Exact value of pi $(\pi)=17-8 \sqrt{3}$

Mr. Laxman S. Gogawale

Fulora co-operative society,
Dhankawadi, Pune-43 (India)

Abstract

In this paper, I show that exact value of pi (π) is $17-8 \sqrt{\mathbf{3}}$ or $17-\sqrt{192}$. I found that π is an algebra. My findings are based on geometrical constructions, arithmetic calculation and algebraic formula \& proofs.

Introduction

$\operatorname{Pi}(\pi)$ is a mathematical constant that is the ratio of a circles circumference to its diameter equal to area of circle divided by to radius square. I found that by this method, the constant $\operatorname{Pi}(\pi)$ is approximately equal to 3.14359
........
π is an irrational number. Its decimal representation never ends and never repeats. The digits in the decimal representation of $\operatorname{Pi}(\pi)$ appear to be random. $\operatorname{Pi}(\pi)$ is found in many formulae concerning circles, ellipse, spheres, number theory, statistics, mechanics and electromagnetism.

I compute the exact value of $\operatorname{pi}(\pi)$. I use geometric constructions and algebraic calculations to find Value of $\operatorname{Pi}(\pi)$.

Our proof involves geometric, arithmetic \& algebraic identities/formulae. I can prove it by using geometric , arithmetic \& algebraic methods, 100 \& more examples , 40 types of proofs .

Here, myself is giving you the summary of $\operatorname{Pi}(\pi)$ value research .

Construction

First draw a circle

With the help of rounder divide the circumference in six equal parts, draw three diameters.

Then join the end points of the diameters, so that we get six equilateral triangles with sides equal to radius i.e. Regular hexagon is formed.

Then draw regular twelve sided polygon (Dodecagon) i.e. make twelve equal sectors of the circle.

Figure Number - 1
Then draw a square so that circle is inscribed in a square, then give names $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ to different parts shown in following figure.

Basic Figure

Draw the square such that circle is totally inside in the square.

Figure Number - 2
Note :- 1) Let a, b, c, d each part shows area.
2) Every Figure in the proof is symmetric about $X \& Y$ axis .
www.iosrjournals.org
19 | Page

From above figure we get,

$12 a+12 b$	$=$ Area of Dodecagon (12 sides Polygon)
$12 a+12 b+12 c$	$=$ Area of circle $=\pi r^{2}$
$12 a+12 b+12 c+4 d$	$=$ Area of Square $=4 r^{2}$
$12 c+4 d$	$=$ Outside area of the Dodecagon

$1^{\text {st }}$ Modification in basic figure

b b	$b \stackrel{\square}{\mathrm{~b}}$	b , b	b
	a a	a a	
		a a	
$b \quad b$	b bes	$\mathrm{b} \sim \sim \mathrm{b}$	b

Figure Number - 3
From Figure - 3 ,
$16 a+16 b=$ Area of Square $=4 r^{2}$
Divide by 4 to above equation we get ,
$4 a+4 b=r^{2}$
From equation (3) \& (5)
$12 a+12 b+12 c+4 d=16 a+16 b$
$12 a+12 b+12 c+4 d-16 a-16 b=0$
$-4 a-4 b+12 c+4 d=0$
i.e $\quad 4 a+4 b=12 c+4 d$

But by using equation (6)
$4 a+4 b=12 c+4 d=r^{2}$
Divided by 4 to above equation we get ,
$\mathrm{a}+\mathrm{b}=3 \mathrm{c}+\mathrm{d}=\frac{r^{2}}{4}$

$2^{\text {nd }}$ Modification in basic figure

Find X part area

Construction_:- We divide Square into 16 equal part . Each sub square having area $\mathrm{a}+\mathrm{b}$. Part X area is unknown.

