) and separating the steady and unsteady parts, we get 

𝜕2𝑢1

𝜕𝑥2
+

𝜕2𝑢2

𝜕𝑦2
+

𝑃

𝜈
= 0                                                                                           …………………… . (7) 

𝜕2𝑢2

𝜕𝑡2
+ 𝐾  

𝑁0

𝜌
+

1

𝑚
  

𝜕𝑢2

𝜕𝑡
=  

𝐾

𝑚
+

𝜕

𝜕𝑡
 𝐹 𝑡 +  𝜈  

𝐾

𝑚
+

𝜕

𝜕𝑡
   

𝜕2𝑢2

𝜕𝑥2
+

𝜕2𝑢2

𝜕𝑦2
   …………… . . . (8) 

Equations (7) and (8) are main governing equation of motion. 

III. TRANSFORMATION OF THE GOVERNING EQUATION IN TRILINEAR CO-

ORDINATES AND INITIAL AND BOUNDARY CONDITIONS 
Let us consider a reference equilateral triangle of side ‘3a’ , so that the hexagonal cross-section has 

three alternative sides as the sides of the reference triangle and remaining three alternative sides will be given by 

constant perpendicular distances from the reference triangle sides. Hence the regular hexagon will have the side 

of length ‘a’. Expressing the   equations of motion and boundary conditions in terms of trilinear co-ordinates, we 

have 

∇𝛼 ,𝛽 ,𝛾
2 𝑢1 +

𝑃

𝜈
= 0                                  ……………………… . (9) 

𝜕2𝑢2

𝜕𝑡2
+ 𝐾  

𝑁0

𝜌
+

1

𝑚
  

𝜕𝑢2

𝜕𝑡
=  

𝐾

𝑚
+

𝜕

𝜕𝑡
 𝐹 𝑡 +  𝜈  

𝐾

𝑚
+

𝜕

𝜕𝑡
  ∇𝛼 ,𝛽 ,𝛾

2 𝑢2     …… . …………… . . . (10) 

and 

 

𝑢1 0, 𝛽, 𝛾 = 𝑤1 = 𝑢1  
2𝐾

3
, 𝛽, 𝛾 

𝑢1 𝛼, 0, 𝛾 = 𝑤1 = 𝑢1  𝛼,
2𝐾

3
, 𝛾 

𝑢1 𝛼,𝛽, 0 = 𝑤1 = 𝑢1  𝛼,𝛽,
2𝐾

3
  
 
 

 
 

                                                   …………………………… . . (11) 

 

𝑢2 𝛼,𝛽,𝛾, 0 = 0                                  

𝑢2 0,𝛽, 𝛾, 𝑡 = 0 = 𝑢2  
2𝐾

3
, 𝛽, 𝛾, 𝑡 

𝑢2 𝛼, 0, 𝛾, 𝑡 = 0 = 𝑢2  𝛼,
2𝐾

3
,𝛾, 𝑡 

𝑢2 𝛼, 𝛽, 0, 𝑡 = 0 = 𝑢2  𝛼, 𝛽,
2𝐾

3
, 𝑡  

 
 
 

 
 
 

                                           ………………………………… (12) 
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where  𝐾  is the perpendicular distance from a vertex of the reference triangle to its opposite side and the 

trilinear co-ordinates   𝛼,𝛽,𝛾  of any point are related by  

𝛼 + 𝛽 + 𝛾 = 𝐾                                       …………………………… . . (13) 

and     

∇𝛼 ,𝛽 ,𝛾
2 ≡  

𝜕2

𝜕𝛼2
+

𝜕2

𝜕𝛽2
+

𝜕2

𝜕𝛾2
−

𝜕2

𝜕𝛼𝜕𝛽
−

𝜕2

𝜕𝛽𝜕𝛾
−

𝜕2

𝜕𝛾𝜕𝛼
  

The other physical requirement is that  𝑤  must be finite. 