Figure Number-4
From Above Figure,
Area of Dodecagon $=12 a+4 b+4 X$
From Equation (1) \& (9) ,
$12 a+4 b+4 X=12 a+12 b$
$4 \mathrm{X}=12 \mathrm{a}+12 \mathrm{~b}-12 \mathrm{a}-4 \mathrm{~b}$
$4 \mathrm{X}=8 \mathrm{~b}$
Divide by 4 to above equation we get,
$\mathbf{X}=\mathbf{2 b}$
Area of X part is $\mathbf{2 b}$.
i.e our figure becomes,

Figure Number - 5
Modification in figure no. 5

b b b b				
	$2 b / 2 b$	a-b	a-b	2 b
$\mathrm{b} /$	a-b	$a+b$	$a+b$	$a-b \mid{ }_{b}^{\text {b }}$
b	a-b	$a+b$	$a+b$	$a-b{ }^{\text {b }}$ b
	$2 b^{2 b}$	a-b	a-b	$2 \mathrm{~b} / 2 \mathrm{~b}$
		- b	b b	

Figure Number - 6

From Figure No. 6 we get ,
Inside Square area $=8(a-b)+4(a+b)+8(2 b)$
Inside Square area $=12 \mathrm{a}+\mathbf{1 2 b}$.
From equation (1)
Area of Dodecagon (12 sides Polygon) $=$ Inside square area $=\mathbf{1 2} \mathbf{a}+\mathbf{1 2}$ b
(10)

Figure Number - 7

Area Bounded between two squares $\boldsymbol{=}$ Area of outer square $\boldsymbol{-}$ Area of inner square

$$
=(16 a+16 b)-(12 a+12 b)
$$

www.iosrjournals.org

Area Bounded between two squares $=\mathbf{4 a}+\mathbf{4 b}$

Divide Area Bounded between two squares into four equal parts .
i.e. one part value is $\mathbf{a}+\mathbf{b}$.

Modification in figure no. 6
 Find X part area

Figure Number - 8

From Above Figure we get,
Area Bounded between two squares $=\mathbf{2 4 b}+\mathbf{4 x}$
From equation (11) \& (12) we get,
$24 b+4 X=4 a+4 b$
$4 X=4 a+4 b-24 b$
$4 X=4 a-20 b$
Divide by 4 to above equation we get,
$\mathbf{X}=\mathbf{a}-5 b$
Area of X part is $\mathbf{a}-5 b$.
i.e our figure 7 becomes,

Figure Number - 9
Find X part area
b b
\longrightarrow
$a-5 b \quad x$
\longrightarrow
$a-5 b$
$7 b-a$

From above figure,
$2 b=(a-5 b)+X$
$X=2 b-a+5 b$
$\mathrm{X}=7 \mathrm{~b}-\mathrm{a}$
Area of X part is $7 b-a$.

Symmetric aera of part d inside \& outside the circle

Figure Number - 10
From above figure we get following two results,

1) 4 (Corner's $1 / 4$ th circle) $=$ Area of Circle
2) Inside area of $\mathbf{4 d}=$ Out of circle area of $4 d$.

Modification in figure no. 6

Figure Number - 11

Relation between figure 6 \& figure 11

Find X part area

From above figure
$\mathrm{a}-\mathrm{b}=\mathrm{X}+\mathrm{a}-5 \mathrm{~b}$
$X=a-b-a+5 b$
$X=4 b$
Area of X part is $4 b$.

Relation between figure 6 \& figure 11

Find X part area

From above figure
$a+b=X+2(a-5 b)+7 b-a$
$a+b=X+2 a-10 b+7 b-a$
$X=a+b-2 a+10 b-7 b+a$
$X=4 b$
Area of X part is $4 b$.

Modification in figure no. 11

Figure Number - 12

Figure Number - 13

[Refer equation (**)]
Figure Number - 14

Figure Number - 15

Some important relations From figure 11.

1) Area of Square $=32(2 \mathrm{~b})+32(\mathrm{a}-5 \mathrm{~b})+16(7 \mathrm{~b}-\mathrm{a})$

$$
=64 b+32 a-160 b+112 b-16 a
$$

Area of Square $=\mathbf{1 6 a}+\mathbf{1 6 b}$
2) Area of Inside square $=32(2 b)+16(a-5 b)+4(7 b-a)$

$$
=64 b+16 a-80 b+28 b-4 a
$$

Area of Inside square $=12 \mathrm{a}+12 \mathrm{~b}$
Area of Inside square = Area of Dodecagon = 12a + 12b.
3) Area in between two squares $=16(a-5 b)+12(7 \mathrm{~b}-\mathrm{a})$

$$
=16 a-80 b+84 b-12 a
$$

Area in between two squares $=\mathbf{4 a}+\mathbf{4 b}$
4) Area in between two squares $=$ Area of outer square - Area of Dodecagon $=12 \mathrm{a}+12 \mathrm{~b}+12 \mathrm{c}+4 \mathrm{~d}-12 \mathrm{a}-12 \mathrm{~b}$
Area in between two squares $=12 \mathrm{c}+4 \mathrm{~d}$
Area in between two squares $=$ Outside area of the Dodecagon

Outside Area of Dodecagon

Area in between two squares

Figure Number - 16
5) Area of Circle $=32(2 \mathrm{~b})+16(\mathrm{a}-5 \mathrm{~b})+12(7 \mathrm{~b}-\mathrm{a})$

$$
=64 b+16 a-80 b+84 b-12 a
$$

Area of Circle $=\mathbf{4 a + 6 8 b}$
-(13)

Area of Circle Transformation

Figure Number - 17
Area of Circle Transformation

Figure Number - 18
6) Part 4d Area :-
$4 d=16(a-5 b)+4(7 b-a)$
$=16 a-80 b+28 b-4 a$
$4 \mathrm{~d}=12 \mathrm{a}-52 \mathrm{~b}$
Divide by 4 .

$$
\begin{equation*}
d=3 a-13 b \tag{14}
\end{equation*}
$$

Area of part d=3a-13b

Important Formulae :-

1) Area of Square $=12 a+12 b+12 c+4 d=16 a+16 b$
2) Area of Circle $=12 a+12 b+12 c=4 a+68 b$
3) Area of part $3 c=14 b-2 a$
4) Area of part $d=3 a-13 b$

Verification :-

1) Area of square $=$ Area of Circle + Area of Part $4 d$

$$
\begin{aligned}
& =4 a+68 b+4(3 a-13 b) \\
& =4 a+68 b+12 a-52 b
\end{aligned}
$$

Area of square $=16 a+16 b$
2) Area of square $=$ Area of Dodecagon + Area of part 12c + Area of part 4d

$$
\begin{aligned}
& =12 a+12 b+12 c+4(14 b-2 a)+4(3 a-13 b) \\
& =12 a+12 b+56 b-8 a+12 a-52 b
\end{aligned}
$$

Area of square $=16 a+16 b$
3) Area of Circle $=$ Area of Dodecagon + Area of part 12c

$$
\begin{aligned}
& =12 a+12 b+4(14 b-2 a) \\
& =12 a+12 b+56 b-8 a \\
\text { Area of Circle } & =4 a+68 b
\end{aligned}
$$