IV. SOLUTION OF THE PROBLEM 
To solve this problem we shall use the following developed integral transform of function of trilinear co-

ordinates : 

𝑇 𝑓 𝛼,𝛽,𝛾  = 𝑓∗ 𝑚 =    𝑓 𝛼, 𝛽, 𝛾  sin
2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
  𝑑𝛼 𝑑𝛽 𝑑𝛾 

𝐾3

0

𝐾2

0

𝐾1

0

 

…………………………… 14  

where  𝐾1 = 𝐾2 = 𝐾3 = 𝐾0 =
𝑞

𝑝
𝐾 , 𝑝  and  𝑞  being integers and  𝐾  being constant such that   𝛼 + 𝛽 + 𝛾 = 𝐾   .  

Also  𝑚  is an integer. 

The transform has the inverse formula 

𝑓 𝛼, 𝛽, 𝛾 =  𝑓∗ 𝑚  𝑐𝑚   sin
2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
                 ………… . . (15)

𝑚  

 

where      
1

𝑐𝑚
=

3

2
 
𝑞

𝑝
𝐾 

3

                                                   

With the help of operational property 

𝑇  𝐿  𝑓(𝛼,𝛽,𝛾) = −    
𝜕𝑢𝑚

𝜕𝑛𝑖

 𝑓(𝛼,𝛽,𝛾)  
0

𝐾𝑖𝐾𝑡

0

𝐾𝑠

0𝑖

 𝑑𝑥𝑠  𝑑𝑥𝑡 −  
4𝜋2𝑚2

𝐾2
 𝑓∗ 𝑚        … . . (16) 

where   𝑖 ≠ 𝑠 𝑎𝑛𝑑 𝑠 ≠ 𝑡  𝑎𝑛𝑑  𝑑𝑛𝑖  are the perpendicular distances to the sides of the reference triangle in the 

trilinear system of co-ordinates and the function  𝑢𝑚   is 

   𝑢𝑚 =  sin
2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
                                     ……………………… . (17) 

Now solution (9) satisfying the boundary condition (ii) is 

𝑢1 = 𝑤1 +   
2

𝑚𝜋

∞

𝑚=1

  
𝐾

2𝜋𝑚
 

2

 
𝑃

𝜈
  sin

2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
      ………………… . (18)  

This solution can be verified by substituting in (9) and knowing that (by Fourier Series Law) 

𝐾 − 2𝛼 =  
2𝐾

𝑚𝜋
   𝑠𝑖𝑛

2𝜋𝑚𝛼

𝐾

∞

𝑚=1
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𝐾 − 2𝛽 =  
2𝐾

𝑚𝜋
   𝑠𝑖𝑛

2𝜋𝑚𝛽

𝐾

∞

𝑚=1

 

𝐾 − 2𝛾 =  
2𝐾

𝑚𝜋
   𝑠𝑖𝑛

2𝜋𝑚𝛾

𝐾

∞

𝑚=1

 

𝑙 =
1

𝐾
 3𝐾 − 2(𝛼 + 𝛽 + 𝛾) =  

2

𝑚𝜋

∞

𝑚=1

   sin
2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
  

Again for the solution of (10) with respect to boundary and initial conditions (12) we use Laplace transform for 

the time variable so that (10) becomes 

 𝑠2 + 𝐾  
𝑁0

𝜌
+

1

𝑚
 𝑠 − 𝜈  

𝐾

𝑚
+ 𝑠 ∇𝛼 ,𝛽 ,𝛾

2  𝑢2 =  
𝐾

𝑚
+ 𝑠 𝑓 𝑠   ………………………… 19  

 Applying the integral transform of trilinear co-ordinates as defined by (14) to (19), we eliminate  ∇𝛼 ,𝛽 ,𝛾
2  