For Further Proof we use Value of Area of Circle $=\mathbf{4 a}+\mathbf{6 8 b}$

Theorm :-	Exact value of $\boldsymbol{\pi} \mathbf{(P i)}$ is $\mathbf{1 7 - 8 \sqrt { 3 }}$.	
Proof	We Know Standard formula for	
	Area of Circle $=\pi \mathrm{r}^{2}$	----(i)
	And we get,	
	Area of Circle $=\mathbf{4 a + 6 8 b}$	----(ii)
	From equation (i) \& (ii), we get $\pi r^{2}=4 a+68 b$	
	Add 64a in both sides, we get	
	$\pi r^{2}+64 a=4 a+68 b+64 a$	
	$\pi r^{2}+64 a=68 a+68 b$	
	$\pi r^{2}+64 \mathrm{a}=68(\mathrm{a}+\mathrm{b})$	
	From equation (8)	
	$\pi r^{2}+64 \mathrm{a}=68\left(\frac{r^{2}}{4}\right)$	
	$\pi \mathrm{r}^{2}+\mathbf{6 4 a}=17 \mathrm{r}^{\mathbf{2}}$	----(iii)
	From Basic Figure,	
	$64 \mathrm{a}=32$ equilateral triangle	
	Area of equilateral triangle $=\frac{\sqrt{3}}{4}(\text { side })^{2}$	
	Side of equilateral triangle $=$ radius of circle $=\mathrm{r}$.	
	$\therefore \text { Area of equilateral triangle }=\frac{\sqrt{3}}{4}(\boldsymbol{r})^{2}$	
	$32\left(\right.$ Area of equilateral triangle) $=32\left(\frac{\sqrt{3}}{4}(\boldsymbol{r})^{2}\right)$	
	$\therefore 64 a=32($ Area of equilateral triangle $)=8 \sqrt{3} r^{2}$	
	Put this value in equation (iii), we get	
	$\pi r^{2}+8 \sqrt{3} r^{2}=17 r^{2}$	

```
\pir}\mp@subsup{}{}{2}=17\mp@subsup{r}{}{2}-8\sqrt{}{3}\mp@subsup{r}{}{2
\pir}\mp@subsup{r}{}{2}=(17-8\sqrt{}{3})\mp@subsup{r}{}{2
Divide by r}\mp@subsup{}{}{2
\thereforeWe get,
\pi=17-8\sqrt{}{3}\quad\mathrm{ or }\pi=17-\sqrt{}{192}
or \pi=3.14359353944....
```

Hence the Proof.

Now we find formula for area of part c \& d :-
From equation (2) \& (13), we get
$12 a+12 b+12 c=4 a+68 b$
$12 a+12 b+12 c-4 a-68 b=0$
$8 a-56 b+12 c=0$
$12 \mathrm{c}=56 \mathrm{~b}-8 \mathrm{a}$
Divide by 4 , we get
$\mathbf{3 c}=14 \mathrm{~b}-\mathbf{2 a}$

From figure (16) \& (17) we get,
Area of part 12c = Area of circle - Inside Square

$$
=4 a+68 b-12 a-12 b
$$

$$
12 c=56 b-8 a
$$

Divide by 4 , we get

$$
\begin{equation*}
3 c=14 b-2 a \tag{**}
\end{equation*}
$$

Area of part d :-

From Basic figure
Area of part $4 \mathrm{~d}=$ Area of square - area of circle

$$
\begin{aligned}
&=16 a+16 b-(4 a+68 b) \\
&=16 a+16 b-4 a-68 b \\
& 4 d=12 a-52 b \\
& \text { Divide by } 4 \\
& d=3 a-13 b
\end{aligned}
$$

Area of part $d=\mathbf{3 a} \mathbf{- 1 3 b}$

Area of Circle Equivalent equations are :-

Area of Circle $=12 \mathrm{a}+12 \mathrm{~b}+12 \mathrm{c}$
Area of Circle $=16 a+16 b-4 d$
Area of Circle $=64 b+12 c+4 d$
Area of Circle $=16 a-16 b+18 c$
Area of Circle $=128 b-24 c-4 d$
Area of Circle $=120 b-8 a+4 d$
Area of Circle $=96 \mathrm{~b}$ - 6c
Area of Circle $=12 \mathrm{~d}+48 \mathrm{c}$
Area of Circle $=\mathbf{4 a}+\mathbf{6 8 b}$
We can construct geometric figures of each $\mathcal{\&}$ every equations. also on sbstitution of values of $3 \mathrm{c} \boldsymbol{\&}$ value of d in each equation we conclude the constant value is $4 a+\mathbf{6 8 b}$

Area of circle $+\mathbf{4 d}=$ Area of square
Area of circle $+4 d=16 a+16 b$

Arithmetic formula for area of part a,b,c,d :-
Area of part a :-
From Basic Figure,
Area of part 2a =Area of equilateral triangle

$$
=\frac{\sqrt{3}}{4}(\text { side })^{2}
$$

Side of equilateral triangle $=$ radius of circle
\therefore Area of part $2 \mathrm{a}=\frac{\sqrt{3}}{4}(\boldsymbol{r})^{2}$
Divided by 2 , we get
\therefore Area of part $\mathrm{a}=\frac{\sqrt{3}}{8}(\boldsymbol{r})^{2}$
\therefore Area of part $\mathbf{a}=\mathbf{0 . 1 2 5}(\sqrt{3}) \mathbf{r}^{2}$

Area of part b :-

From equation (8), we get

$$
\begin{align*}
& \quad \mathrm{a}+\mathrm{b}=\frac{r^{2}}{4} \\
& \therefore \mathrm{~b}=\frac{r^{2}}{4}-\mathrm{a} \\
& \therefore \mathrm{~b}=(0.25) \mathrm{r}^{2}-(0.125(\sqrt{3})) \mathrm{r}^{2} \\
& \therefore \text { Area of part } \mathrm{b}=[\mathbf{0 . 2 5}-\mathbf{0 . 1 2 5}(\sqrt{3})] \mathbf{r}^{2} \tag{18}
\end{align*}
$$

Area of part 3c :-

From equation (15), we get
$3 \mathrm{c}=14 \mathrm{~b}-2 \mathrm{a}$
Substitute a\& balues, we get
$\mathbf{3 c}=\mathbf{1 4}(\mathbf{0 . 2 5}-0.125(\sqrt{\mathbf{3}})) \mathrm{r}^{2}-2(0.125(\sqrt{\mathbf{3}})) \mathrm{r}^{2}$
3c $=(3.5-1.75(\sqrt{3})-0.25(\sqrt{3})) r^{2}$
\therefore Area of part $3 c=(3.5-2 \sqrt{3}) r^{2}$

Area of part d :-

From equation (14), we get
$\mathbf{d}=\mathbf{3 a}-\mathbf{1 3} \mathbf{b}$
Substitute a\& b values, we get
$\mathbf{d}=\mathbf{3}\left(0.125(\sqrt{\mathbf{3}}) \mathrm{r}^{2}\right)-\mathbf{1 3}(\mathbf{0 . 2 5}-0.125(\sqrt{\mathbf{3}})) \mathrm{r}^{2}$
$\mathrm{d}=[0.375(\sqrt{3})-3.25+1.625(\sqrt{3})] \mathrm{r}^{2}$
\therefore Area of part $d=(2 \sqrt{3}-3.25) r^{2}$

Formulae :-

1) Area of part a $=[0.125(\sqrt{3})] \mathbf{r}^{2}$
2) Area of part $b=[0.25-0.125(\sqrt{3})] r^{2}$
3) Area of part $3 \mathrm{c}=[3.5-2 \sqrt{3}] \mathrm{r}^{2}$
4) Area of part $d=[2 \sqrt{3}-3.25] r^{2}$

If we put this a, b, c, d values in any arithmetic equation i.e in equation (16)
We always get the constant value $\pi=17-8 \sqrt{3}$ or $\pi=17-\sqrt{192}$.
\therefore Finaly I conclude that value of $\pi=17-8 \sqrt{3}$ or $\pi=17-\sqrt{192}$ or 3.14359 .

Supportive Work related to value of pi (π)

Figure Number - 19

Figure Number - 20

Basic Figure 1

Figure Number - 21

Modification in Basic figure 1

Figure Number - 22

Some Important formulae :-

$a+b=d+3 c$
$3 c=14 b-2 a$
$\mathbf{d}=\mathbf{3 a}-13 b$
By using c \& d values
We can verified 6 equations given in the hexagon .

Verification :-

Assume that, X can take any real value .

1) X Numbers of equilateral Triangle $=X($ multiple of any one equation in hexagon $)+[(3 X)(2 b+2 c)]$

For Example :-
For $X=10$, we choose one equation in hexagon, $6 a-34 b$.
10 Numbers of equilateral Triangle $=20 \mathrm{a}$
--------From Basic figure
X Numbers of equilateral Triangle $=X($ multiple of any one equation in hexagon $)+[(3 X)(2 b+2 c)]$
10 Numbers of equilateral Triangle $=10(6 a-34 b)+[(30)(2 b+2 c)]$

$$
=60 a-340 b+60 b+60 c
$$

$$
=60 \mathrm{a}-280 \mathrm{~b}+60 \mathrm{c} \quad \text { i.e } 60 \mathrm{c}=20(3 \mathrm{c})
$$

$$
=60 a-280 b+280 b-40 a . \quad=20(14 b-2 a)
$$

www.iosrjournals.org
32 | Page

Exact value of pi $(\pi)=17-8 \sqrt{3}$		
$\mathbf{1 0}$ Numbers of equilateral Triangle $=\mathbf{2 0 a}$	$($ From Basic Figure $)$	$=280 \mathrm{~b}-40 \mathrm{a}$