operator from it so as to obtain 

 𝑠2 + 𝐾  
𝑁0

𝜌
+

1

𝑚
 𝑠 + 𝜈  

𝐾

𝑚
+ 𝑠  

6𝜋𝑚

𝐾
 

2

 𝑢2
∗ =

4𝐾3

27𝜋𝑚
 
𝐾

𝑚
+ 𝑠 𝑓 𝑠   …………………… 20  

Whence we have 

𝑢2
∗ =

4𝐾3

27𝜋𝑚
  

𝑓 𝑠 

 𝜃 − 𝜙 
  

𝐾
𝑚 + 𝜃

𝑠 − 𝜃
 −  

𝐾
𝑚 + 𝜙

𝑠 − 𝜙
                 ………………………………… . . (21) 

where  𝜃, ∅  are the roots of the equation 

𝑠2 +  
𝐾𝑁0

𝜌
+

𝐾

𝑚
+ 𝜈  

6𝜋𝑚

𝐾
 

2

 𝑠 +
𝜈𝐾

𝑚
 

6𝜋𝑚

𝐾
 

2

= 0                   ……………………………… . . (22) 

To get the solution in terms of the original variable   𝛼,𝛽,𝛾 𝑎𝑛𝑑  𝑡  we make use of inversion theorem (15) and 

inverse Laplace transform, we get 

𝑢2 𝛼, 𝛽, 𝛾, 𝑡 =  
2

3
 

∞

𝑚=1

  
3

2𝐾
 

3

 
4𝐾3

27𝜋𝑚 𝜃 − 𝜙 
  sin

2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾

+ sin
2𝜋𝑚𝛾

𝐾
    

𝐾

𝑚
+ 𝜃  𝑒𝜃𝜉  𝑓 𝑡 − 𝜉 

𝑡

0

 𝑑𝜉 −   
𝐾

𝑚
+ 𝜙  𝑒𝜙𝜉  𝑓 𝑡 − 𝜉 

𝑡

0

 𝑑𝜉      

 ………………… . . (23)   

 which obviously satisfies the initial and boundary conditions. 

Substituting (18) and (23) in (6), we get 

𝑢𝑧 = 𝑤1 +   
2

𝑚𝜋

∞

𝑚=1

  
𝐾

2𝜋𝑚
 

2

 
𝑃

𝜈
  sin

2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
  

+   
1

3𝜋𝑚(𝜃 − 𝜙)

∞

𝑚=1

   sin
2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
  𝑇𝑚        ……… . . (24) 



A note on unsteady flow of a dusty viscous fluid through hexagonal duct 

 

www.iosrjournals.org                                                    48 | Page 

 

where 𝑇𝑚  =   
𝐾

𝑚
+ 𝜃  𝑒𝜃𝜉  𝑓 𝑡 − 𝜉 

𝑡

0
 𝑑𝜉 −   

𝐾

𝑚
+ 𝜙  𝑒𝜙𝜉  𝑓 𝑡 − 𝜉 

𝑡

0
 𝑑𝜉                     …………… (25) 

Substituting the value of   𝑢𝑧   in equation (1), we have  

(taking trilinear co-ordinates into consideration) 

𝑣𝑧 = 𝑤1 +  
2

𝑚𝜋

∞

𝑚=1

  
𝐾

2𝜋𝑚
 

2

 
𝑃

𝜈
  sin

2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
  

+   
1

3𝜋𝑚 𝜃 − 𝜙 

∞

𝑚=1

   sin
2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
  𝑇𝑚  

+  
𝜌

𝐾𝑁0

 
𝜕

𝜕𝑡
  

1

3𝜋𝑚 𝜃 − 𝜙 

∞

𝑚=1

   sin
2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
  𝑇𝑚   +  𝐹 𝑡 

−  𝜈   
2𝑃

𝑚𝜋𝜈
+

4𝜋𝑚𝑇𝑚  

3𝐾2 𝜃 − 𝜙 
 

∞

𝑚=1

   sin
2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
  𝑇𝑚          

……………………… . .… (26) 

These equations (24) and (26)  give the general solutions for  𝑢𝑧   𝑎𝑛𝑑 𝑣𝑧    satisfying all the boundary and initial 

conditions. 