10 Numbers of equilateral Triangle $=20 \mathrm{a} \quad$ (From Basic Figure) $\quad=280 \mathrm{~b}-40 \mathrm{a}$
2) $(\mathbf{4 a}+68 \mathrm{~b})(\mathbf{X} / 6)=(\mathbf{X} / 6)($ Area of Circle $)=X($ multiple of any one equation in hexagon $)+[(4 X)(2 b+2 c)]$ For Example :-
For $X=12$, i.e $(X / 6)=(12 / 6)=2$. we choose one equation in hexagon, $6 \mathrm{a}-34 \mathrm{~b}$.
$2($ Area of Circle $)=\mathbf{2 (4 a}+\mathbf{6 8 b})=\mathbf{8 a}+\mathbf{1 3 6 b} \quad------$ - By using equation (13)
$(\mathrm{X} / 6)($ Area of Circle $)=\mathrm{X}($ multiple of any one equation in hexagon $)+[(4 \mathrm{X})(2 \mathrm{~b}+2 \mathrm{c})]$
2 (Area of Circle) $=12(6 a-34 b)+[(48)(2 b+2 c)]$
$=72 a-408 b+96 b+96 c$
$=72 \mathrm{a}-312 \mathrm{~b}+96 \mathrm{c} \quad$ i.e $96 \mathrm{c}=32(3 \mathrm{c})$
$=72 \mathrm{a}-312 \mathrm{~b}+448 \mathrm{~b}-64 \mathrm{a} . \quad=32(14 \mathrm{~b}-2 \mathrm{a})$
2 (Area of Circle) =8a+136b $=448 b-64 a$

Three circles having Same radius touches each other

Figure Number - 23

1) Area of Circle $=2(3 a+3 b+3 c)+3(2 a+2 b+2 c)$

Area of Circle $=12 a+12 b+12 c$
2) Area of circle $=$ Area of Triangle + Area of rectangle - (6a-34b) - (6a -26b)

$$
=8 \mathbf{a}+(8 a+8 b)-(6 a-34 b)-(6 a-26 b)
$$

Area of circle $=4 a+68 b$

Four circles having Same radius touches each other

Figure Number - 24
From Above Figure we get following some results,

1) Area of circle $=6(2 a+2 b+2 c)=12 a+12 b+12 c$
2) Area of circle $=$ Area of $(\square$ EFGH $)-2(6 a-34 b)$

$$
\begin{aligned}
& =8(2 a)-2(6 a-34 b) \\
& =16 a-12 a+68 b
\end{aligned}
$$

Area of circle $=\mathbf{4 a + 6 8 b}$

Note :- 6a-34b=2a-3(2b+2c)

Basic Figure 2

Figure Number - 25

Basic Figure 3

Figure Number - 26
Basic Figure 4

Figure Number - 27

Conclusions:-

We can find area of circle in terms of a,b,c,d formula for any circle having radius \mathbf{r}.

Formulae :-

1) Area of part a $=[0.125(\sqrt{3})] \mathrm{r}^{2}$
2) Area of part $b=[0.25-0.125(\sqrt{3})] \mathbf{r}^{2}$
3) Area of part $3 c=[3.5-2 \sqrt{3}] \mathbf{r}^{2}$
4) Area of part $d=[2 \sqrt{3}-3.25] \mathbf{r}^{2}$

I conclude that pi (π) is an algebra \& Exact value of pi (π) is , $\pi=17-8 \sqrt{3}$ or $\pi=17-\sqrt{192}$ or 3.14359353944...

References :-

[1] Basic algebra \& geometry concepts .
[2] Histry of $\operatorname{Pi}(\pi)$ from internet .