V. FLOW UNDER AN IMPULSIVE PRESSURE GRADIENT 
 Let    𝑓 𝑡 = −𝐴 𝛿 𝑡 , 

where  𝐴  is a positive constant and  𝛿 𝑡   is the Dirac delta function. Physically this represents the case 

when an impulsive pressure gradient of magnitude  𝜌𝐴  is suddenly impressed on the fluid at  𝑡 = 0+ . Without 

loss of generality we can take  𝐴 = 1 for convenience. 

Hence equations (24) and (25) give 

𝑢𝑧 = 𝑤1 +   
2

𝑚𝜋

∞

𝑚=1

  
𝐾

2𝜋𝑚
 

2

 
𝑃

𝜈
  sin

2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
  

+   
1

3𝜋𝑚(𝜃 − 𝜙)

∞

𝑚=1

   sin
2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
   

𝐾

𝑚
+ 𝜃  𝑒𝜃𝑡 −   

𝐾

𝑚
+ 𝜙 𝑒𝜙𝑡   

𝑣𝑧 = 𝑤1 +   
2

𝑚𝜋

∞

𝑚=1

  
𝐾

2𝜋𝑚
 

2

 
𝑃

𝜈
  sin

2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
  

+   
1

3𝜋𝑚 𝜃 − 𝜙 

∞

𝑚=1

   sin
2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
  𝑅𝑚  

+  
𝜌

𝐾𝑁0

 
𝜕

𝜕𝑡
  

1

3𝜋𝑚 𝜃 − 𝜙 

∞

𝑚=1

   sin
2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
  𝑅𝑚   +  𝐹 𝑡 

−  𝜈   
2𝑃

𝑚𝜋𝜈
+

4𝜋𝑚𝑅𝑚  

3𝐾2 𝜃 − 𝜙 
 

∞

𝑚=1

   sin
2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
          

where  

                  𝑅𝑚  =   
𝐾

𝑚
+ 𝜃  𝑒𝜃𝑡 −   

𝐾

𝑚
+ 𝜙 𝑒𝜙𝑡   
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VI. FLOW UNDER CONSTANT PRESSURE GARDIENT 
Let    𝑓 𝑡 = −𝐴 𝐻 𝑡 , 

where  𝐴  is a positive constant and  𝐻 𝑡   is the Heaviside unit step function. Then  

𝑢𝑧 = 𝑤1 +   
2

𝑚𝜋

∞

𝑚=1

  
𝐾

2𝜋𝑚
 

2

 
𝑃

𝜈
  sin

2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
  

+  
𝐴

3𝜋𝑚(𝜃 − 𝜙)

∞

𝑚=1

   sin
2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
 𝑆𝑚   

and 

𝑣𝑧 = 𝑤1 +  
2

𝑚𝜋

∞

𝑚=1

  
𝐾

2𝜋𝑚
 

2

 
𝑃

𝜈
  sin

2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
  

+   
𝐴

3𝜋𝑚 𝜃 − 𝜙 

∞

𝑚=1

   sin
2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
  𝑆𝑚  

+  
𝜌

𝐾𝑁0

 
𝜕

𝜕𝑡
  

1

3𝜋𝑚 𝜃 − 𝜙 

∞

𝑚=1

   sin
2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
  𝑆𝑚   +  𝐹 𝑡 

−  𝜈   
2𝑃

𝑚𝜋𝜈
+

4𝜋𝑚𝑆𝑚  

3𝐾2 𝜃 − 𝜙 
 

∞

𝑚=1

   sin
2𝜋𝑚𝛼

𝐾
+ sin

2𝜋𝑚𝛽

𝐾
+ sin

2𝜋𝑚𝛾

𝐾
          

where  

𝑆𝑚  =   
𝐾

𝑚
+ 𝜃   

𝑒𝜃𝑡 − 1

𝜃
 −   

𝐾

𝑚
+ 𝜙  

𝑒𝜙𝑡 − 1

𝜙
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